Quadratic Equations

Part 1. Factorization

Simply put, these are the equations that have an \boldsymbol{x}^{2} term in them. They can also be called parabolas.

The simplest one is $y=x^{2}$:

The ones that have a negative, ex. $y=-x^{2}$ term are inverted:

They can be more complicated of course. They are often written in the form: $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$. An example is: $y=x^{2}+2 x-3$:

For this example, $\boldsymbol{a}=\mathbf{1}, \boldsymbol{b}=2$ and $\boldsymbol{c}=-\mathbf{3}$.
Find the values for a, b and c for the following equations. Also note whether it would face upward or downward when graphed:

1. $y=x^{2}-5 x+6$
2. $y=5 x-9 x^{2}$
3. $y=x^{2}-4$
4. $y+x^{2}=3-6 x$

There are many different types of exam questions that deal with quadratic equations.
To begin with, you are often asked to FACTORIZE them. This can be done in a few different ways. The simplest is factorizing by inspection.

Example 1:

$$
y=x^{2}+7 x+12
$$

Step 1.
Make two sets of brackets. Since the first term is ' $\boldsymbol{x}^{2 \prime}$ put an ' x^{\prime} into the first position in both sets of brackets. Why? Because x times x is the only way to get x^{2} !! Easy!

$$
(x \quad)(x \quad)
$$

Step 2.
Consider the last term, ' \mathbf{c} ' of the equation. In this example, it is ' $\mathbf{+ 1 2}$ ' (yes, the sign matters). Find all the factors of ' +12 ':

$$
1 \times 12, \quad 2 \times 6, \quad 3 \times 4
$$

Step 3.
Consider the middle term, b, ' +7 '. Which of the sets of factors above will sum (think combine) to give ' +7 '?

$$
+3+4=+7
$$

Step 4.
Put the values you have found, $\mathbf{+ 3}$ and $\mathbf{+ 4}$ into the brackets (order doesn't matter):

$$
y=(x+3)(x+4)
$$

YOU HAVE NOW FACTORIZED THE EQUATION!

Step 5.
Check your answer. The technique is called 'FOIL'.
F for FIRST: Multiply the first values in each bracket:

$$
(x+3)(x+4) \text { so } x \text { multiplied by } x=x^{2}
$$

O for OUTER: Multiply the outer values together

$$
(x+3)(x+4) \text { so } x \text { multiplied by }{ }^{\prime}+4^{\prime}=+\mathbf{4 x}
$$

I for INNER: Multiply the inner values together

$$
(\mathrm{x}+3)(\mathrm{x}+4) \text { so }+3 \text { multiplied by } x=+3 \boldsymbol{x}
$$

L for LAST: Multiply the last values together

$$
(x+3)(x+4) \text { so }+3 \text { multiplied by }+4=+\mathbf{1 2}
$$

Now put them together : $x^{2}+4 x+3 x+12$, and then simplify: $y=x^{2}+7 x+12$.
This question has been correctly factorized because I got back to the correct equation when I checked my work.

Try to factorize the following equations (make sure they are written in the form: $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$ first). Include FOIL to check your answer. With practice, you will get faster at quickly spotting the correct factors.

1. $y=x^{2}+6 x+8$
2. $y=x^{2}+2 x+1$
3. $f(x)=x^{2}+13 x+36$
4. $y=x^{2}+11 x+10$
5. $f(x)=x^{2}+10+7 x$

They get more complicated, because they often include negative signs:

Example 2:

$$
y=x^{2}-5 x-6
$$

Step 1.
Start with brackets as before:

$$
y=\left(\begin{array}{ll}
x &)(x
\end{array}\right)
$$

Step 2.
Find factors of ' $-\mathbf{6 \prime}$ (BE CAREFUL WITH THE SIGNS!):

$$
\begin{aligned}
& -1 \times 6 \text { or } 1 \times-6 \\
& -2 \times 3 \text { or } 2 \times-3
\end{aligned}
$$

Step 3:
Find the factors that sum (think combine) to give b, ' $\mathbf{- 5}$ '. BE CAREFUL! The negative sign makes a difference:

$$
\begin{aligned}
& -1+6=+5, \quad \text { Incorrect, } b=-5) \\
& +1-6=-5 .
\end{aligned}
$$

Step 4:
Fill in the values from step 3: $(x+1)(x-6)$. This is now factorized.
Step 5.
CHECK YOUR WORK:
First: \boldsymbol{x}^{2}, Outer: $\mathbf{- 6 x}$, Inner: $+\mathbf{1} \boldsymbol{x}$ and Last: $\mathbf{- 6}$.
$y=x^{2}-6 x+1 x-6$
$y=x^{2}-5 x-6$, so, the factorization is correct.
Try to factorize the following. Again, use FOIL to check your work.

1. $y=x^{2}-3 x-10$
2. $y=x^{2}-11 x-12$
3. $f(x)=x^{2}-8-2 x$
4. $y=x^{2}+4 x-12$
5. $y=x^{2}-4 x+4$
6. $f(x)=x^{2}-9 x+8$
7. $y=x^{2}-2+1 x$
