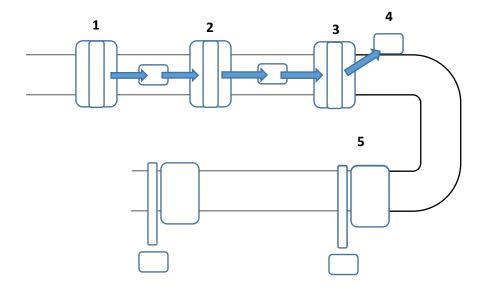
C 1.2 Cellular Respiration HL


1.	To understand respiration, it is crucial to unders	tand that oxidation is	the of ele	ectrons, and		
	reduction is the of electrons. Since hyd	rogen has an	, removing it from	a substance results		
	in of that substance. The molecule that removes hydrogen by picking it up is called					
	in respiration, so is called a	It is converted from	n to	This give		
	and take of electrons in reactions is called	for short.				
2.	is the first step in both		and	respiration.		
	It takes place in the	This is an overall sch	ematic of this proce	ess:		
	Glucose2	Triose	3			
	Step 1 is, where glucose gains		from 2 molecules of			
	Step 2 is, which splits	into	o molecule	s. In step 3,		
	of occurs as it loses H+. This is because, the electron					
	, is reduced. The end-product is 2 molecules of In step 3, there are also					
	molecules of formed, so a net gain of 2 molecules of Each step is controlled by a					
	different					
3.	can remain in the	to undergo	respiration,	or can move into		
	the (organelle) to undergo _	re	espiration which red	quires		
4.	In humans, we can muscle		when we respire			
	which does not require as much The	waste product formed	d is called	In		
	forming this molecule, the is co	onverted back into	, allowing	to continue.		
5.	Yeast is different. It is useful because of the end	l-products made durin	og	, which is a		
	special name for respirati	on. In yeast,	is not regenerate	ed. Instead		
	and gas	s are produced. The fo	rmer can be used a	s a source of fuel,		
	and is importa	nt in the	industr	у.		

. The first major step	of aerobic respiration takes pla	ce in the	of the
	It is called the	reaction which requires _	enzyme.
The schematic below	v shows the process. Fill in the	blanks.	
		produced, released as wa	aste
	NAD+		
•	produced in the	reaction enters the	cycle.
4	5	(4C) (_C	(2 C)
(_	C) (_ C)	(_ c)	
The crucial step,	, is the joining of	to	, which forms a
molecule called	·		
In steps 1 and 2 ,	gas is produce	d as waste due to	, coupled to
	so the electron carrier, i	s In step 3 _	becomes, so
this is called substra	te-level	In step 4 , is red	duced, becoming
In step 5 , is	reduced to become	. This restores	, and the cycle can

continue. In total, there are two ______ and four _____.

Oxidative Phosphorylation and Chemiosmosis HL

1. The _____ carriers formed in the _____ reaction and during ____ cycle, move to the internal plasma membrane of the _____. This is a schematic of what happens:

- (1) The carriers deliver their _____ and ____ to the _____ transport proteins in the membrane.
- (2) As the ______ move along the _____ transport _____ they pump _____ into the _____ space through a _____ (3).
- (3) Energy is lost in the transfers, so ______ transfers it's ______ at a point further along the _____ transport chain to enhance electron flow
- (4) For the ______ to be able to keep flowing, they must be accepted at the final carrier by _____ gas forming _____ . Therefore, _____ gas is said to be the _____ electron _____ .
- (5) The ______ concentration gradient is important. The _____ ultimately move out of the _____ space, through _____ . This produces large amounts of _____.
- 2. Annotate a diagram of a mitochondria:

8.	Cellular respiration occurs because cells need energy in the form of The full name for this molecule
	is It is important to note that it is a, just like,
	, and found in DNA. It can and energy,
	making it an ideal energy within cells. Energy is when is converted by a(n)
	reaction to This means that is by the reaction. Logically, this
	also means that energy is to add a group back onto an molecule in order
	to restore
9.	is important for many processes. For example, it is required for transport of
	molecules across a membrane by a protein, for, which is the type of metabolism that
	larger molecules from smaller ones, and because it can be used to full cells, or cell
	components such as around.
10.	It is crucial to not confuse respiration with Respiration is the process of making,
	whereas the latter is needed to transfer molecules such as and between tissues.
11.	There are two types of respiration. The first step in both forms is which takes place in
	the of a cell. Essentially, it is the process of converting to
	It only produces molecules of either remains in the and
	undergoes respiration or enters the to undergo
	respiration which requires
12.	The word equation for respiration is:
13.	The word equation for respiration is:
14	Complete the table comparing the two types:
14.	Complete the table comparing the two types:
	Type of Respiration:

	Substrates					
	Name of first chemical reaction:					
	Oxygen required?					
	Amount of ATP produced					
	Site					
	End-products					
15.	In aerobic respiration experiments, t	ne o	f respiration c	an be measured u	red using an apparatus called	
	a The	volume of	produced is s	imply	_ by the	_ to
	determine the The units cou	ıld be				
16.	This type of apparatus is shown in th	e schematic belo	w.			
	An such as		, absorbs	s the		_ gas
	which is produced by the sample, wh	ich could be a seed or an				·
	The change in volume of	gas	t	he pressure in the	vessel. This	moves the
bubble. Draw an arrow showing the direction the bubble will move. Several factors should						ntrolled,
	including	<i>,,</i> and			nd	
Complete the annotations and draw a ruled line to the corr						structure.
	Glass tube:			Airtight seal:		
r	neasures the in the (cm	3)				
5	Sample: The organism being tested, such as a or			Water jacket: controls the		
-	Wire mesh: prevents from the			substance	e:	
				L		