1) The product of 8×10^{2} and 9×10^{5} must be written as \qquad . And the quotient of 2×10^{-2} and 8×10^{-5} must be written as \qquad . You must be able to do this WITHOUT the use of a calculator.
2) The expression below means to \qquad this \qquad sequence from \qquad to
\qquad .

$$
\sum_{x=4}^{100} 2 \times 3^{x}
$$

In this example, the common \qquad is \qquad .
3) Simple interest is calculated by multiplying \qquad
\qquad and \qquad . It forms an
\qquad sequence because the \qquad amount gets \qquad every
year.
4) The common difference is calculated by \qquad U_{1} from U_{2}. An approximate could perhaps be found by finding the \qquad of several differences.
5) The common ratio is calculated by \qquad U_{2} by U_{1}. An approximate could be found by \qquad the ratios or by making an \qquad model.
6) For financial applications, such as geometric sequences showing growth, one can use \qquad instead of \qquad to form nth terms.
7) To get the real interest rate, one should subtract the \qquad rate from the
\qquad rate.
8) For depreciation, it is important to use a \qquad multiplier. For example, a 20\% decrease becomes \qquad .
9) It is possible to write $8^{2 / 3}$ as \qquad . The value of this example is \qquad . It is also possible to write $\frac{1}{\sqrt[4]{x^{3}}}$ as a fractional exponent: \qquad . This is useful in calculus.
10) There are two types of infinite geometric sequences: \qquad and \qquad . For the latter, it is possible to use a formula to calculate the \qquad . In other words, it is only possible to sum geometric sequences to \qquad if $\mid r$ \qquad 1.
11) For the following binomial expansion: $(3 x+2)^{4}$
a) The constant term in binomial expansion is the term \qquad a variable, in this case
\qquad . For this expansion it is the \qquad term. The value is \qquad .
b) The second term of this expansion is \qquad .
c) The coefficient of the fourth term is \qquad .
12) For practice, write the first 5 rows of Pascal's triangle.
13) In calculator papers, it is simpler to use the \qquad command than to draw the table or use the formula.

In non-calculator papers, it is best to use the formula for large values or when \qquad is unknown. For practice, calculate ${ }^{5} C_{9}$ without a calculator:

Now find an expression for ${ }^{n} c_{2}$ without a calculator

