B 2.1 Membrane Transport

(a)	The	irst is transport which does not require because molecules simp	
	mov	the gradient. Specific types include:	
	(i)	diffusion, which is the passage of, non	
		molecules directly across the bilayer. Two examples of molecu	
		that can pass this way are and (gases). This meth	
		of transport is not, because only the and of the	
		molecule is relevant.	
	(ii)	diffusion is the passage of,,	
		molecules through a protein. An example of a molecule that can pa	
		this way is which can pass through a	
		As the name implies, these open in response to changes in	
		all the time. This means it is not all the time. This helps explain how a	
		can be permeable.	
	(iii)	is the movement of water molecules across a	
		permeable membrane. Water will move from an area of solute concentration t	
		area of solute concentration, to concentrations on either side	
		the membrane. Hence, water follows, is an important notion to understand. Thi	
		only occur if the membrane is to the Water molecules pass	
		through an protein called	
(b)		econd type is transport which does require (the full name for	
	molecule is as it moves molecules the		
	gradient. This type of transport requires an		
	prote	in. Again, it is because the will only let certain	