D 2.3 Water Potential SL

1.	1. Water often acts as a, beca	use it can form	bonds with	_ molecules.		
	This occurs because water is a	molecule, with its	atom slightly	and its		
	atoms slightly For	example, when table	(NaCl) dissolve	s in water,ions		
	are attracted to the side of w	ater molecules, and	_ ions are attracted	to the		
	side.					
	Na ⁺	CI ⁻				
	This process allows theto become	e by water n	nolecules, keeping t	hem in		
	The ability of water to dissolve r	nolecules and ions is cru	cial for many	processes.		
2.	2 refers to the mo	ovement of water from a	reas of solu	te concentration		
	(solution) to areas of					
			·	·		
3.	3. If a cell is placed in a sol	ution, water will move _	the cell. C	conversely, if the cell		
	is in a solution, water w	ill move the cell.	In an 6	environment, the		
	solute is insid	e and outside the cell, so	water moves ar	d at		
	rates, maintaining dynamic	without water i	movement. Add do	ts to show solutes,		
	and arrows to show the movement of water for a generalized cell:					
	solution		solution			

4.	When plant tissues are bathed in a solution, water moves into the cells via		
	This causes the cells to as the vacuole fills with water, leading to increased		
	pressure pressure helps maintain the structure of plant cells, making them firm. However,		
	in solutions, water exits the plant cells, causing them to The pulls		
	away from the cell wall, a process known as		
	solution solution		
5.	In cells that lack a wall, such as cells, can have drastic effects. In a		
	environment, water enters the cell, causing it to and potentially (lysis). Ir		
	a environment, the cell as water leaves, leading to a condition known as		
	To prevent such harmful effects, freshwater unicellular organisms use		
	vacuoles to expel excess water organisms maintain conditions in tissue fluids		
	to prevent the dangerous effects of or shrinking.		
6.	Medical applications of solutions include fluids, which are administered to		
	patients to ensure that their blood remains, preventing harmful fluid shifts.		
	Additionally, organs ready for are bathed in solutions to preserve		
	integrity.		

7. Experimentation: An Estimation of Osmolarity In a Potato

Independent Variable:				
To determine how the	of a solution impacts the mass of a potato sample.			
Dependent Variable:				
Controlled variables: (state 3 – method on following page can help)				

Method:

Potatoes are pealed and cut into cylinders of equal volume and surface area. The initial mass of each sample is recorded and is then 1 placed in each solution of 0.0, 0.4, 0.8, 1.2, 1.6 %. They are left for 10 minutes, and then the final mass is recorded. The change in mass as a % is then calculated and a graph is produced.

Results:

Concentration (%)	Initial mass of sample (g)	Final mass of sample (g)	Change in mass (g)	Change in mass as a percentage (%)
0.00	3.40	3.65	+ 0.25	
0.40	3.35	3.45	+ 0.10	
0.80	3.45	3.49		
1.20	3.42	3.30		
1.60	3.38	3.00		

Figure 1. Scatter-plot of results:

ו Analysis/Conclusion	c			
•	solution, water moved	the sample,	, causing the mass	s to
	This was between concentrat	ions of approx.	and	_ (%).
In the	solution, water moved _	the sample,	causing the mass	to
	This was between concentrat	ions of approx	and	_ (%).
In the	solution, the solute cond	centration on either si	ide was	so
there is no net move	ement of molecules.	This was at a concen	itration of approx	·
(%).				
In this methodology,	there were no	. It is important to typ	pically	an
experiment at least _	times. This allows for the cal	culation of standard _	т	his would
allow us to understa	nd the of th	e results. It would als	so be possible to	work out
the standard	, which would allow us to u	nderstand how	the avera	ge
measurements were	. Adding these bars to a figure a	llows for a quick, visua	al comparison of	the
of th	ne data.			
This is important to ເ	understand when transporting	to be use	d in transplants.	They
must be kept in	solution to av	<i>r</i> oid	the tissue.	