Quadratic Equations

Part 2. Finding the Roots, the Axis of Symmetry, and the Vertex

The reason why we factorize is to easily find the roots of the equation.
The roots are the values for \boldsymbol{x} where the function crosses the \boldsymbol{x}-axis (the \boldsymbol{x}-axis intercepts). This is when $\boldsymbol{y}=\mathbf{0}$
This is called SOLVING the equation:

ME	YOU
We factorized $y=x^{2}-5 x-6$ and got $y=(x+1)(x-6)$.	Now factorize $y=x^{2}-x-12$ and you get: $y=$
Now to solve to find the roots we substitute 0 for y. I am also turning the equation around, because I prefer to have the x's on the left-hand side: $(x+1)(x-6)=0$	Substitute 0 for y to SOLVE the equation:
Now, each set of brackets on its own is equal to 0 . (If you want to know why, ask me during our session!). So, to find the first root: $\begin{gathered} (x+1)=0 \\ x=-1 \end{gathered}$ So, the first set of coordinates is $(-1,0)$	Find the first root: So, the first set of coordinates is
Now the second root: $\begin{gathered} (x-6)=0 \\ x=6 \end{gathered}$ So, the second set of coordinates is $(6,0)$	Now the second root: So, the second set of coordinates is
I can also find where the equation will cross the y axis. This occurs when $x=0$. $\begin{gathered} y=x^{2}-5 x-6 \\ y=(0)^{2}-5(0)-6 \\ y=-6 \end{gathered}$ (Basically, the constant term at the end is always the y intercept). So, the third set of coordinates is $(0,-6)$	Find the y-axis intercept: So, the third set of coordinates is
Now that I know the x and y intercepts it is very easy to sketch the graph. Note that I know it faces upwards since \mathbf{x} is positive ($x^{2}=1 x^{2}=$ positive number).	Now sketch the graph, labeling each point:

[^0]At this point, you can also find the equation of the axis of symmetry (the line that cuts the graph exactly down the middle). You can do this by simply looking at your graph, or by using a formula. Including it on your graphs helps you sketch it nicely.

For my example, $y=x^{2}-5 x-6$, the roots were -1 and 6 .
If I look at my graph, then I can see that the midline of the graph must be halfway between -1 and 6 :

$$
\begin{gathered}
x=\frac{(-1+6)}{2} \\
x=2.5
\end{gathered}
$$

It is very important to write this as an equation ($x=$ the value for the axis of symmery), since it is a line, after all.
If you don't have a graph drawn, or are trying to find it without having to spend time on a sketch, you can use the formula for the axis of symmetry:

$$
x=\frac{-b}{2 a}
$$

Recall: $y=x^{2}-5 x-6$, so therefore $a=1, b=-5$ (very important to include the negative sign!)

$$
\begin{gathered}
x=\frac{-(-5)}{2(1)} \\
x=\frac{5}{2} \\
x=2.5
\end{gathered}
$$

As you can see you get the same answer.

The Vertex:

The vertex is the maximum or minimum point on the graph of the quadratic equation. Therefore, it has a set of coordinates (x, y).

The axis of symmetry crosses through the vertex, so the x value you found or calculated for the axis of symmetry IS the x - coordinate of the vertex.

From our example above, the axis of symmetry was $x=2.5$. If $x=2.5$, this value can be substituted into the equation to find y :
$y=x^{2}-5 x-6$
$y=(2.5)^{2}-5(2.5)-6$
$y=6.25-12.5-6$
$y=-12.25$
Now I know the co-ordinates of the vertex are (2.5, -12.25).

This allows me to sketch more accurately.

Try the following questions. Make a detailed sketch by:
a) Factorizing
b) Solving for x and y-intercepts (label coordinates),
c) Finding the equation of the axis of symmetry and
d) Finding the coordinates of the vertex (label):

1. $y=x^{2}-4 x-12$
2. $y=x^{2}-10 x+25$
3. $y=x^{2}+2 x-15$
4. $y=x^{2}-4 x+3$

[^0]: (www.earning-simply.com 2023

