1. The chain rule is used when there are 2 functions. An outside function (the one you see right away the "entire" thing) and then the function "inside" it. For each of the following, find u, where this is the "outside" function and v where this is the "inside" function. Then differentiate each and multiply the result together to complete the derivative. The first one has been done for you.
a) $g(x)=(2 x+3)^{3}$
b) $\quad h(x)=(4 x+5)^{5}$

So:
$u=(2 x+3)^{3}$ and $v=2 x+3$

Derivative of both:
$u^{\prime}=3(2 x+3)^{2}$ and $v^{\prime}=2$

Multiply u^{\prime} by v^{\prime}
$g^{\prime}(x)=2(3)(2 x+3)^{2}$

Simplify to finish:
$g^{\prime}(x)=6(2 x+3)^{2}$
c) $y=3\left(2 x^{2}-4\right)^{3}$
d) $y=-\left(-x^{2}-5\right)^{2}$
e) $y=\sqrt{x^{3}+3 x}$
f) $y=\sqrt{x^{4}+6}$
2. For the functions below, determine the equation of the tangent $(y=m x+c)$ for the specified x coordinate.
a) $y=\left(x^{2}-3\right)^{4}$ where $x=2$
b) $f(x)=2 \sqrt{8 x-4}$ where $x=1$

