Enabling Migration Decisions Through Policy
Services in SOA Mobile Cloud Computing Systems

John M. Medellin*, Osama Barack, Qiao Zhang, and LiGuo Huang
Department of Computer Science and Engineering
Southern Methodist University, Dallas, Texas 75275-0122, USA
Email: {jmedellin, obarack, giaoz,lghuang} @smu.edu

Abstract—According to some estimates, mobile applications
will drive over half of the volume on the internet by the second
half of the 2010s. This powerful technology is constrained by
energy sources (battery), mobile spectrums and other physical
characteristics. Mobile Cloud Computing (MCC) complements
these devices by bringing the vast resources available in Clouds
to them. Applications can be modularized and shipped for
processing to these centers of greater capability freeing up
computation, data requirements and ultimately energy.

Our approach in this study is to first use SOA/BPEL/services
design principles to modularize the application. Once the appli-
cation is modularized we propose an architecture for a service
that drives the decision of what to migrate. The application is
scaled and migrated with the AppleHandoff (iOS 8.1.3) facility to
provide objective results to the theory. The service architecture
designed for the policy service is based on SOA principles and
includes Quality of Service (QoS) and Quality of Experience
(QoE) drivers identified by the user.

Keywords—Mobile Cloud Computing, Business Process Exe-
cution Language, BPEL, Services Oriented Architecture, SOA
Services, Cloud Process Migration

I. INTRODUCTION

Mobile and Cloud Computing continue their march towards
becoming pervasive players in all aspects of life. Cisco esti-
mates that by 2016 more than 60% of world IP traffic will
be generated by mobile devices [1] and the number of mobile
multimedia users will top 800 Million by 2015 according to
other estimates [2]. The global mobile application market is
estimated at $9.4 BUSD in 2014 [3] [4] and will grow at a
compound annual growth rate of close to 38% per year to top
out at almost $47 BUSD in 2019 [4].

Cai et al [5] declare that the essential cloud computing
characteristics include on-demand service, broadband network
access, resource pooling and measured service. Those charac-
teristics can be delivered to devices such as laptops and desk-
tops that have reliable network connections, access to electrical
power and sufficient computing capacity. Correspondingly,
Zhang et al [6] identify battery life, network connectivity and
computational power as being the three largest challenges to
mobile computing environments.

A first critical limitation to these environments is battery
life. While computing capabilities for mobile devices have
been significantly improving over time, battery life has not
kept up and has only been improving at a rate of 5% per
year, far below the improvements in computing power [4].
As computer chips gain in computational ability they also

increase their voracity for energy, nothing is for free. In order
to preserve resources and battery life, execution must be off-
loaded from the hand held device [1] in order to preserve as
much energy as possible.

This paper proposes the usage of a centralized service on
the mobile device containing user preferences, description of
mobile and cloud plans and a history repository in order to
make the decision to migrate (or not) and what to migrate to
the Cloud.

II. MOTIVATION

One of the great promises of the Cloud revolution is the
ability to unleash the vast resources of this architecture to sup-
plement the smaller capabilities of mobile devices. Processes
can be migrated as entire applications, methods or threads [7]
and tradeoffs have to be evaluated on what to migrate. Users
of mobile devices are mostly concerned with receiving output
as quickly and inexpensively as possible.

A. Current approaches to modularization

Several methods exist for modularizing mobile applications
for migration to the cloud. They range from entire application
migration to replication with state transfer and finally some
propose to modularize based on Services Oriented Architec-
ture/BPEL concepts.

Modularization at the application level has been widely used
by most Cloud providers. In this pattern, the function call is
issued to a remote URL with some parameters passed to it.
The cloud executes the required functionality and returns a
payload to the device. The Ul logic of the application displays
the output to the user. In this particular case, most of the
application is resident in the cloud and very little decision
making is left to the device itself (it either uses the logic on
the cloud or it does not for most of the functionality requested).

A second pattern replicates the application on both the
device and the cloud and annotates the code at certain points
where, according to developer judgment, an exchange of state
is feasible between the two environments (to continue on the
Cloud, or resume on the device). The compiler exposes those
particular partitions and exchange of data happens at those
junctures. The exchange of data occurs as a function of a
mobile enabled Cloud offering through the cloud vendor. This
exchange does not have to happen on the entire state, some

significant optimizations have been proposed by Yang et al
[8].

Our approach proposes the use of Services Oriented Archi-
tecture Business Process Execution Language (BPEL). BPEL
is a formal semantic language that allows the analyst to express
business process concepts in both sequential and parallel tasks.
It assumes the invocation of Services by means of contracts
requiring only what is needed by the service to execute and
what it will return as output. This natural granularity (only the
input needed or output return) forms the basis for a smaller
set of data transfer between functions being executed. BPEL
is based on business process decomposition. In this technique,
macro business processes (e.g., invoicing) are decomposed into
sub-processes until they can be encapsulated into standardized
services (e.g., vendor master data maintenance). BPEL is a
recommended tool for implementation of Services Oriented
Architecture (SOA) design patterns and has become more
prevalent since introduction of the 2.0 standard in 2007 [9].

B. The decision to migrate is complex

The decision to migrate an application or portion of it
to the Cloud for execution is complex because some of the
factors are not known. Known factors include the amount
of battery remaining and the connectivity scheme (WiFi or
mobile). Some of the more important unknown factors include:

1) Whether the entire application needs to be migrated or if
certain portions can be migrated and what those portions
are.

2) The amount of CPU cycles (and therefore battery) that is
required to encapsulate all or portions of the application.

3) The mobile data/roaming plan economics of the user and
the current level of consumption of base charges.

4) The encapsulation and round trip (to the Cloud and back)
latency of the application under the current spectral
scenario.

5) The amount of CPU cycles the application will consume
in computation and data intensive tasks if left to execute
on the device.

The objectives of this document are to investigate the impli-
cations on partitioning the application at the service contract
level and to propose an architecture to enable decisions on
what portions (if any) to migrate. We begin this discussion
by presenting prior work applicable to modularizing and
migrating of objects in MCC. The key areas reviewed are
research on SOA and the services contract, MCCs hetero-
geneous environments, various methods for offloading while
conserving battery, and tradeoff evaluations for offloading.

Next we build a hypothetical MCC business application
that is created under a SOA/BPEL script and contains four
services. The data and computation service contracts are ana-
lyzed versus the service operations themselves; scenarios for
partitioning at the contract and other areas of the application
are analyzed.

Finally, a services architecture is presented that accumulates
historical, user preference and empirical data in order to
facilitate the decision of what services to execute in the Cloud.

The application and service architecture operates in a mix of
handheld, laptop and cloud resources and is scaled in order
to determine the feasibility of making service contract based
partition decisions.

This paper leverages SOA/BPEL and service contracts to
modularize applications and recommends a services archi-
tecture to assist in the migration of all or portions of that
application. The two contributions that are made by this
research are answers to the following questions:

o Where are the most efficient points to partition applica-
tions that have been designed using SOA/BPEL/services
principles?

o« What is a potential service architecture that could be
used to accumulate data parameters relevant to making
the migration decisions in the same application?

III. RELATED WORK

Most of the research in this domain has been conducted
in networks and devices. That research has been focused
on uncovering significant issues and potential approaches to
offload computation under the constraints of unstable network
connectivity and energy usage.

A. Heterogeneity and its problems

The MCC domain is fertile with issues related to hetero-
geneity, very little has been created to enhance attributes such
as portability or transferability in these applications. In very
similar discussions Shiraz et al [7] and Sanaei et al [10]
identify heterogeneity in MCC as a major stumbling block
in achieving the vision of delivery of similar capability to the
mobile device as can be delivered to the desktop from the
Cloud.

Both Shiraz and Saneti discuss a variety of networks
available to overcome the issues of heterogeneity. MAUI,
CloneCloud and COMET are discussed as three tools that
are able to implement computing migration in different ways.
MAUI focuses on application migration, CloneCloud on
method level migration and finally, COMETs focus in on
thread-based migration. Examples are provided for migration
under each discussion and are very much dependent on the
Android hand held device and intel-based proprietary Clouds.

B. Offloading Tradeoff Analysis

A key decision to be made is if the application/method-
/thread should be migrated to the Cloud. Yang et al [8]
propose models for offloading based on acyclic graphs of
processes under execution. This approach assumes that an
application/method/tread either can or cannot be modularized
to be migrated. If it cannot, then the migration decision is
binary, it either is or is not migrated and certain formulas based
on historic prediction are provided. If the application can be
modularized, then the analysis focuses on which portions to
be migrated based on the acyclic graph (sequential, hierarchic
or mesh). The offloading algorithm measures the tradeoff
between analysis and migrating versus executing the process
on the device.

C. Modularizing and Efficient Transfer

Yang et al [8] provide a very insightful study on ap-
plication migration using CloneCloud. In that paper, they
identify modularizing approaches as static and dynamic. Static
application modularizing requires the developer to annotate the
application code into partitions that are able to be migrated
as parts of a whole. The compiler uses these annotations to
direct where the code should be executed (mobile or cloud)
as the application is built. The approach is viable where
all aspects of the mobile app can be predicted (e.g., how
much data, where executed, device) which is typically not
the case in MCC applications without a SOA architecture.
In the alternative dynamic approach, the decision of where to
locate the execution those partitions is made as the application
is processing. They indicate that due to the nature of MCC
(as described in other sections of this documents) and the
lack of predictability in the environment, this is perhaps the
best approach to take in modularizing. Shiraz et al [7] further
indicate that the dynamic approach seems to be the prevailing
approach to modularizing.

Yang et al also proceed to propose algorithms to reduce the
transfer of stack frames and heap objects within CloneCloud
and achieve a 97% reduction in transferred data. This is im-
pressive and a very good example on how certain frameworks
can be further optimized. We believe these types of algorithms
and approaches will be implemented by the frameworks as
they further mature into this space.

D. Corporate Mobile Applications

Connectivity and battery are key determinants to application
success. Cox et al [11] and Privat and Warner [12] have devel-
oped several methods for industrializing Apple iPhone Apps
which can further be deployed to modularize applications and
distribute them for commercial purposes. Their frameworks
provide a certain level of resiliency and application surviv-
ability that is necessary in commercial applications. They base
their methodology on developer analysis and intuition on how
to modularize and how to migrate. Most of this analysis is
done on the static code base.

E. Cloud Vendor-specific MCC Tools

Most of the significant Cloud vendors also provide toolkits
for development and optimization of MCC on their offering
suites. We do not address those particular frameworks in this
document due to potential Cloud vendor lock-in.

F. SOA, BPEL and services contracts

Erl [13] defines SOA as: Service-oriented architecture rep-
resents an archtiectural model.It accomplishes this by posi-
tioning services as the primary means through which solution
logic is presented

Many organizations have also adopted a language called
BPEL to enable orchestration of services in support of ex-
ecution of business processes [9]. The objective of BPEL
is to provide a structured language where business process
operations are decomposed until they can be syntactically and

semantically executed by services. The services are orches-
trated by a workflow server and enable the execution of a
particular process by sequencing them in a prescribed manner.
These services can also be reused in other business processes
provided their context requirement is the same (for example,
the vendor data service can be used to verify a vendor address
in order to mail a check or can also be used to verify the tax
identity number in a tax filing process).

BPEL has its own structure and hierarchy for defining
actions and agents that enable transactions in processes to be
executed. This document uses the BPEL 2.0 for defining the
process to be modeled by the MCC application [9].

As discussed above, a major component of the SOA ar-
chitecture are services. Services have two fundamental com-
ponents; a contract and a set of methods (logic to perform
their tasks). The contract segment of the service is exposed
to those needing to use it while the logic of the operations
being performed is hidden from the requester. The vision for
SOA is a reusable set of services that can assist in composing
or extending existing functionality required by the enterprise
[14].

IV. EXPERIMENT SETUP

The objective of this experiment is to provide the feasibility
for modularizing applications based on BPEL and services
analysis.

A. Business Process Being Modeled

World currency exchange rates are set on a variety of
parameters including the debt of the country, the trade balance
with the other countrys economy, the relative stability and
other macroeconomic factors. Sometimes the currencies are in
parity (meaning that if one was to exchange US Dollars (USD)
for Euros (EUR) at a given rate or instead bought first British
Pounds (GBP) and then EUR with them the operation would
yield the same monetary effects; with fees held constant). In
practice this is not the case and the disparity between the
currencies is a daily aspect of world markets and connerstones
of trading desks, currency hedging services and other firms.

The scenario that is being modeled is one in which a
company has to pay an invoice of a given amount in a
currency that is not its own. The company is interested if
it should go do a direct exchange (e.g. USD to EUR) or if
there is economic advantage by triangulating (e.g. USD to
GBP to EUR). The user keys in the amount, selects the target
currency, the source currency and the triangulating currency.
The mobile application outputs how much it would cost for
a direct exchange vs a triangulated exchange as in Figure 1
below:

In the above example, it is more expensive to pay
a direct exchange of US Dollars to Euros ($113.25USD
* 0.883=100EUR) versus triangulating through the British
Pound ($113.22USD * 0.6639 GBP *1.13304=100EUR). This
scenario assumes no currency fees or other factors affecting the
currency exchange (for example, this could be a multinational
which has checking accounts in USD or GBP and needs to
pay in EUR with its main currency being the USD).

Fig. 1. Triangulated vs Direct Currency Analysis.

GBP

1:0.6639 1:1.3304

UsD EUR

USD:100 EUR=3113.25
USD:GBP:100 EUR=5113.22

Fig. 2. UML Activity Diagram for Currency Analysis.

B. Application Modeling with BPEL, SOA and services

A best practice for modeling BPEL is through the UML
Activity Diagram [15]. The following activity diagram would
represent the BPEL process/method for the currency analysis
described above and is an adaptation of the UML Activity
Diagram:

An excerpt of the corresponding BPEL for that process is
in Listing 1 as follows:

L# BPEL Statements

01 <process>

02 <process name= CurrencyCalculation
>Start identification of service<

03 <partnerLinks >

04 <partnerLink name= ratePair
05 partnerLinkType= rt:ratePair
06 myRole= rateService
07 partnerRole= rateServiceExchang
08 </partnerLinks>
>End identification of service<
>Start contract variables<
09 <variables >
10 <!—input currency source—>
11 <variable name= currencySource
12 messageType= fromMessage />
13 <!—input currency target—>
14 <variable name= currencyTarget
15 messageType= toMessage />
16 <!—input pair exchange rate—>
17 <variable name= exchangeRate

c

18 messageType= rt:pairExchange /
19 <variable name= invoiceAmount
20 messageType= invAmt >

21 </variables >

>End contract variables<

22 <sequence>

>Start invocation of retrieval service<
23 <!—retrieve currency pairs—>
24 <!—First module to encapsulate —
25 <receive partnerLink= ratePair
26 portType= rt:retrieveRate
27 operation= pairExchangeRate
28 variable= currencySource
29 variable= currencyTarget
31 variable= exchangeRate
32 createlnstance= yes />

>End invocation of retrieval service<
33 .. . o)
34 </sequence>
35 (. . . L)
36 </process>

The above BPEL declares the process, identifies the service
to be invoked, contract variables and invokes the service to
retrieve rates. The additional BPEL statements for the other
services and contracts (get variables, identify lowest value
combination and display results) are omitted.

C. Cloud/Application Architecture

An application using the Apple SWIFT [16] coding envi-
ronment was constructed to execute the triangulation analysis.
The application uses a source currency, a target currency, and a
target payable amount as inputs. The application triangulation
currencies are driven from an array that is populated by the
user. The Apple infrastructure allows the ability to handoff
an activity from one AppleApp to another device operating
the same AppleApp through their iCloud infrastructure [17].
Apple also provides the facility to notify the user if a pattern of
CPU, Energy or Data Plan usage is detected so it can choose
a hybrid mode of execution (with offloading). That algorithm
can be created and implemented through the analysis of pat-
terns in the App trace file with the Apple Instruments package.
The following figures illustrate the application architecture of
the system that was constructed (the iPad has an electrical
connection removing the battery consumption constraint from
that machine). They are presented as a static view (allocation)
and sequence (dynamic) views. The allocation view illustrates
the residence of key components on devices/services while
the sequence view illustrates the key steps in execution of the
application scope.

Four activities were created inside the application. Two of

them were modeled to work with the AppleHandoff utility
[18].

Fig. 3. AppleApp System Architecture: Allocation View.

Hand-off Update

| Update 1

Execute Load

Execute Compute

o /

Update 2

<>r00-0 - H4D>H0

Update 3

Fig. 4. AppleApp System Architecture: Dynamic View.

The activities modeled were (web queries and calculations
can be handed off to a remote iPad or a Mac connected through
iCloud):

o Parameter setup
o Web queries
« Calculations
o Return result

Figure 4 depicts the execution sequence and the update of
the state token after each method is executed.

D. Technical Infrastructure

The application was developed with the following technical
environment:

o Apple Macintosh working on OSX 10.10.2 Yosemite
Operating System blue tooth 4.0

« Apple iPhone 6, operating on iOS 8.1.3 Mobile Operating
System blue tooth 4.0

o Apple iPadMini 3, operating on iOS 8.1.3 Mobile Oper-
ating System blue tooth 4.0

o Apple XCODE 6.1.1 with SWIFT version LLVM com-
piler, Apple Instrument Package

o Synchronization via iCloud WiFi Ethernet

TABLE I
COMPUTATION OF LOAD BY COMPONENT OF APPLEAPP.

Item Assumption Type Value
Input Currencies | 1 array passed Message 1
Contract 1 1 array passed Message 1
Retrieve 603 query/parse Mixed 603
Contract 2 1 array passed Message 1
Compute 3 computations/point ~ Computation 603
Contract 3 1 array passed Message 1
Output Results 1 array passed Message 1

Resource Requirement by contract and serviee

st al
Partitions | *+,

2 | Compute | Com 3

it
i 1 1 Wl 1 i 1 1
==hobilx 1] &] & it & i

Fig. 5. Hypothetical distribution of load in AppleApp.

V. EXPERIMENT EXECUTION AND RESULTS

The application was scaled to 100 currencies to be triangu-
lated in order to identify the differences in data requirements
between the contracts and the services themselves.

A. Estimating volume of operations by each service contract
and service

The service contracts remain constant during the execution
of the applications. One array with input values for the
currency pairs to be retrieved is passed to the retrieval service
contract and one array with the currency pair exchange rate
results is passed to the calculation service. The size of these
arrays increases by three characters for the initial array and
by 4 characters for the second array for every additional
currency to be evaluated. This is a modest increase when
compared of the incremental call to one web function, passing
of parameters, receiving reply, parsing for values and storing
the currency pair values in the retrieval service. It is also
modest when compared to the triangulated calculation to
compute the computation of load components is given in Table
L.

A hypothetical resource graphic is included in Figure 5 to
identify the relative size of computational/data requirements
by each service and service contract. The graphic identifies
the contracts as lowest points of transfer between the services.
These points were used to partition the application.

B. Experiment output when triangulated to 100 currencies

The experiment was scaled to evaluate 100 currencies for
triangulation. The application was able to be modularized and
each module measured according to the attributes of energy,
cpu and IO. The IO and computational characteristics of the

4 1O Activity
[]
@ Time Profilar
[
il Activity Monitor

é

" Mﬂ_u

D EaThe,

% Total Loac

Fig. 6. Key Execution Characteristics.

application volumes and metrics were captured through the
use of the Apple Instruments and key results are shown in
Figure 6.

The above instruments quantify impacts as follows:

1) IO Activity: captures information about I/O events, such

as reads, writes, file open and closes.

2) Time Profiler: usage of CPU with time-based sampling

of the application.

3) Activity Monitor: traces the overall system load along

with the application running.

IO activity is significantly impacted when the queries to
the web are executed to retrieve exchange rates (the retrieve
service). Time profiler is again significantly impacted when
the calculations are executed to derive the low cost alternative
(the calculate service). The activity monitor reveals that most
of the load in the application is being driven by the application
and no extraneous factors. The dotted line is the flag where the
initialization of application finished and it also identifies the
peaks among all three of the measurement instruments (during
the IO partition of the App).

VI. ARCHITECTURE OF POLICY SERVICES TO ASSIST IN
MIGRATION DECISION

As mentioned above, the migration decision is dependent
on known and unknown factors. The proposed architecture
gathers user, contract, current state, forecasted usage and
historical metrics to drive a decision of what to migrate.

A. Proposed services architecture

A services architecture was created to facilitate the decision
of what to migrate for execution to the Cloud. This architecture
is illustrated in Figure 7 and consists of atomic services that
assist in providing key decision variables to the centralized
policy service. The policy service implements the migration
decision and if it does allow for migration of all or parts, will
allocate future capacity to execute those particular tasks. Fig-
ure 7 also includes the application designed and implemented
above for illustration purposes.

B. Atomic services context

Table II illustrates the context of services that are proposed
and the operations each will perform in support of the policy

I Policy Service (Compound) |

e

I | Pecision Logic I

Currency Services

E

ITnpuet Pairs

I Allocated Capacity }—\
l |I Usage Fistory }—\—1

I Retrieve Data I

| Input Services (Atomic) | | Comprete Viattee:

[I Ouiprut Results I

I | Serviee Operarion I

= Contrac

Fig. 7. Proposed Migration Service Architecture.

TABLE I
SERVICES AND CONTEXTS.

Context Provided

Tradeoffs and tolerances

Usage, remaining resources

Mobile contract and Cloud contract
Estimated usage for current tasks
Prior executions and characteristics

Service

User Preferences
Device Status
Provider Contracts
Allocated Capacity
Usage History

compound service. The user preferences and provider contracts
services are populated from input by the user on the device.
The device status is populated by querying the status (general)
App on the mobile. Finally, the allocated capacity and usage
history services are maintained by the services themselves
from prior decisions and trace files of the apps on the device.

These variables are used in the decision making process of
the compound migration service.

C. Migration decision logic

The migration decision service logic operates on the fol-
lowing three equations:

Let:

EQ1: {Vp&&Vh : Jw,3c = u}
EQ2: {Vp&&Vh : Im,3ec = u}
EQ3: {Vp: #n}

Where:

p=partition, h=history,

w=wifi, u=user preferences
c=capacity, m=mobile spectrum

The decision to migrate the service is true in any of the
above three equations. In EQI1 there exists a valid partition
with prior migration history, there is also a WiFi spectrum
and enough capacity (latency, battery/cycles) on the device to
transfer to the Cloud for a round trip that is equal to the ranges
defined in the user preferences. In EQ2 there is also a valid
partition with prior migration history but there is a mobile
spectrum with enough capacity (cost, latency, battery/cycles)
on the device plans to transfer to the Cloud within tolerable

ranges established in the user preferences. Finally in EQ3,
there is a partition but no history and the decision is to migrate
in order to begin the history creation process (assumes at least
one execution will be needed to create the equation variables).
In all other cases, the partition is executed on the device.

VII. DISCUSSION / POTENTIAL RISKS

Perhaps the two most complex aspects of migration are what
to migrate and if the migration should occur. The objective
is always to minimize impact and maximize usage of low
cost computing capacity. This document has offered a method
for partitioning based on services contracts and a method for
evaluation of the migration decision based on historical and
environmental factors.

A. Potential risk: dynamic binding.

In most SOA environments, binding of services to processes
is performed as the execution occurs. Commercial vendor
offerings allow for modification of execution scripts on-the-fly
while they are being executed. In our particular architecture,
the services are bound and analyzed by the instruments and are
not able to be modified without re-compilation. This potential
limitation may inhibit flexibility similar to that offered by the
traditional SOA Web Services which allows for changes up to
the point of dynamic binding at execution.

B. Potential risk: broad applicability of BPEL.

The BPEL 2.0 standard has now been in existence almost 8
years. However, this particular language is far from universal
in adoption within the business community. The language is
complete for the most common processes but still might need
additional maturity in some of the less frequently used. In
addition, some methodologies challenge its usage and contend
that such a rigorous process may constrain delivery of code
and functionality on a timely basis (in Agile development for
example).

Our objective in using BPEL was to provide an alternative
to acyclic and semantic code analysis in support of migration
to reduce load on the hand held device. Certainly other
languages and methods exist to analyze required functionality
and determine where the least amount of state data is required
for transfer between the environments. The objective is to min-
imize that state transfer and potential latency while conserving
energy on the device.

VIII. CONCLUSIONS AND FUTURE WORK
A. Conclusions

This document explored the usage of BPEL in partitioning
applications for migration and executed an experiment to re-
view if the service contract was a potentially efficient segment
to do so. The data from the services in the experiment support
that conclusion.

A second contribution was the definition of an architecture
to store preferences, history and state information so that the
decisions to migrate can be made under certain variables. That
architecture is itself a service and is being modeled in apps on

the environment described above. At the point of this writing,
those applications are under development.

B. Future work

This second study in modularization continues to identify
the service contract as a potentially optimum location for parti-
tioning applications for migration to the Cloud. The migration
decision however is not as clear-cut. The proposed service
architecture for the composite service is in process of being
implemented in the Apple SWIFT environment. Additional
field work will be required to demonstrate to what extent the
variables and architecture are viable for delivering efficient
decisions to requesting applications when they are ready to
decide what to migrate.

ACKNOWLEGEMENTS

This research was supported by the U.S. National Science
Foundation (NSF CNS Award 1126747).

REFERENCES

[1] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gear-
ing resource-poor mobile devices with powerful clouds: architectures,
challenges, and applications,” Wireless Communications, IEEE, vol. 20,
no. 3, pp. 14-22, 2013.

[2] M. Felemban, S. Basalamah, and A. Ghafoor, “A distributed cloud
architecture for mobile multimedia services,” Network, IEEE, vol. 27,
no. 5, pp. 20-27, 2013.

[3] www.finance.yahoo.com/news/research-markets-global-mobile cloud.

[4] X. Ma, Y. Zhao, L. Zhang, H. Wang, and L. Peng, “When mobile ter-
minals meet the cloud: computation offloading as the bridge,” Network,
IEEE, vol. 27, no. 5, pp. 28-33, 2013.

[5] Y. Cai, F. R. Yu, and S. Bu, “Cloud computing meets mobile wireless

communications in next generation cellular networks,” Network, IEEE,

vol. 28, no. 6, pp. 54-59, 2014.

W. Zhang, Y. Wen, J. Wu, and H. Li, “Toward a unified elastic computing

platform for smartphones with cloud support,” Network, IEEE, vol. 27,

no. 5, pp. 34-40, 2013.

M. Shiraz, A. Gani, R. H. Khokhar, and R. Buyya, “A review on

distributed application processing frameworks in smart mobile devices

for mobile cloud computing,” Communications Surveys & Tutorials,

IEEE, vol. 15, no. 3, pp. 1294-1313, 2013.

S. Yang, D. Kwon, H. Yi, Y. Cho, Y. Kwon, and Y. Paek, “Techniques to

minimize state transfer costs for dynamic execution offloading in mobile

cloud computing,” 2014.

[9] http://docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0 OS.html.

[10] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in mobile
cloud computing: taxonomy and open challenges,” Communications
Surveys & Tutorials, IEEE, vol. 16, no. 1, pp. 369-392, 2014.

[11] J. Cox, N. Jones, and J. Szumski, Professional I0S Network Program-
ming: Connecting the Enterprise to the IPhone and IPad. John Wiley
& Sons, 2012.

[12] M. Privat and R. Warner, Pro Core Data for 10S: Data Access and
Persistence Engine for IPhone, IPad, and IPod Touch. Apress, 2011.

[13] T. Erl, SOA Design Patterns with Foreword by Grady Booch; The
Prentice Hall Service-Oriented Computing Series from Thomas Erl,
6th ed. SOA Systems, Inc., Prentice Hall Publisher, 2009.

[14] T. Erl, C. Gee, P. R. Chelliah, J. Kress, H. Normann, B. Maier, L. Shus-
ter, B. Trops, T. Winterberg, C. Utschig et al., Next Generation SOA:
A Concise Introduction to Service Technology & Service-Orientation.
Pearson Education, 2014.

[15] www.oracle.com/technetwork/articles/matjaz-bpell 090575.html.

[16] B. G. Pitre, Swift for Beginners: Develop and Design. Pearson
Education, 2014.

[17] A. Freeman, “Pro design patterns in swift,” 2015.

[18] T.C.S.D.J.GM.K.C.L.V.N.R N.C.R AT C.W.N.W.J. W.
S. Azarpour, R. Rendon Cepeda, iOS 8 by Tutorials; Learning the New
i0OS8 APIs wih SWIFT. Razerware, LLC, raywenderlich.com, 2014.

[6

—_

[7

—

[8

=

