Binomial Expansion - Part 1.

Revision:

1. Expand and simplify the following. Then complete the table

Expansion and simplification	Number of terms	Values of the coefficients
a) $(\mathrm{x}+\mathrm{y})^{2}$		$1,2,1$
b) $(\mathrm{x}+\mathrm{y})^{3}$		

2. The following is Pascal's triangle. Fill in the missing values. What do you notice when you compare rows 2 and 3 to your answers above?

3. Rather than expanding by multpliying out the brackets, use the pattern to complete the expansion of $(\mathrm{x}+\mathrm{y})^{4}$. Notice that x, the first term, will first "take" all the power x^{4}, and will descend, until y will "take" all the power, y^{4}.
4. Using the patterns observed, state how many terms will be in the expansion of each of the following:
a) $(x+2)^{4}$
b) $(3-2 x)^{8}$
5. Working out the value of coefficients using Pascal's triangle can be onerous for higher values. Write the formula used to calculate the coefficient (from formula booklet!):
6. Using the formula in Q5, calculate each of the following (do NOT use a calculator)
a) $\binom{9}{3}={ }^{9} C_{3}$
b) $\binom{8}{6}={ }^{8} C_{6}$
7. By using the patterns observed, and applying the coefficients, fully expand each of the following. Circle the constant term.
a) $(x+3)^{5}$
b) $(2 x-1)^{4}$
