Enzymes (SL)

1.	Enzymes are	catalysts composed of		of	They function by		
		_ the	e	nergy needed to st	art chemical reactions	. This allows	
	many	to take pla	ace at	temperature.			
	Complete the graph sl	nowing impact of	f	†			
	enzymes have on the	energy of the rea	action.				
	Label both axes as we	II.					
	Bonus point: What ty	pe of reaction is	this,				
	where the products co	ontain less energy	y than reactants?			-	
2.	Enzymes have an	site	e with a	shape tha	it will only allow one ty	/pe of	
	to bind. Once they have, the resulting structure is the						
	cor	nplex. The enzy	me facilitates th	e reaction and rele	ases the	·	
3.	One example of many	enzymes used ir	ndustrially is	, wh	ch converts	,	
	the sugar in milk into		and	Rec	all, this is a		
	reaction because must be consumed in the reaction. Also, this is the conversion of a						
		into 2					
	The enzyme could be added directly to the milk, but then it would be difficult to						
	it and there might be	an impact the	of the	e milk. Instead,	is attac	hed to	
	bo	eads. This		the enzyme, s	o it can readily be used	d again and	
	again. The milk is sin	nply	over the		beads and the finished	d product	
	(given sufficient time) will no longer contain						
	This process is conven	ient for individua	als who are	into	lerant and could other	wise not	
	drink milk, and for ma	aking	becaus	e the products,	a	nd	
	,	are sweeter and I	less gritty.				

Enzymes can only function after	collisions l	oetween the					
site. Several fa	actors can impact whether or r	not co					
Firstly, the number of collisions wi	ll increase as	increases, bed	cause the molecule				
possess more en	ergy. However, past the	temper	ature, the				
energy will bonds in the enzyme, alte							
3D shape of the	site. This is called	and	the				
rate of enzyme	_·						
This can be shown in a graph.							
Complete the one opposite,							
labeling the axes and key compon		>					
Another factor is Enzymes have an, as before, for which the rate is the If the solution containing the enzyme becomes too or too							
, the enzyme will							
Complete the graph for this factor,	,						
labeling axes and key components	·						
tabeling axes and key components							
Lastly, theco	ncentration will impact the	of enzyme a	ctivity. Initially, an				
in	concentration wil	l the r	eaction rate.				
However, once the enzymes becor	me, tha	t is, working to	capacity, the				
reaction rate ceases to	and simply	Complete	the graph:				
	↑						

alginate poured glucose disaccharide temperature ice cream active denature/denaturation galactose hydrolysis reactions lowers activity plateau alkaline products specific lactose reducing/reduces acidic effective substrate permanently immobilizes biological rate body enzyme lactase monosaccharides reuse/remove water joined flavor protein break kinetic fastest increase saturated pH