Pre-IB Revision:

1. Basics from prior learning are important to recall. Simplify the following:
a) $4 a^{2} \times 2 a^{4}$
b) $\frac{15 b^{6}}{3 b^{2}}$
c) $\left(2 a b^{2}\right)^{3}$
d) $(2 x)^{-2}$
e) $5 x^{-2}$
f) $\left(\frac{3 x y^{-2}}{z}\right)^{-2}$
g) $(25 r)^{1 / 2}$
h) $(16 y)^{3 / 4}$
2. Recognizing a common base is important for solving problems. Write each value as an exponent, therefore finding the common base. The first has been started for you.
a) 9 and 27
b) 4 and 16

$$
9=3^{2}, 27=
$$

Therefore \qquad is the common base
c) 25 and 125
d) 2 and $1 / 8$
e) 4 and 0.25
f) 1 and 100
3. Using a common base, solve the following.
a) $3^{x}=9^{x+2}$
b) $4^{x-4}=8^{x+2}$
c) $4^{x-2}=0.5$
d) $2^{x-1}=0.25$
4. Write the formulas converting exponential form to logarithmic form.
5. Rewrite the above formulas using natural logarithms.
6. Using the formulas in $Q 4$ and $Q 5$, solve each of the following:
a) $\log 100=x$
b) $\log _{x} 64=6$
c) $\log _{x}\left(\frac{1}{81}\right)=-4$
d) $\log (.01)=x$
e) $\log _{2} 1=x$
f) $\ln x=1$
7. Write the 3 formulas for the laws of logarithms.
8. Using the formulas from $\mathrm{Q7}$ simplify the following:
a) $\log _{2} 3+\log _{2} 4$
b) $\log _{3} 30-\log _{3} 6$
c) $\frac{1}{3} \log _{2} 5^{3}$
d) $\log _{2} 12-\log _{2} 6+\log _{2} 7$
9. Using the formulas from Q6, solve the following (DO NOT use a calculator):
a) $\log 5+\log 20$
b) $\log _{6} 9+\log _{6} 4$
c) $\log _{4} 2-\log _{4} 8$
d) $\log _{2} 4^{3}$
e) $2 \log _{2} 10-2 \log _{2} 5$
f) $5 \log _{4} 2-\log _{4} 2$
10. Using the formulas from $Q 7$, decompose the following to create an expression containing $\log _{a} \mathbf{x}$. Simplify where possible.
a) $\log 10 x$
b) $\log \frac{100}{x}$
c) $\log (0.1 x)$
d) $\log _{2}\left(\frac{4 x}{5}\right)$
11. Write the formula for change of base.
12. Using the formula above, convert $\log _{2} 3$ and $\log _{2} 8$ to a logarithm in base 8 .
13. Use your knowledge of logarithms to solve for x. Use a calculator only when necessary.
a) $2\left(5^{x}\right)=250$
b) $10\left(3.2^{x}\right)=250$

Exam-like question:

1. For the following, $a=\log _{2} 6$ and $b=\log _{2} 3$. Rewrite each of the following in terms of a and or b.
a) $\log _{2} 18$
b) $\log _{2} 0.5$
c) $\log _{2} 27$
