Quadratic Equations

Part 2. Finding the Roots, the Axis of Symmetry, and the Vertex

The reason *why* we factorize is to easily find the *roots* of the equation.

The *roots* are the *values for x* where the function *crosses the x-axis (the x-axis intercepts)*. This is when y = 0

This is called **SOLVING** the equation:

ME	YOU
We factorized $y = x^2 - 5x - 6$ and got $y = (x + 1)(x - 6)$.	Now factorize $y = x^2 - x - 12$ and you get: y =
Now to solve to find the roots we substitute 0 for y. I am also turning the equation around, because I prefer to have the x's on the left-hand side:	Substitute 0 for <i>y</i> to SOLVE the equation:
(x + 1)(x - 6) = 0	
Now, each set of brackets on its own is equal to 0. (If you want to know why, ask me during our session!). So, to find the first root: (x + 1) = 0 x = -1 So, the first set of coordinates is $(-1, 0)$	Find the first root: So, the first set of coordinates is
Now the second root:	Now the second root:
(x-6) = 0 $x = 6$	
So, the second set of coordinates is (6,0)	So, the second set of coordinates is
I can also find where the equation will cross the y- axis. This occurs when $x = 0$. $y = x^2 - 5x - 6$ $y = (0)^2 - 5(0) - 6$ y = -6 (Basically, the constant term at the end is always the y- intercept). So, the third set of coordinates is $(0, -6)$	Find the y-axis intercept: So, the third set of coordinates is
Now that I know the x and y intercepts it is very easy to sketch the graph. Note that I know it faces upwards since x is positive ($x^2 = 1x^2$ = positive number).	Now sketch the graph, labeling each point:

The Axis of Symmetry

At this point, you can also find the *equation of the axis of symmetry* (the line that cuts the graph exactly down the middle). You can do this by simply looking at your graph, or by using a formula. Including it on your graphs helps you sketch it nicely.

For my example, $y = x^2 - 5x - 6$, the roots were -1 and 6.

If I look at my graph, then I can see that the midline of the graph must be halfway between -1 and 6:

$$x = \frac{(-1 + 6)}{2}$$
$$x = 2.5$$

It is very important to write this as an equation (x = the value for the axis of symmetry), since it is a line, after all.

If you don't have a graph drawn, or are trying to find it without having to spend time on a sketch, you can use the formula for the axis of symmetry:

$$x = \frac{-b}{2a}$$

Recall: $y = x^2 - 5x - 6$, so therefore a = 1, b = -5 (very important to include the negative sign!)

$$x = \frac{-(-5)}{2(1)}$$
$$x = \frac{5}{2}$$
$$x = 2.5$$

As you can see you get the same answer.

The Vertex:

The **vertex** is the **maximum** or **minimum** point on the graph of the quadratic equation. Therefore, it has a set of coordinates (*x*, *y*).

The axis of symmetry crosses through the vertex, so the x value you found or calculated for the axis of symmetry IS the x – coordinate of the vertex.

From our example above, the axis of symmetry was x = 2.5. If x = 2.5, this value can be substituted into the equation to find y:

 $y = x^{2} - 5x - 6$ $y = (2.5)^{2} - 5(2.5) - 6$

$$y = 6.25 - 12.5 - 6$$

$$y = -12.25$$

Now I know the co-ordinates of the vertex are (2.5, -12.25).

This allows me to sketch more accurately.

Try the following questions. Make a detailed sketch by:

- a) Factorizing
- b) Solving for *x* and *y*-intercepts (label coordinates),
- c) Finding the **equation** of the axis of symmetry and
- d) Finding the coordinates of the vertex (label):

1. $y = x^2 - 4x - 12$

2. $y = x^2 - 10x + 25$

3. $y = x^2 + 2x - 15$

4. $y = x^2 - 4x + 3$