Straight-lines

1) There are 3 different forms of for the equation of a straight line:
a) Convert $y=2 x+5$ to the general form, $a x+b y+c=0$: \qquad
b) Convert $18 x+6 y+12=0$ to the gradient-intercept form: $y=$ \qquad
c) The third form is called the \qquad -gradient form. It is useful when having coordinates such as $(4,6)$ given the gradient is 8 . Copy and fill in the formula with this information:
2) Lines are sometimes \qquad . This means the \qquad are exactly the same.
3) Lines can also be \qquad to each other. To test if they are precisely at
\qquad degrees, you can \qquad the gradients and you should get a value of \qquad . This could be useful in proof. The word \qquad can also be used to describe a line that is at \qquad degrees to another.

Other Functions

4) Functions can act as \qquad . For example, $C(t)$ could be used to represent the change in cost over \qquad for a company.
5) Inverse functions are found by switching the \qquad and \qquad coordinates. On a graph, this ends up being a reflection in the line \qquad $=$ \qquad . If a coordinate is defined as $f(2)=5$, then the inverse would be written as f^{-1} \qquad $=$ \qquad
6) Finding the domain and range of inverse functions is easy. They simply \qquad .
7) If inversing the function results in the \qquad function you started with, it is called a
\qquad - inversing function. The simplest is $y=-$, also called the \qquad function. There is also something called an \qquad function. For these, if you make a composite function of the inverse and $f(x)$, your solution will be \qquad . This is important for proof. Try this here for $f(x)=2 x+4$ by finding the inverse first:
8) There are several functions you need to know the shape of. Sketch each, and state domain and range below. Also, add any asymptotes, stating their equations, and specify the coordinates of any zeros:

$$
y=\sqrt{x}
$$

$y=\frac{1}{x}$
$y=a^{x}$
$y=\ln x$
9) Transformations can be carried out on any type of function. To begin, $y=a f(x)$ represents
a \qquad
\qquad of $f(x)$, scale factor \qquad . To carry out this transformation, simply \qquad each \qquad - coordinate by \qquad . Leave the \qquad -
coordinate unchanged. Conversely, $y=f(a x)$ is a \qquad
\qquad of scale factor
\qquad . One must \qquad each \qquad - coordinate by \qquad leaving the \qquad -coordinates.
10) Next, $y=f(x-4)+5$ represents a \qquad by the \qquad (). To carry out this transformation, simply \qquad to each \qquad -coordinate and \qquad to each \qquad coordinate. This is a \qquad transformation because you are doing \qquad at once.
11) Also, $y=-f(x)$ is a \qquad in the \qquad -axis. Simply \qquad the
\qquad of each \qquad - coordinate, leaving each \qquad - coordinate unchanged.
12) For $y=f(-x)$, which is a \qquad in \qquad - axis, we simply change the \qquad of each
\qquad - coordinate and leave the \qquad - \qquad as they were.
13) A quadratic graph can also be called a \qquad . There are 3 forms for the equation of a quadratic.
a) General form: $y=$ \qquad $+$ \qquad $+$ \qquad
b) Root or x-intercept form: $y=$ \qquad
c) Vertex or completed square form: : $y=$ \qquad
14) Quadratic equations have symmetry. The line of symmetry is called the \qquad of symmetry. There is also a \qquad which is the general term for a
\qquad or \qquad , depending if the function is \qquad (upward facing) or \qquad (downward facing).
a) Write the function $y=x^{2}+4 x-12$ in root form, and vertex form in space below.

Sketch the function with the information these two forms provide. Also include the
\qquad of symmetry.

b) For this graph: Write the function in all three forms. Begin with root or vertex form.

15) For some quadratics, it is not simple to write them in the root/vertex forms. The \qquad can be found by using the quadratic \qquad instead:
16) Part of this equation is called the discriminant. The formula is \qquad
\qquad . The purpose of the discriminant is to determine how many \qquad a quadratic function has. There can be: (sketch each one next to it):
a) \qquad solutions, where \qquad 0
b) two \qquad real solutions, where \qquad 0
c) two \qquad real solutions, where \qquad 0
17) Without the use of a calculator, sketch the following: $f(x)=\frac{12 x+24}{6 x-12}$, including:
a) The equations of the asymptotes
b) The coordinates of the x-intercepts.
c) The coordinates of the y-intercepts

