1. Recall: Transformations "alter" graphs. Several types of transformations are possible, including:

$$
\begin{array}{ccc}
y=f(x)+b & y=f(x+b) & y=a f(x) \quad y=f(a x) \\
y=-f(x) & y=f(-x) & y=f(x+b)+c
\end{array}
$$

Functions can undergo vertical and \qquad shifts, called \qquad .

These are easy to describe with \qquad . A vertical shift can be represented by $y=$ \qquad and the latter by $y=$ \qquad . They can be carried out at the same time, for example, $y=$ \qquad would represent a \qquad by \qquad . It is crucial to remember that for the domain, the \qquad is always changed.

There are also \qquad . These can be vertical or \qquad transformations.

The function $y=$ \qquad would represent a vertical \qquad of the function, and for
$y=$ \qquad this would represent a \qquad of the function. Again, for the domain, it is tricky because \qquad can be thought of more as a \qquad _.

Transformations also include reflections. $y=$ \qquad is a reflection in the \qquad - axis and $y=$
\qquad is a reflection in the \qquad - axis.
2. Sketch $y=\sin x$ for $0 \leq x \leq 360$

$$
\text { Sketch } y=\cos x \text { for } 0 \leq x \leq 360
$$

3. Based on your graphs, determine the value of y the following (NO CALCULATOR ALLOWED):
a) $y=\sin 0$
b) $y=\sin 90$
c) $y=\sin 180$
d) $y=\sin 270$
e) $y=\sin 360$
a) $y=\cos 0$
b) $y=\cos 90$
c) $y=\cos 180$
d) $y=\cos 270$
e) $y=\cos 360$
4. Transformations can also be carried out on trig functions. Based on Q1, what type of transformation is $y=4 \sin x$? Using your answers from Q3, sketch this function for $0 \leq x \leq 360$, using a suitable range.

This type of transformation is special in trig, because it determines the \qquad of the function.
5. Based on Q1, what type of transformation is $y=\sin (x)+1$? Using your answers from Q3, sketch this function for $0 \leq x \leq 360$, using a suitable range.
6. Based on Q1, what type of transformation is $y=\sin (3 x)$? Using your answers from Q3, sketch this function for $0 \leq x \leq 360$, using a suitable range.

This type of transformation is special in trig because it determines the \qquad of the function. The formula is:
7. Based on Q1, what type of transformation is $y=\sin (x+\pi)$? Using your answers from Q3, sketch this function for $0 \leq x \leq 360$, using a suitable range.

This can be called a \qquad shift.
8. Based on Q1, what type of transformation is $y=-\sin (x)$? Using your answers from Q3, sketch this function for $0 \leq x \leq 360$, using a suitable range.

9. For each of the following, describe the transformations the functions have undergone using appropriate language. Sketch each function for $0 \leq x \leq 360$, using a suitable range.
a) $y=\sin x=>y=3 \sin (4 x)-1$
b) $y=\cos x \Rightarrow y=-2 \cos (3 x)+1$
10. For a) and b) above, state the amplitude and the period

