Differentiation – Fractions and Indices (AI)

- 1. The derivative will give you the value of the ______ of the tangent to the curve for any value of _____.
- 2. Differentiate each of the following. Be careful to use proper notation.
 - a) $f(x) = x^3 + 2x^2 x + 2$

b)
$$y = \frac{3}{2}x^2 + x - \frac{3}{4}x^4$$

c)
$$f(x) = \frac{3}{x^2} + \frac{-1}{x} + \frac{x}{4}$$

d)
$$y = 4 - \frac{1}{x} + \frac{3}{x^2} - 4x$$

e)
$$f(x) = x - \frac{2}{x^3} - \frac{3}{x^2}$$

f)
$$y = \frac{3}{4t^2} - \frac{2}{3t^2}$$

Recall that: $x^{-2} = \frac{1}{x^2}$ Use this rule for c), d), e) and f).

Remember to REWRITE the function BEFORE differentiating!

- 3. Briefly explain what f'(4) = 20 means.
- 4. A function, $y = 2x^3 x$, has a tangent at x = -3. Work out the gradient of the tangent.

5. At *x*, the tangent to a function, $f(x) = \frac{x^3}{3} - 2x^2 - 8$ has a gradient of 5. Find the possible values of *x*.

6. If the gradient of a tangent is ______ then the function, f(x) is increasing.

- 7. If the gradient of a tangent is ______ then the function, f(x) is decreasing.
- 8. At a ______ the gradient has a value of 0. For extra practice, find the *x*-coordinates for the maximum and minimum in Q5.