Cell Cycle

1. The cell cycle is as follows:

Stages 1, 2 and 3 are called \qquad . Stage 1 is the \qquad phase, in which
\qquad synthesis is occurring. Stage 2 is when \qquad
\qquad occurs in preparation for
cell division. Stage 3, the \qquad phase, is also a time of \qquad synthesis and \qquad of extra organelles.

Stages 4-6 are called \qquad . This is the division of the \qquad into two
\qquad identical \qquad -.

The cell cycle is regulated by proteins called \qquad . They bind to \qquad -dependent kinase enzymes, moving the cell into the next phase. These proteins were discovered by \qquad ـ.

This graph shows the change in concentration in the different \qquad . Complete it, and include a key.
\qquad

We will look at the steps in detail (you must make diagrams in the boxes):

Stage 1 of \qquad is called \qquad (4 on diagram).

In this stage, the sister \qquad are \qquad coiling. They are held together at the \qquad . The \qquad envelope is \qquad down, and the \qquad micro
\qquad are spreading towards the poles.

Stage 2 is called \qquad (5 on diagram). In this stage, the sister \qquad are \qquad up at the \qquad .

The \qquad micro \qquad attach to \qquad sides of the \qquad .

Stage 3 is called \qquad (6). In this stage, the sister
\qquad separate because the \qquad gets
broken. This creates two \qquad that then migrate to
\qquad poles.

Stage 4 is called \qquad (7). In this stage, the
\qquad envelope reforms around the \qquad .

The \qquad moves inwards and pinches off, forming two new cells. This is called \qquad and is different in plant and animal cells, mostly because plant cells have a \qquad .
2. The \qquad of cell division can be used to detect \qquad cells. These cells divide
\qquad so a sample will show many cells in any of the above stages of \qquad when comparing to the overall number of cells in a sample. This is called the \qquad index and the formula is: \qquad index $=$ \qquad Remember, it is easy to see if a cell is in interphase or in \qquad . In \qquad the chromosomes are always visible because they have \qquad .

Work out the mitotic index for these simulated tissue samples:

Which sample is more likely to be from a tumour?
3. \qquad can be caused by \qquad which alter the genetic code, or by
\qquad which are genes that can, under certain circumstances, lead to the development of
\qquad . These two factors can cause \qquad tumours in one organ. If the
\qquad spreads to other organs, this is called \qquad . The new tumours
formed in other organs are called \qquad tumours.
4. There is known to be a \qquad correlation between \qquad and getting
\qquad cancer. It is important to understand that correlation does not mean \qquad .
\qquad it is not necessarily true that one causes the other.

