1. The derivative will give you the value of the \qquad of the tangent to the curve for any value of \qquad .
2. Differentiate each of the following. Be careful to use proper notation.
a) $f(x)=x^{3}+2 x^{2}-x+2$
b) $y=\frac{3}{2} x^{2}+x-\frac{3}{4} x^{4}$
c) $f(x)=\frac{3}{x^{2}}+\frac{-1}{x}+\frac{x}{4}$
d) $y=4-\frac{1}{x}+\frac{3}{x^{2}}-4 x$

Recall that:

$$
x^{-2}=\frac{1}{x^{2}}
$$

Use this rule for c), d), e) and f).

Remember to REWRITE the function BEFORE differentiating!
e) $f(x)=x-\frac{2}{x^{3}}-\frac{3}{x^{2}}$
f) $y=\frac{3}{4 t^{2}}-\frac{2}{3 t^{2}}$
3. Briefly explain what $f^{\prime}(4)=20$ means.
4. A function, $y=2 x^{3}-x$, has a tangent at $x=-3$. Work out the gradient of the tangent.
5. At x, the tangent to a function, $f(x)=\frac{x^{3}}{3}-2 x^{2}-8$ has a gradient of 5. Find the possible values of x.
6. If the gradient of a tangent is \qquad then the function, $f(x)$ is increasing.
7. If the gradient of a tangent is \qquad then the function, $f(x)$ is decreasing.
8. At a \qquad or a \qquad the gradient has a value of 0 . For extra practice, find the x-coordinates for the maximum and minimum in Q5.

