Differentiation I

1. The first derivative will give you the value of the \qquad of the tangent to the curve for any value of \qquad or vice versa. Recall that the equation of the line is \qquad $=$ \qquad , where \qquad is the \qquad and \qquad is the \qquad - intercept.
2. Find the derivative of each of the following. You might need to revise your fractional and negative exponent rules first.
a) $f(x)=x^{3}+3 x^{2}-2 x+2$
b) $y=7-4 x^{2}+3 x-3 x^{4}$
c) $f(x)=\frac{-2 x^{3}}{3}-\frac{4}{x^{2}}$
d) $f(x)=\frac{-1}{x}-\frac{3}{x^{2}}$
e) $y=8+\frac{7}{x}-\frac{4}{x^{3}}+5 x$
3. Explain what $f^{\prime}(2)=20$ means in a short sentence.
4. A function, $y=2 x^{3}-18 x$, has a tangent at $x=2$.
a) Work out the gradient of the tangent.
b) Work out the equation of the tangent.
5. At x, the tangent to a function, $f(x)=\frac{x^{3}}{3}-2 x^{2}-8$ has a gradient of 5 . Find the possible values of x.
6. If the gradient of a tangent is \qquad then the function, $f(x)$ is increasing.
7. If the gradient of a tangent is \qquad then the function, $f(x)$ is decreasing.
8. At a \qquad or a \qquad the gradient has a value of 0 .
9. This graph shows the function $f(x)=x^{3}+2 x$.

Find the equation of the tangent to the curve $f(x)$ at $x=5$. Draw the tangent on the graph as well.

