Genes and Chromosomes

1. Chromosomes are long lengths of \qquad , with \qquad along them. A \qquad is a \qquad factor made up of a \qquad of DNA that influences a certain \qquad . It occupies a specific location on a chromosome, called a \qquad . The entire \qquad sequence of the human
\qquad was sequenced in the \qquad
\qquad project.
2. The \qquad size differs across species. This is the total \qquad of all the DNA in an organism measured in the number of millions of \qquad
\qquad (b.p).

Organism (scientific name)	Organism (common name)	___ Size (millions of b.p)
E.phage		
D. melanogaster		
H. sapiens		
P. japonica		

3. The number of \qquad is not the same in all eukaryotic organism. Complete the table:

Organism (scientific name)	Organism (common name)	Number of genes
P.		

4. The various forms of \qquad are called \qquad . They differ by only a few \qquad New ones can be formed by \qquad .
5. \qquad anemia arose due to a base \qquad
\qquad . This
causes the \qquad amino acid to change from \qquad to \qquad . This
impacts the 3D shape of the hemoglobin \qquad .
6. Complete the schematic showing how this mutation impacts an individual when the \qquad is expressed.

Normal Hemoglobin

\square

