The Cell Cycle – Interphase and Mitosis

The life of a cell begins with **interphase**, specifically **G1**. A time of **protein synthesis**, its life has just begun!

Transcription, then **translation**, it does continuously. Working from the relevant **genes**, copied ploddingly.

The surface area to volume ratio begins to get too low, gas exchange is compromised, diffusion is too slow!

Cell division is necessary, so **cyclins** urge along conversion. First **D**, now **E**, then **A**, then **B**; continuous coercion!

DNA replication must occur, here in the **S-phase**, remember it happens **now**, and **never** in **prophase**!

Helicase unlocks base pairs, breaking the hydrogen bonds. DNA polymerase then adds nucleotides that correspond!

Once **replication** is complete, **G2** phase can take place. The cell is **duplicating organelles**, running out of space!

Cyclin B ensures that **mitosis** will shortly commence. **P** for **Prophase** is the first step of that sequence.

The **nuclear envelope** must be broken away, while **spindle microtubules** are forming their array.

Supercoiling sister chromatids are becoming **visible**. The **centromere** holds them close, but still distinguishable.

In **metaphase**, those **sister chromatids** do **align**, along the **equatorial plane** – look for this sign!

Spindles are anchored oppositely to the **centromere**. They pull them apart, et voila! Two **chromosomes** appear!

Anaphase is this dragging through the **cytoplasm**. They were sisters once, but now there is a chasm.

The pinching of the membrane, **telophase** soon begins, **cytokinesis** at last splits the cell, forming nuclear twins :D

×MJ © 2023 www.learning-simply.com

Revision Questions

1. State the order of the stages of the life cycle of a cell:

Interphase: _____, ____, ____, ____, ____, Mitosis: _____, ____, ____, ____, ____, ____, _____,

- 2. State the order of the cyclins.
- 3. Name the two processes that are needed for protein synthesis.
- 4. State the name of the phase when DNA replication occurs:
- 5. Explain the role of helicase.
- 6. Explain the role of DNA polymerase.
- 7. Describe three changes that occur in a eukaryote during prophase.
- 8. Label the relevant parts on this diagram:

9. Define cytokinesis.

The Cell Cycle – Interphase and Mitosis

1	The life of a cell begins with, specifically A time of synthesis, its life has just begun! Transcription, then, it does continuously. Working from the relevant, copied ploddingly.
• .	The surface area to begins to get too low, gas is compromised, diffusion is too slow!
	Cell division is necessary, so cyclins urge along conversion. First D , now E , then, then; continuous coercion!
	DNA must occur, here in the phase , remember it happens now , and never in prophase !
- [unlocks pairs, breaking the bonds. DNA then adds that correspond!
\mathbf{V}	Once is complete, phase can take place. The cell is duplicating , running out of space!
X	Cyclin ensures that will shortly commence. P for is the first step of that sequence.
	The nuclear must be broken away, while spindle microtubules are forming their array.
	Supercoiling chromatids are becoming The centromere holds them close, but still distinguishable.
	In, those sister do align , along the plate – look for this sign!
	Spindles are anchored oppositely to the They pull them apart, et voila! Two appear!
	is this dragging through the cytoplasm. They were sisters once, but now there is a chasm.
	The pinching of the membrane, soon begins, cytokinesis at last splits the cell, forming nuclear twins :D

xMJ © 2023 www.learning-simply.com