Transformations

1. Recall: Transformations "alter" graphs. Several types of transformations are possible, including:

$$
\begin{array}{ccc}
y=f(x)+b & y=f(x+b) & y=a f(x) \quad y=f(a x) \\
y=-f(x) & y=f(-x) & y=f(x+b)+c
\end{array}
$$

a) Functions can undergo vertical shifts, called \qquad . A vertical shift can be represented by $y=$ \qquad . These are easy to describe with \qquad such as $\binom{0}{b}$.

This is a graph of $y=x^{2}$.

Sketch the graph of $y=x^{2}+3$ on the same axes.

b) Functions can undergo horizontal shifts as well, also called \qquad . A horizontal shift can be represented by $y=$ \qquad .

This is a graph of $y=x^{2}$

Sketch the graph of $y=(x-2)^{2}$ on the same axes, after completing the table:

X	-2	-1	0	1	2
y	16	9			

Again, these transformations are easy to describe with \qquad , such as (\quad-b). The only important detail is to switch the \qquad of the value on " b " as you learned from the table above.
c) Functions can undergo horizontal and vertical shifts at the same time, for example, $y=$ \qquad would represent a \qquad by ().

This is a graph of $y=x^{2}$. Sketch the graph of $y=(x+2)^{2}+1$ on the same axes. Use this table if you need to.

x	-2	-1	0	1	2
y					

Recall: what form of a quadratic function is this?
d) Functions can also be stretched. A vertical stretch increases the y-coordinates by some scale factor. The function $y=$ \qquad would represent a vertical stretch of the function, scale factor a.

This is a graph of $y=x^{2}$.
Sketch the graph of $y=2 x^{2}$ on the same axes, after completing the table if you need it.

x	-2	-1	0	1	2
y	8				

e) A horizontal stretch can be represented by the function $y=$ \qquad .

This is a graph of $y=x^{2}$.
Sketch the graph of $y=(2 x)^{2}$ on the same axes,
after completing the table if you need it. Solve for x instead of y :

x	-1	-.5		
y	4	1	0	1

As you can see, this amounts to leaving the y-coordinates alone and \qquad the x coordinates by \qquad . Like for the shifts, the x adjustments have the opposite effect than the one you might anticipate. This function is equivalent to $\mathrm{y}=$ \qquad due to the rules of indices.
f) There are also reflections, for example $y=$ \qquad is a reflection in the \qquad - axis, because one has effectively negated the \qquad co-ordinate.

This is a graph of $y=x^{2}$.
Sketch the graph of $y=-x^{2}$ on the same axes after completing the table if you need it.

x	-2	-1	0	1	2
y					

g) The last type of reflection, $\mathrm{y}=$ \qquad , which is a reflection in the \qquad - axis, can not be shown using a quadratic function. Why?

