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Abstract: The Blockchain (BC) design pattern has many variations and is a concept that is anticipated to lead 

many implementations in the years to come. The number of choices for a BC implementation continues to 

increase since new design and implementation patterns and applications are emerging. This increasing 

number of design patterns enables correspondingly increasing tradeoff opportunities at every evolutionary 

round of architecture elaboration. Key components of a BC include network nodes, blocks, and consensus 

methodologies. These components all possess critical characteristics that can be designed and implemented 

in a variety of different ways. A central thesis here is that the choice of the design methodologies has direct 

and varying impact with regard to resulting quality attributes such as performance, security, and availability.  

We describe the use of a tradeoff matrix during the initial design phase of a development cycle that identifies 

the quality attributes to be evaluated when designing software systems comprising a BC. We hypothesize 

that consideration of the quality attributes at this initial design stage via the use of the proposed tradeoff 

matrix enables designers to meet requirements more efficiently and accurately. This hypothesis is tested and 

the use of the tradeoff matrix is demonstrated by creating a consensus algorithm whose performance is 

evaluated through a simulation that compares the behaviour in a “bare-metal” versus a Cloud-based 

environment. This simulation approach drives the usage of one of the quality tradeoff parameters in 

achieving a more optimal solution. 
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1. Introduction 

The concept of replacing a centralized and authoritative record of approved exchanges of 
services or data with a decentralized record has many desirable features. Some of these include fault 
tolerance, enhanced security, and an ability to verify that such approved exchanges, or 
“transactions,” are indeed valid. While the concept of using a redundant and decentralized 
transaction ledger as compared to a single authoritative ledger is somewhat simple, the details of 
implementing such a scheme can become technically challenging. A modern and popular 
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implementation was recently disclosed in the form of a collection of methods and data structures 
known as “Blockchain” (BC). The BC concept has enabled technology designers, providers, and users 
with a means to utilize a decentralized ledger that in turn offers attractive benefits such as protection 
from false or malicious transactions and enhanced fault tolerance. While BC was originally proposed 
to support a publically accessible ecosystem based upon a digital crypto-currency, the concept of a 
distributed record of transactions versus a centralized record has rapidly gained popularity for a 
variety of other applications. 

As the BC concept has rapidly evolved, the community of technology providers has begun to 
classify specific use-cases based upon the application that is supported by a BC-based solution. For 
example, the initially disclosed application that supports a crypto-currency is an example of a 
“public” BC since it is desirable for any arbitrary entity to become a BC community member and to 
engage in crypto-currency commerce. That is, public BC members are free to join or leave the 
ecosystem of their own volition. The use of a BC to guard against counterfeiting in a supply chain is 
an example of a “permissioned” BC since valid participants in the supply chain are given permission 
to join the BC community and they are not necessarily free to join or leave the community. Such 
permission may be granted by a centralized authority, or by some other means such as the evaluation 
of a committee or subset of the existing community. The third, and most restrictive form of BC, is the 
so-called “private” BC. A private BC is one wherein the community that can access, utilize, and 
modify the BC is defined by design and closed. Furthermore, private BC community members 
generally do not have the ability to leave the community and they must support the usage and 
maintenance of the BC. At a lower level of abstraction, the BC can be considered to consist of a 
replicated data structure in the form of a hash-chain of abstract data types and a collection of methods 
for augmenting, modifying, and accessing records within the structure. 

From the point of view of considering public versus permissioned versus private BC 
implementations, the details of the underlying algorithms and data structures can vary quite 
considerably although the overall purpose of the BC remains the same; namely to provide an 
infrastructure wherein the community can maintain a distributed ledger of transactions.  This 
variation in implementations affords a designer with a large number of different design options to 
choose among. An experienced designer must still consider the far-reaching implications of selecting 
one course of action over another. 

From its roots, deep in distributed operating systems and databases through current 
implementation, the pattern for information hiding through encryption and sharing of that 
information with other parties has continued and is continuing to evolve through requirements that 
are sometimes unknown until implementation. The pattern has been made famous by the 
implementation of Bitcoin, a cryptocurrency. In a primary objective, the pattern allows for 
transferring value between the peers through consensus and encryption of results in a distributed 
event ledger. 

However, in addition to exchanging value, the pattern is also very useful for enabling methods 
of sharing secrets or other information between participants. The application of BC to support secure 
information sharing has been adopted by researchers and industry advocates for transmitting 
sensitive or private information between trusted parties in a group [1]. An example of this particular 
sharing is the transmission of PKI (private key infrastructure) keys in a network where only the 
intended receiver can decode such a transmission and by virtue of the BC pattern cannot repudiate 
(negate receipt) of that specific information. Furthermore, a block is mathematically bound with 
subsequent blocks through progressive hashing. The cumulative effect of this is to make the 
transaction a permanent one in the event registry resulting in an immutable transaction ledger. 

This objective of this paper is to segment the key software quality attributes and associated 
tradeoffs a designer should consider when architecting a solution with this pattern in mind. We 
discuss our assessment of these key tradeoff patterns and provide a matrix that identifies the 
attributes that should especially be considered during software design as originally outlined in [2]. It 
should be further noted that these key attributes are only considerations and should preclude the 
consideration of all software quality attributes for any solution design. Here we provide detail and 
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depth with regard to the discussion in [2]. Additionally, we include an example based on BC 
consensus algorithms. The paper concludes with an example of how to apply the matrix in selecting 
a consensus algorithm; a very critical component of any BC architecture. 

2. Related Work 

Many variations have emerged since the disclosure of the famous Nakamoto [3] paper that 
served as the precursor to the famous Bitcoin series of cryptocurrencies. This first paper on the nature 
of exchange of value as enabled through use of the BC design pattern has been widely adopted and 
now constitutes several billion currency units of value in over 700 crypto exchanges around the world 
with Bitcoin being the most famous. 

Since the work of Nakamoto in 2008, most of the implementations of BC support cryptocurrency 
applications. However, in recent studies, the design pattern has begun to be adopted as a means to 
enable data transmission while preserving privacy. Indeed, many technology implementations have 
begun to look at this design pattern as a means that supports and protects private exchange of 
information between interested parties [4, 5]. 

A significant difference in implementation patterns exists when a private BC is implemented 
versus a public BC [6]. In a public BC environment, parties do not necessarily have to know or trust 
each other in order to exchange value. Rather they can engage in a transaction by creating a candidate 
transaction that is cryptographically validated by other members in the network known as miners.  
Miners are a subset of BC community members who are not one of the transacting parties and who 
are incentivized to validate candidate transactions by receiving units of cryptocurrency if they win a 
contest based upon the first member to validates the candidate transaction first. The validation is 
performed through the solution of a computationally hard task or “puzzle” that is ingenuously 
devised to also validate the transaction. Since the miners must perform computational “work” to 
solve the puzzle and the solution of the puzzle inherently verifies a candidate transaction, this 
approach is often referred to as a “proof of work” approach. Once a miner offers the community a 
potential puzzle solution, the community is obliged to validate that the solution is correct. Thus, the 
puzzle must be computationally hard to solve but computationally easy to validate. A common 
example of such a proof-of-work puzzle is the problem of inverting a cryptographic hash function.  
It is known to be computationally hard to find a hash key given the hash value and function; however, 
it is very easy to simply compute a hash given a candidate key value. To deem a candidate puzzle 
solution as being valid, some predetermined percentage of BC community members must all agree 
that they correctly validated the proposed puzzle solution; or in other words, consensus must be 
achieved. Only after consensus is achieved will the miner who proposed the puzzle solution receive 
the cryptocurrency reward and the candidate transaction be committed to the distributed ledger.  
The problem of computing consensus in a distributed asynchronous environment is an instance of a 
well known and studied problem in distributed processing systems and the particular consensus 
method used can greatly affect the performance of a BC implementation. 

In contrast, in the context of a private exchange of data, the parties wish to know and trust each 
other before the exchange happens. Some examples of private BCs include distribution of sign-on 
credentials [1] or authentication of agents delivering content on a home [7]. In these cases, the “value” 
to be exchanged is a secret or information that is only known to the sender and receiver [8] and 
potentially to other trusted parties in the closed network of operation for the BC. In these cases, the 
BC must utilize methods that guard against various cyber threats such as masquerading man-in-the-
middle (MITM) attacks or MITM eavesdropping. These BC design objectives affect the types of 
methods that underlie a BC implementation and are currently regarded as open areas of research. 

As previously mentioned, significant amounts of intellectual capital have been expended on the 
design and implementation of public BCs. However, our focus in our design example is a private BC 
to be used as a means to guarantee key properties of secure transmission models. We have written 
about usage of this design patterns in previous work and have focused mostly on the consensus 
architecture requirements and implementation [9]. 
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Our previous work was dedicated to modeling different consensus algorithms and their impact 
on resource consumption. Most of the literature compares alternative consensus algorithms to the 
Byzantine General’s Problem [10] since it has become a pseudo-standard for measuring performance 
characteristics in newer consensus algorithms. In this work however, we expand the scope of our 
discussion to include the other aspects of the BC architecture requirements in relation to private 
exchanges. In a later section we discuss the block, smart contract, network, consensus and 
cryptography aspects. 

3. Design Considerations and Architecture Requirements 

There is some variability in the definition of components required for a successful 
implementation. However, there is general agreement that the components required for the pattern 
to work include the definition of a BC community, the supporting BC data structures, and the 
supporting BC algorithms that are used to create, update, modify, and augment the BC data structure 
as well as those algorithms that are used for other community services such as the consensus method. 

The network of participants or the BC community is a group of “nodes” that are typically 
individual processes running on within the same host or on different hosts that are all interconnected 
via a network. In this context, “network” refers to the group of members that are enabled to operate 
and utilize a BC [11]. Nodes of the network can utilize subsets of BC functions. For example, in a 
crypto currency application a node may simply be a consumer and do nothing more than engage in 
transactions. Alternatively, a node may be a consumer that also participates in maintaining a valid 
copy of the ledger, but that does not participate in mining. In the extreme case, a node may be a 
process that can perform transactions, maintains a ledger, and participates as a miner. In other BC 
implementations such as permissioned or private BCs, the BC community may have different classes 
of members. However, in all cases, a BC community member or node does have some capability in 
terms of performing transactions and can perform the basic operations of exchange and validation 
[12]. The value of a BC approach is in the maintenance of a distributed ledger that removes issues 
associated with a central authority that can become corrupted or malicious. The “distributed” aspect 
of the ledger lies in the fact that many different nodes maintain individual copies of the ledger that 
are forced to all be consistent via the methods and polices comprising the BC implementation. Thus, 
a BC community should be suitably large to ensure it is effective in terms of providing security, fault 
tolerance, or other similar properties. 

A single instance of the distributed ledger is a data structure that is in the form of a linked chain 
of “blocks” wherein each block is comprised of a header and a list of abstract data types (ADT) that 
each represent a transaction. As transactions are validated, they are accumulated into a current block 
and when that block reaches a certain size, or a certain amount of time has elapsed, it is added to the 
chain or previously committed blocks and all BC members who maintain a transaction log update 
their individual ledgers with the newly committed block. Instead of address pointers, the blocks are 
linked through the use of hash pointers resulting in a hash-linked list of blocks where each block is 
comprised of a header and a list of transactions in the form of individual ADTs. Because the BC 
pattern is being applied to many different applications and among different types of communities, 
the specific content and specifications of an actual block is a design attribute itself and can vary [13].  
A block is chained to a prior block by reference to the prior block via a hash pointer. While the specific 
ADTs within a block can vary, they typically are comprised of a header that contains the block pointer 
and a Merkle tree root as shown in Figure 1. A Merkle tree is a binary tree that is comprised of hash 
pointers rather than address pointers. Each transaction is a leaf in the Merkle tree and the content of 
the transactions is hashed together to form an inherent Merkle tree. The purpose of Merkle tree is to 
support immutability as well as providing an efficient means to search for a transaction within a 
block. 

While we have thus far considered the atomic event that is recorded in a ledger to be a 
transaction, it is possible to store any desired type of data in the distributed ledger. The requirement 
is that the proposed data to be stored is in a form that can be validated by all BC community members 
while also not necessarily being explicitly reveled. In addition to storing and recording data, such as 
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the record of a transaction, it is also possible to store a method in a BC. Because items stored in a 
properly implemented and functioning BC are immutable, when these items are in the form of an 
agreed set of actions between two parties, they essentially obey the legal definition of a “contract.” 
That is, if two nodes agree upon a set of actions and that set of actions is validated by the BC 
community to be those that were originally agreed upon, and furthermore, a record of these actions 
are stored in the immutable BC data structure that also guards against nonrepudiation, then a 
contract has been executed among the two parties that originally proposed and agreed upon the set 
of actions. This type of object, when used in a BC, is referred to as a “smart contract.” A smart contract 
is a reference to a set of procedures that the block will provide, and in some cases will cause to be 
executed, when the conditions of the contract are met [14]. The scope and specifications of a smart 
contract are a design consideration. 

 
Figure 1. Diagram of Blockchain Architecture with Partial Detail 

Smart contracts can be implemented as a block that defines a set of procedures in the actual data 
payload or a conditional reference to another part of the BC that contains other types of data. The 
smart contract, when invoked by a special block type, will produce a result that operates on the input 
data of that another block. A smart contract may contain the algorithm for processing the additional 
data or may reference a specific location for those instructions [15]. 

A BC requires several different types of algorithms to function properly. Some of these include 
hash functions both for the construction of the structures as well as possibly serving as sources for a 
mining puzzle. Algorithms are needed to maintain the ADTs, to maintain valid replications of the 
ledger, to update invalid copies of the ledger, to support the consensus model, to ensure the privacy 
of sensitive data, and a host of other support functions. In most BC implementations, it is desirable 
to encrypt portions of or the entire ledger, thus cryptographic methods and support functions such 
as nonce generators are important design considerations [16]. 

While there are other considerations, the final one that we wish to describe here is the consensus 
model.  Broadly, consensus is the process whereby the participants agree in adding the new block 
to the chain [17]. An important aspect of the BC pattern is the avoidance of a centralized authority 
that may become corrupted either through a fault or via some malicious intent. For this reason, it is 
important that the model be computationally distributed rather than a naïve approach such as a 
centralized voting accumulator as such a centralized consensus model would negate the benefits 
sought through the deployment of a distributed ledger. The consensus model provides the method 
whereby sufficient proof of validity of a transaction is provided by a given set of node in order to 
append the block and commit it to permanent storage in the chain. Two of the most common 
consensus methods at this writing are based on Proof-of-Work (PoW) [18] and Byzantine Fault 
Tolerance Algorithms (BFTA) [19]. 

The consideration of the design of the consensus model must necessarily involve aspects of the 
application. For example, if the BC community consists of nodes that run on computationally 
lightweight CPUs, the consensus model must not require excessive CPU cycles to complete.  
Alternatively, if performance is the prime factor, then the consensus model should be one that rapidly 
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completes. Because consensus is known to be challenging, it represents one of the most important 
design considerations in almost all BC implementations. 

3.1. Key Variability Parameters by Architecture and Security Ramifications 

Each of the architecture patterns has a variety of choices that ultimately influence the 
achievement of objectives in a BC implementation. The variability of the major components and their 
respective impacts are summarized here with an emphasis on security. 

The architecture of the block architecture is a major influencer on the objectives. On one hand, 
the block needs to be sized appropriately in order to include the necessary data. On the other 
however, if the block is too large the impact is felt in encryption computation and latency of 
transmission [18]. Depending upon the implementation, a very large block size can correspondingly 
increase the threat surface. 

The nature of the smart contract has a very large impact on both performance and attack 
resilience. By including a smart contract in the implementation complexity and additional overhead 
is acquired [12]. If the contract is wholly contained in the design then by definition, some of the prior 
blocks will need to be modified. A wholly contained smart contract is a type of block that is mutable 
as it processes and receives the effect of transactions. If the contract has a reference to a third location, 
the attack surface is expanded, performance could be impacted by additional steps to be taken in 
retrieval and update of external entities. Finally, for subsequent block encryption, the result of a smart 
contract action must be taken into consideration so that the cryptography rules can continue 
unimpaired. 

Network variability can be abstracted as the set of rules for adding, processing, and deleting 
nodes that interact with the BC. This might seem to be the most secure but it is where the attacks 
known as Impostor and Sybil can penetrate [8]. The variability in a private BC affects the usability of 
the method and can thus affect the integrity of the privacy of the BC community. A strict adherence 
to high trust generally necessitates that high complexity is present in most cases. The additional 
overhead that allows for high trust needs to be balanced with the usability of the B. 

The consensus model represents an area of high variability in the implementation of a BC design. 
There are dozens of consensus models reported in the literature that have varying levels of both 
computational overhead and complexity required to ensure agreement without tampering. Several 
summaries of consensus models have been published including those in [20, 21]. 

Most BC patterns will use methods of cryptography and these are well documented [15]. The 
biggest issue identified has been the potential for quantum computing usage to break those 
algorithms. Several studies exist on post-quantum cryptography and we strongly suggest 
incorporating some of those initial rules into the design [22]. Post-quantum BC is currently an active 
area of research. 

3.2. Software Architecture Quality Attributes 

The Software Engineering Institute (SEI) has published guidelines for designing software 
systems with emphasis on architecture [23]. These guidelines are summarized and repeated here as 
follows: 

1. Availability; the system is present and ready for interaction. 
2. Modifiability; the degree to which the system can be reasonably altered. 
3. Testability; the system has facilities that enable the validation of results. 
4. Interoperability; the ability to interact with other systems. 
5. Security; resilience to cyber-attack. 
6. Performance; achieves targets, typically in terms of meeting timing deadlines. 
7. Usability; enabling the use of the system for designated purpose. 
8. (Optional) Extensibility; the ability to extend system functionality beyond its original 

scope. 
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Within the SEI framework, these represent key attributes in determining the quality of a BC 
software system. These attributes typically involve tradeoffs and cause a designer to carefully 
consider requirements to achieve a pseudo-optimal design. A classic example is performance versus 
security. Performance enhancements are typically achieved at the expense of increased processing 
conditions that in turn extend the threat surface area. In the next section, we address how these 
attributes and the corresponding and inherent tradeoffs interact with respect to usage of the BC 
design pattern. 

4. Quality Attribute Tradeoffs 

Software quality attributes drive design decisions that shape the final BC solution [24]. 
Consideration of general quality attribute tradeoff mechanisms while also comparing them to 
tradeoffs that are more prevalent in the BC design pattern is the goal of this section. 

4.1. Architecture Design and Evolution Implies Quality Attribute Tradeoffs 

Architecture design implies tradeoffs between quality attributes in order to deliver a solution 
that reasonably complies with stated requirements. Quality attributes are typically in conflict with 
each other, for example, the testability attribute which includes verbose output might be in conflict 
with the security attribute which aims at hiding the attack surface (verbose output implies additional 
software that may be turned on to describe the current state of processing but this additional software 
could also be attacked). Another example is the conflict between interoperability and performance. 
If a system is designed with very high level of interface abstraction and cohesion it might cause the 
system to use more cycles and impact performance requirements. These tradeoffs are even more 
specific for BC design and are discussed in the next section. 

4.2. Key Blockchain Architecture Tradeoffs 

Based upon a consideration of the BC architecture and components described previously, we list 
some of the dominant tradeoffs that should be considered in a BC architecture design. They are 
complemented further from the list provided by [25, 26, 27]. 

1. Storage versus Computation: the amount of storage required by the block will affect the 
computation requirements; a larger block will require more computation to encrypt since 
there are more elements to encrypt. The design tradeoff in this case is Usability versus 
Performance. 

2. Anonymity versus Trust: if the parties do not know each other they most likely need to 
verify proper identities through the use of public/private keys. This additional step will 
require a different design pattern. The design tradeoff in this case is Interoperability versus 
Security. 

3. Incentive variations: by definition, the pattern requires distributed validation before 
blocks can get appended. Participants are usually incented to validate candidate blocks 
in order to carry out this function. In a public BC, this usually means allocation of value 
to those participants that, in turn, implies tracking value in the network. Similarly, in a 
private BC, the incentive schemes vary, in the simplest form it could mean that the 
participant must validate prior blocks before theirs gets appended. The design tradeoff 
in this case is Extensibility versus Usability. 

4. Degree of Distribution: In traditional Nakamoto-inspired BC patterns, the participants 
keep replicated copies of the BC. However, there are different BC patterns that may 
require that smart contracts reside offline, on the BC in a centralized or other node. The 
design tradeoff in this case is Interoperability versus Extensibility. 

5. Scalability versus Latency: These two attributes are closely tied to performance. In most 
cases, systems are designed for fulfilling a certain return time to users that is specified in 
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requirements. When those limits are exceeded by larger scale (more volumes) the 
processing of blocks begins to lag, in some cases well beyond the expected requirements. 
The design tradeoff in this case is Availability versus Performance. 

6. Immutability versus Process Functionality: This happens mainly in BC implementations 
supporting smart contracts. One of the key tenants of the architecture is that it is a 
permanent record. The inclusion of smart contracts can either violate (by having data 
offline or modifying previous blocks) or preserving it (by restating the smart contract, 
previous states and the of new state). The design tradeoff in this case is Security versus 
Usability. 

7. Consensus Algorithm Selection: This tradeoff relates to the selection of the consensus 
approach to validation. In Nakamoto for example, the PoW constitutes both a security 
approach (51% of the computation) and validation of the block (encryption/finding the 
“nonce”) while in other approaches, this could be varied to provide a level of accuracy 
and protection that may not be as computationally intense. The design tradeoff in this 
case is Security versus Performance. 

4.3. Architecture Tradeoff Matrix 

To consider the key tradeoffs for the BC pattern in the early design stage, we propose the use of 
a tradeoff matrix such as that shown in Table 1. The numbers in cells refer to those given in Subsection 
4.2 and are scaled from zero (0) to ten (10) with ten indicating the highest tradeoff or negative 
correlation between a given architecture tradeoff pair and zero (0) indicating no correlation 
whatsoever. 

Table 1. Key Architecture Quality Attribute Tradeoff Matrix 

 

5. Quality Attribute Tradeoff Discussion 

It is best practice to design new software systems with consideration of all quality attributes in 
the software engineering community [23]. However, our experiments indicate that one should also 
determine and consider key attributes identifiable by the usage of patterns that facilitate them and 
are embedded in design [28]. Furthermore, it is certainly the case that some quality attributes are 
especially dominant in certain architecture types and will typically require additional tradeoff 
analysis to solve [29]. This philosophy is applied to the BC design pattern here and is summarized 
and reflected in Figure 2. Domain knowledge of the overall design pattern, the specific use-case of 
the pattern, and aspects of lower-level abstractions regarding the supporting data structures and 
algorithms are all important factors in enabling the tradeoff matrix to be constructed. 

5.1. Key AttributeTradeoff Discussion 

In terms of importance and from a purely numeric perspective, it is evident that performance, 
security and usability are the most impacted attributes. This intuitively makes sense since 
performance is taxed by adding requirements for security and usability, both of which require 
additional resources and potentially more design impacting performance decisions. The 
interoperability and extensibility pair is a close second in this tradeoff analysis. This observation also 
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intuitively makes sense since blocks are dependent on each other to provide and deliver BC 
functionality in compliance with the system requirements. The variety of BC design patterns requires 
extensibility to enable design additional features that may be present in a future or updated system 
requirements specification. Finally, in terms of availability, only one tradeoff is noted. However, 
availability is a very important quality attribute since if the BC system becomes unavailable or 
underperforms it will render the system unusable. 

5.2. Use of the Key Attribute Tradeoff Matrix 

While all attributes should be considered in the design decisions and, in fact, most design 
patterns do incorporate them [30], the objectives of this investigation are to determine and concisely 
convey which quality attributes seem to be more important with respect to the BC pattern. We 
propose that during the early design phase of systems employing the BC pattern, the tradeoff matrix 
should be used to guide periodic evaluation activities to ensure that identified key attributes remain 
compliant with system requirements. 

6. Evaluation of the Consensus Algorithm via Simulation 

An example of how key quality attributes and their corresponding tradeoffs, as represented in a 
tradeoff matrix, can be considered in designing a BC solution is provided. One of the most important 
factors that contributes to the variability among different BC architectures is the type and 
characteristics of the employed consensus algorithm. This particular architectural tradeoff is 
designated as number 7 from the list in Subsection 7 and is observed to exhibit a key tradeoff among 
the performance and the security quality attributes as shown in Figure 2. In our experiment, we 
analyzed a simulation of two common consensus algorithms. One of those two consensus algorithms 
is a particular implementation from the family of Byzantine Fault Tolerance Algorithms denoted as 
BFTA. The other consensus algorithm is an implementation referred to as RAFT. RAFT is a consensus 
approach that was originally created by researchers at Stanford University [17]. 

6.1. Consensus Algorithm Selection and Experiement Parameters 

We selected the BFTA algorithm due to its widespread usage in many BC implementations and 
studies; not only in BC-based systems but also in replicated database studies. We selected the RAFT 
algorithm because, although newer, it rapidly gaining popularity in the BC community for a variety 
of reasons including its simplicity. 

A brief and high-level description of the BFTA algorithm is given in the following numbered 
list. The description is provided in terms of the original and historical use-case rather than BC 
consensus so that generality can be preserved and so that lower abstraction design choices are not 
present that could potentially complicate the description.  

1. There are a number of military Generals that are leading the Byzantine Empire’s army in 
a siege of a particular city. 

2. The Generals and their commands must all attack simultaneously at an agreed upon time 
in order to conquer the city. 

3. The Generals communicate through the use of messengers that deliver information 
through verbal channels only. 

4. A subset and minority of the Generals are traitorous. This subset will attempt to 
undermine the remaining majority of honest and loyal Generals by providing false 
information via their messengers. Thus, the collection of Generals is classified as either 
“loyal” or “disloyal” with respect to their mission. 

5. At some point in time, all the loyal Generals will agree on a time of attack. When the 
majority of all Generals, both loyal and disloyal, agree upon a common time of attack, 
then the attack time negotiations halt and the agreed upon time is adopted by the entire 
army. After adoption of an attack time, no further communication or interaction 
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concerning the attack time occurs. Determining when the attack time occurs is the 
“solution” to the problem and it is based upon achieving a “consensus” among the entire 
group of Generals that comprise both the loyal and disloyal disjoint subsets. 

It should be clear to the reader with a basic understanding of BC, that the Generals represent BC 
network nodes that validate a transaction and that the disloyal Generals represent nodes that 
incorrectly validate (or invalidate) a transaction. The nodes represented by disloyal Generals may be 
undergoing an error, may have been compromised, or may be malicious actors in the BC network. 

An alternative consensus methodology is embodied in the RAFT algorithm that is summarized 
in the following numbered bullet list. In this case, the high-level description of the algorithm is 
provided directly in terms of BC system components. 

1. There are a number of nodes in a network that can carry out computations and 
participate in the operations required to commit blocks to the distributed ledger in the 
form of a BC. 

2. Time is partitioned into subsequent discrete intervals or epochs with the duration of 
each epoch being chosen at random. 

3. Before the next epoch in the sequence commences, a “trust election” occurs where each 
of the participating BC nodes votes for a node based upon some arbitrary criteria. The 
criteria could include characteristics such as current load, recent activity, or any of a 
number of potential system characteristics. The node with majority of votes wins the 
trust election. 

4. If there is a tie then another election begins immediately. Tie avoidance can be achieved 
through designing the system such that only an odd number of voters are used.  

5. The winning node issues the next epoch’s time duration and a secret that is used by all 
nodes in encryption of transactions during the epoch. 

6. As an epoch ends, another trust-election begins and the process continues. 
While the simplicity of the RAFT approach is appealing since simplicity often leads to favorable 

quality attributes, it is also noted that care should be taken in the design of the trust election and 
voting process. One of the main benefits and motivating factors for using a BC is to avoid using a 
trusted centralized authority to maintain a transaction ledger since such a centralized authority 
becomes a critical point of failure or a highly vulnerable insertion point for an attack vector.  
Likewise, if the accumulation of votes and determination of the trust election winner is accomplished 
by a centralized voting node, similar issues can arise. This can lead to the need for a consensus 
algorithm within the overall BC consensus methodology. Solutions to this problem are present in the 
literature and the overall result of RAFT is that the winner of the trust election is accomplished in a 
just-in-time manner at random intervals that are unknown in the previous epoch. 

6.2. Experimental Results and Conclusions 

We generated software using the C programming language to simulate the execution of the 
BFTA and RAFT consensus algorithms. Furthermore, we evaluated the consensus algorithms in two 
different environments for running the processes. The “bare metal” environment consisted of an 
Apple Macintosh computer with an Intel quad-core CPU that is running the Ubunto Linux OS. The 
“hyper-vised” environment also used the same Ubunto Linux OS but in a virtual machine. We used 
the VMWare Workstation Pro 14 virtualization software for the second environment. In terms of main 
memory, we used identical RAM allocations of 2 GB for both environments. Additionally, we 
evaluated behavior as the size of the BC was varied in each environment. For this portion of the 
experiment, we ran simulations with BCs of sizes, 1, 2 and 3 million blocks. For each configuration 
and BC size, we recorded CPU usage as a percentage of overall usage and the time required to build 
the BC. These experimental results are provided in Table 2. 
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While the experimental results in Table 2 provide an interesting comparison of BFTA with 
RAFT, the more important point here is that such simulations can be very valuable in evaluating the 
resultant behavior of a consensus algorithm with respect to implementation variations before the 
operational BC system is developed and tested. This is an essential capability if the designer is going 
to utilize tools such as the key attributes tradeoff matrix disclosed here. While the tradeoff matrix 
points to the key tradeoff characteristics and thus where the designer should focus their attention 
during design, the validation of design choices made due to consideration of the matrix can be 
accomplished via a simulation as shown here.   

It is important to underscore the fact that the simulation capability is one way to incorporate and 
use the tradeoff matrix in the early design stages of a BC system. There are a variety of tools that can 
be used by an architect in order to evolve a particular architectural design. One of these tools is 
simulation.  In some cases, it is extremely challenging to predict how a design choice will affect a 
quality attribute until a model is constructed and simulated.  

Table 2. Experimental Results with Native “bare-metal” and Virtual Hosts 
“Bare-metal” Platform  Virtual “hyper-vised” Host 

Volume % CPU Time (min:sec)  Volume % CPU Time (min:sec) 
1M Blocks  1M Blocks 

Byzantine 94% 2:37  Byzantine 95% 2:31 
RAFT 97% 1:06  RAFT 87% 0:48 

2M Blocks  2M Blocks 
Byzantine 93% 6:33  Byzantine 95% 5:05 
RAFT 91% 2:11  RAFT 94% 1:41 

3M Blocks  3M Blocks 
Byzantine 93% 9:52  Byzantine 95% 7:39 
RAFT 92% 3:18  RAFT 96% 2:34 

7. Conclusions 

We propose the use of a tradeoff matrix that corresponds to the tradeoffs among the major 
software architecture quality attributes in evolving BC solutions. The tradeoff matrix is a starting point 
for the BC architect as key attributes are enhanced, or alternatively, de-scoped, in the design of a new 
BC architecture. While this approach can be generally used for any software pattern, we also focused 
specifically on the BC pattern and provided a tradeoff matrix based upon key quality attributes that 
we determined from a review of the literature as well as our own experience and experiments. We 
furthermore described how simulation can be used during the early architectural design phase of a 
BC pattern that is guided by the tradeoff matrix and whereby the simulation tool provides a basis of 
comparison for architectural design choices. We emphasize that simulation is not the only tool 
available for validation of the tradeoff behavior, but it is a good tool to consider for generating 
checkpoints during the architectural evolution stages of the software design process. We have shown 
how tradeoffs can lead to specific experiments that can be used to define and test a hypothesis for 
incorporation into the next generation of design during the architectural evolution process via the use 
of simulation. Ultimately, the system architect who is employing the BC pattern must decide on the 
level of detail needed to ensure the generated software solution will comply with the other necessary 
quality attributes to result in a feasible and resilient result; however, we believe that the identification 
of dominant quality attributes as provided here in combination with the use of a tradeoff matrix and 
architectural evolution simulations is a viable approach for employing the BC pattern in a wide variety 
of use-cases. 
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