

Simply put, these are the equations that have an x^2 term in them. They can also be called parabolas.

4

The simplest one is $y = x^2$:

The ones that have a negative, ex. $y = -x^2$ term are inverted:

They can be more complicated of course. They are often written in the form: $y = ax^2 + bx + c$. An example is: $y = x^2 + 2x - 3$:

For this example, a = 1, b = 2 and c = -3.

Find the values for *a*, *b* and *c* for the following equations. Also note whether it would face upward or downward when graphed:

1. $y = x^2 - 5x + 6$

2. $y = 5x - 9x^2$

3. $y = x^2 - 4$

4.
$$y + x^2 = 3 - 6x$$

There are many different types of exam questions that deal with quadratic equations.

To begin with, you are often asked to **FACTORIZE** them. This can be done in a few different ways. The simplest is **factorizing by inspection**.

Example 1:

$$y = x^2 + 7x + 12$$

Step 1.

Make two sets of brackets. Since the first term is $'x^{2'}$ put an 'x' into the first position in both sets of brackets. Why? Because x times x is the only way to get x^{2} !! Easy!

(x) (x)

Step 2.

Consider the *last term*, 'c' of the equation. In this example, it is '+12' (yes, the sign matters). Find all the factors of '+12':

$$1 \times 12$$
, 2×6 , 3×4

Step 3.

Consider the middle term, *b*, '+7'. Which of the sets of factors above will sum (think *combine*) to give '+7'?

$$+3 + 4 = +7$$

Step 4.

Put the values you have found, +3 and +4 into the brackets (order doesn't matter):

$$y = (x + 3)(x + 4)$$

YOU HAVE NOW FACTORIZED THE EQUATION!

Step 5.

Check your answer. The technique is called 'FOIL'.

F for FIRST: Multiply the first values in each bracket:

 $(\mathbf{x} + 3)(\mathbf{x} + 4)$ so x multiplied by $x = \mathbf{x}^2$

O for OUTER: Multiply the outer values together

$$(x + 3)(x + 4)$$
so x multiplied by $' + 4' = +4x$

I for INNER: Multiply the inner values together

(x + 3) (x + 4) so + 3 multiplied by x = +3x

L for LAST: Multiply the last values together

(x + 3)(x + 4)so + 3 multiplied by + 4 = +12

Now put them together : $x^2 + 4x + 3x + 12$, and then simplify: $y = x^2 + 7x + 12$.

This question has been correctly factorized because I got back to the correct equation when I checked my work.

Try to factorize the following equations (make sure they are written in the form: $y = ax^2 + bx + c$ first). Include FOIL to check your answer. With practice, you will get faster at quickly spotting the correct factors.

1.
$$y = x^2 + 6x + 8$$

2.
$$y = x^2 + 2x + 1$$

3.
$$f(x) = x^2 + 13x + 36$$

4.
$$y = x^2 + 11x + 10$$

5.
$$f(x) = x^2 + 10 + 7x$$

They get more complicated, because they often include negative signs:

Example 2:

$$y=x^2-5x-6$$

Step 1.

Start with brackets as before:

$$y = (x)(x)$$

Step 2.

Find factors of '-6' (BE CAREFUL WITH THE SIGNS!):

$$-1 \times 6 \text{ or } 1 \times -6,$$

$$-2 \times 3 \text{ or } 2 \times -3$$

Step 3:

Find the factors that sum (think *combine*) to give b, ' - 5'. BE CAREFUL! The negative sign makes a difference:

$$-1 + 6 = +5$$
, (Incorrect, $b = -5$).
+1 - 6 = -5. (Correct)

Step 4:

Fill in the values from step 3: (x + 1)(x - 6). This is now factorized.

Step 5.

CHECK YOUR WORK:

First : x^2 , Outer: -6x, Inner: +1x and Last: -6.

 $y = x^2 - 6x + 1x - 6$

 $y = x^2 - 5x - 6$, so, the factorization is correct.

Try to factorize the following. Again, use FOIL to check your work.

$$1. \quad y = x^2 - 3x - 10$$

2.
$$y = x^2 - 11x - 12$$

3. $f(x) = x^2 - 8 - 2x$

4. $y = x^2 + 4x - 12$

5. $y = x^2 - 4x + 4$

6. $f(x) = x^2 - 9x + 8$

7. $y = x^2 - 2 + 1x$