Differentiation I

- The first derivative will give you the value of the ______ of the tangent to the curve for any value of _____, or vice versa. Recall that the equation of the line is ____=____, where ____ is the _____ and ____ is the ____- intercept.
- 2. Find the derivative of each of the following. You might need to revise your fractional and negative exponent rules first.

a)
$$f(x) = x^3 + 3x^2 - 2x + 2$$

b)
$$y = 7 - 4x^2 + 3x - 3x^4$$

c)
$$f(x) = \frac{-2x^3}{3} - \frac{4}{x^2}$$

d)
$$f(x) = \frac{-1}{x} - \frac{3}{x^2}$$

e)
$$y = 8 + \frac{7}{x} - \frac{4}{x^3} + 5x$$

- 3. Explain what f'(2) = 20 means in a short sentence.
- 4. A function, $y = 2x^3 18x$, has a tangent at x = 2.
 - a) Work out the gradient of the tangent.
 - b) Work out **the equation** of the tangent.

5. At x, the tangent to a function, $f(x) = \frac{x^3}{3} - 2x^2 - 8$ has a gradient of 5. Find the possible values of x.

- 6. If the gradient of a tangent is ______ then the function, f(x) is increasing.
- 7. If the gradient of a tangent is ______ then the function, f(x) is decreasing.
- 8. At a _____ or a ____ the gradient has a value of 0.

9. This graph shows the function $f(x) = x^3 + 2x$.

Find the equation of the tangent to the curve f(x) at x=5. Draw the tangent on the graph as well.