Trigonometric Functions (Radians)

Recall: $\pi=180^{\circ}$

1. Sketch $y=\sin x$ for $0 \leq x \leq 2 \pi$

Sketch $y=\cos x$ for $0 \leq x \leq 2 \pi$

2. Based on your graphs, determine the value of y the following (NO CALCULATOR ALLOWED):
a) $y=\sin 0$
b) $y=\sin \frac{\pi}{2}$
c) $y=\sin \pi$
d) $y=\sin \frac{3 \pi}{2}$
e) $y=\sin 2 \pi$
a) $y=\cos 0$
b) $y=\cos \frac{\pi}{2}$
c) $y=\cos \pi$
d) $y=\cos \frac{3 \pi}{2}$
e) $y=\cos 2 \pi$
3. Working out $\sin \frac{\pi}{6}$, $\sin \frac{\pi}{4}$ and $\sin \frac{\pi}{3}$, without a calculator is slightly more complicated.
a) This triangle can be used to work out values for $\sin \frac{\pi}{4}$, because it is an \qquad and rightangled triangle. Therefore, the value of θ is \qquad degrees, which is equal to $\frac{\pi}{4}$ radians. Assuming each of the sides are 1 cm long, except the hypotenuse, work out the value of $\sin \frac{\pi}{4}$. Hint: SOH CAH TOA and Pythagoras come in handy here

b) This triangle can be used to work out values for $\sin \frac{\pi}{3}$ and $\sin \frac{\pi}{6}$, because it is an \qquad triangle, so the value of θ is \qquad degrees, which is equal to \qquad radians. Assuming each of the sides are 2 cm long, and by cutting the triangle exactly in half, work out the exact value of $\sin \frac{\pi}{3}$ and $\sin \frac{\pi}{6}$. Hint: SOH CAH TOA and Pythagoras again...

4. Several angles are equivalent to $\frac{\pi}{6}$. Use the axes to find the angles, sketching $\frac{\pi}{6}$ on first, then reflecting in the axes.

The angles are:

There is one important detail that changes. What is it?
2. Several angles are equivalent to $\frac{\pi}{3}$. Use the axes to find the angles, sketching $\frac{\pi}{3}$ on first, then reflecting in the axes.

The angles are:

There is one important detail that changes. What is it?

