C 3.2 Defence Against Disease

1.	mechanisms are importa	ng, w	, which are		
	causing organisms like,,,		, and, from causing harm.		
	Interestingly, organisms from the	called	are not	known to cause	
	disease in humans.				
2.	2. The and	_ form the	defence. 1	hey are both	
	and barriers ag	gainst	·		
3.	3. When these are compromised	d, the body has	mechanisms like _	to	
	seal cuts and prevent further	entry.			
	is facilitated by,	which release _	factors	that initiate a	
	pathway which rapidly converts	to	, which in	turn converts	
	to The stran	ds of	_then form a	over the wound,	
	trapping and forming a p	orotective	•		
	This is simply explained with a schematic:				
		releasefactors	Forms a me	esh	
4.	. The system is divided into the	eand	branc	hes:	
The immune system is the body's initial, respon					
	broadcategories, while t	he ir	mmune system pr	ovides a more	
	, learned response.				

5.	, part of the innate immune response, recognize and pathogens, digesting				
	them through found in the This is called, which is a				
	form of				
6.	especially within the adaptive immune system, produce				
	specific, enabling a targeted defense against pathogens with distinct				
7.	, mostly on pathogen surfaces, trigger production. Specific				
	, activated by exposure and, proliferate to create				
	cells that secrete in large quantities.				
	Retaining cells after infection equips the immune system to quickly combat future				
	infections with the same pathogen, leading toterm immunity.				
8.	play a crucial role in building immunity without causing disease, using				
	or material coding for, which are injected into the body.				
9.	immunity arises when a significant proportion of a population becomes immune,				
	limiting spread.				
10	.Understanding and applying these immune principles are especially critical with				
	diseases, such asto, highlighting the				
	importance of monitoring and controlling these infections				