Membrane Transport

The f	e first is as it simply	requires a
	gradient.	
Speci	ecific types of this type of transport include:	
(i)	diffusion, which is the passage of, non	
	molecules directly across the bilayer. An example	of a molecule tha
	can pass this way is gas.	
(ii)	, diffusion is the passage of,	molecules
	through a protein. An example of a molecule that can	pass this way is
	which can pass through a	•
	As the name implies, these open in response to changes in	Add a sketch
	of this type protein here:	
(iii)	is the movement of water molecules across aperme	able membrane.
()	Water will move from an area of solute concentration to an area of	
	solute concentration, to equalize concentrations. Hence, water follows	, is an
	important notion to understand.	
The s	e second type is as it mov	ves molecules
	the the gradient. This type o	f transport

2.	The phospholipid bilayer is	, so it can break and reform. That allows the formation of
	which transpor	rt molecules such as proteins around inside cells.
		3. Specifically, as can be seen in the diagram, a protein for export is first synthesized on the bound to the rough They are transported in a to the the protein.
	© °	They bud off in a again, which then fuses with the membrane, secreting the protein. This process is called
	called	an also fold around a molecule that is too large to enter a cell. This is It is commonly done by a type of white blood cell called a , therefore is a type of
5.	Osmolarity can be estimated in a potat	
	Independent Variable:	
	To determine how the	of a solution impacts the mass of a potato sample.
	Dependent Variable:	
	Controlled variables: (state 3 – mo	ethod on following page can help)

Method:

Potatoes are pealed and cut into cylinders of equal volume and surface area. The initial mass of each sample is recorded and is then 1 placed in each solution of 0.0, 0.4, 0.8, 1.2, 1.6 %. They are left for 10 minutes, and then the final mass is recorded. The change in mass as a % is then calculated and a graph is produced.

Results:

Concentration (%)	Initial mass of sample (g)	Final mass of sample (g)	Change in mass (g)	Change in mass as a percentage (%)
0.00	3.40	3.65	+ 0.25	
0.40	3.35	3.45	+ 0.10	
0.80	3.45	3.49		
1.20	3.42	3.30		
1.60	3.38	3.00		

			_
Analys	is/Conclusions		
In the ₋		solution, water moved the sample, causing the	mass to
	·	. This was between concentrations of approx and	(%).
In the ₋		solution, water moved the sample, causing the	mass to
		. This was between concentrations of approx and	(%).

n the solution, the solute concentration on either side was			, so
there is no net movement of	molecules.	This was at a concentration of approx	x (%).
This is important to understa	and when transporting	to be used in transplants.	They must
be kept in	solution to avoid	the tissue.	