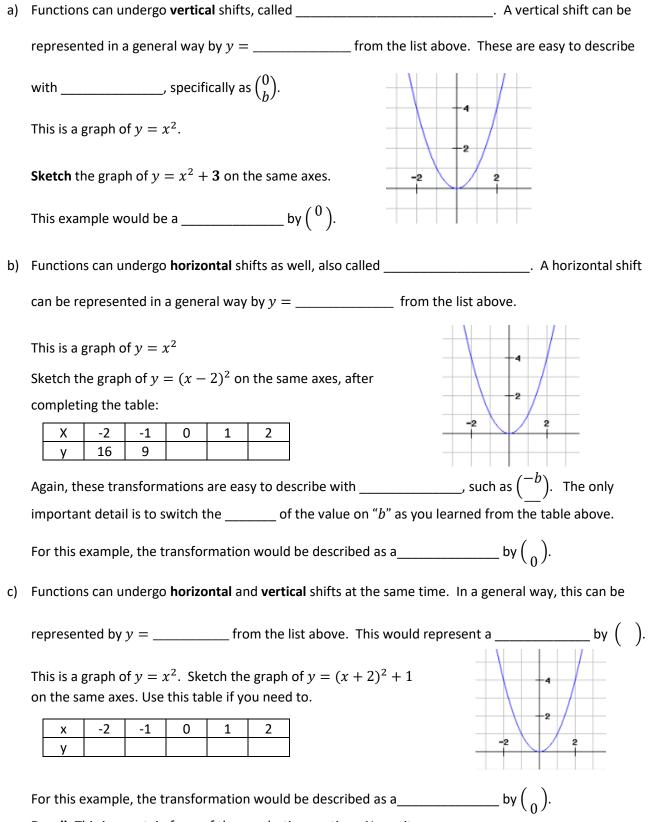
Transformations

1. Transformations "alter" graphs. Several types of transformations are possible, including:

$$y = f(x) + b \qquad y = f(x + b) \qquad y = af(x) \qquad y = f(ax)$$
$$y = -f(x) \qquad y = f(-x) \qquad y = f(x + b) + c$$



Recall: This is a certain form of the quadratic equation. Name it.

d) Functions can also be stretched. A vertical stretch increases the y-coordinates by some scale factor.

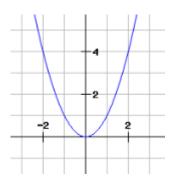
The general function y =_____ from the list above would represent a vertical stretch of the

function, scale factor a.

This is a graph of $y = x^2$.

Sketch the graph of $y = 2x^2$ on the same axes, after completing the table if you need it.

	х	-2	-1	0	1	2
ĺ	У	8				



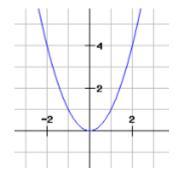
e) A horizontal stretch can be represented by the function y =____

This is a graph of $y = x^2$.

Sketch the graph of $y = (2x)^2$ on the same axes,

after completing the table if you need it. Solve for *x* instead of *y*:

х	-1	5		
у	4	1	0	1



As you can see, this amounts to leaving the y-coordinates alone and ______ the x coordinates

by _____. Like for the shifts, the x - axis transformations have the opposite effect than the one you

might expect. This function is equivalent to y=_____ due to the rules of indices.

f) There are also reflections, for example y= ______ is a reflection in the _____ - axis, because

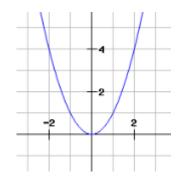
one has effectively negated the ____ co-ordinate.

This is a graph of $y = x^2$.

Sketch the graph of $y = -x^2$ on the same axes

after completing the table if you need it.

х	-2	-1	0	1	2
У					



g) The last type of reflection, y= _____, which is a reflection in the ____- axis, can not be shown using a quadratic function. Why?