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Abstract
Up to 5000 deaths occur each year in the United States from errors in diagnosis of neurological 
diseases. As most doctors often only check for certain common diseases, patients can go 
undiagnosed for other rare ones. This machine learning study may improve patient outcomes and
thus decrease the number of patients who go undiagnosed, by developing a Convolutional 
AutoEncoder which consists of an Encoder and Decoder. The Encoder compressed the input of a
Magnetic Resonance Imaging (MRI) scan into a lower dimension latent space. The Decoder 
reconstructed this lower dimensional representation back to the original image. The Encoder and 
Decoder were implemented in a symmetric multi-layered network along with MaxPooling and 
UpSampling to capture important features of the images. Trained on only healthy MRI scans of 
the brain, the model was able to detect the presence of any disease in the brain through a Kernel 
Density Estimation (KDE) score. KDE analyzed the output of the Encoder through a probability 
density function of each pixel. Using thresholds based on KDE score, this study achieved a 0 
false negative, 100% accurate result for detecting unhealthy brains in MRI scans. These scans 
included diseases such as Alzheimer’s, Pituitary tumors, Glioma tumors, and Meningioma 
tumors, all correctly classified as unhealthy even though the model was trained only on non-
specific healthy images. Achieving a reasonable 90% accuracy on healthy images with 10% false
positives, this AutoEncoder-KDE approach limited the need for large datasets. This approach 
may be applied to any medical image and decrease the number of undiagnosed patients.
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Introduction
Diseases  going  undiagnosed  is  a  significant
problem in the United States and upwards to
80,000 people each year are affected because
of  it,  6.6%  of  which  were  related  to
neurological  diseases  (1).  On  one  hand
common  diseases  such  as  cancers  go
undetected, and on the other hand a significant
part  of  this  number  is  because  of  a  lack  of
awareness and data on rare diseases. This lack
of  awareness  led to  morbidity  and mortality.
Despite the reality of not having enough data
on  rare  diseases,  machine  learning  solutions
have incorporated large amounts of data. Even
for binary classification between, for example,
Lung CT scans with Covid-19 and scans that
are  healthy,  standard  machine  learning
solutions  required  data  on  both  classes  (2).
Furthermore,  multiclass  classification  of
diseases  were  only  limited  to  the  different
diseases the models were trained on (3). This
led to a high number of false results; images
with a disease the model  was not trained on
were misclassified limiting the application of
the model to only certain diseases. Training a
model  for  classifying  100  different  diseases
could occur, however the challenge is the same
when the model meets a disease it was never
trained  on.  For  rare  diseases,  a  machine
learning  solution  that  required  a  lot  of  data
would be impractical.  Another implication of
this  research is  to  create  a  solution  that  will
assist doctors and not replace them. A model
that  can  accurately  differentiate  between  a
healthy  scan  and  a  scan  with  any  disease
without  creating  a  high  number  of  false
positives; i.e. healthy images being diagnosed
as  unhealthy.  In  order  to  achieve  this,  this
research  utilized  an  AutoEncoder.  An

AutoEncoder  consists  of  an  Encoder  and
Decoder. The Encoder  compresses input data
into  a  lower  dimension  representation.  The
Decoder  then  reconstructs this  lower
dimension representation (4). An AutoEncoder
is  commonly  used  for  disease  detection  by
creating  accurate  low  dimensional
representations that  then become the input for
standard classifiers (5). This research utilized
MRI  scans  of  the  brain  in  order  to  test  an
approach  for  identifying  scans  that  have  a
disease that can extend to all parts of the body.
This  research  utilized  AutoEncoders
strategically by training them only on healthy
Magnetic Resonance Imaging (MRI) scans of
the brain, allowing the system to detect brain
MRI  scans  with  any  disease.  As  the
AutoEncoder  model  is  only  trained  with
healthy images,  it  would  learn to reconstruct
healthy  scans  but  not  scans  with  diseases.
Specifically, the area of the image that has the
disease  would  contain  an  arrangement  of
pixels  that  the  model  would  not  have
encountered.  Hence, it  would  not  be  able  to
reconstruct  that  area  as  well,  leading  to  a
higher loss.  However,  a  significant  challenge
with such anomaly detection frameworks is the
high  number  of  false  positives  they  can
generate  (6).  In  order  to  solve  this,  this
research  also  utilized  Kernel  Density
Estimation. Kernel Density Estimation created
a  probability  density  function  of  the  data
which can then check against new data (7). By
creating a probability  density  function of the
healthy scans’ pixels, unhealthy scans could be
checked  against  the  function  for  another
threshold,  thereby  allowing  for  less  false
positives. 
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Methods
This work utilized 330 MRI scans of the brain
across 4 disease classes:  Alzheimer's,  Glioma
tumor, Meningioma tumor, and Pituitary tumor

and 498 healthy scans (8-9). 395 of the healthy
scans were used for training,  while  103 were
used  for  testing.  This  was  to  ensure  that  the
model did not overfit on the healthy images.

Figure 1. The pipeline of this research is shown. The steps included data preparation, model creation, threshold 
creation, and testing. 

First, data preparation was needed in order to
ascertain  that all  scans  began at  the  same
dimension.  The  data  was  also  separated  into
different  classes.  The  3  classes  were  healthy
scans used for training, healthy scans used for
testing, and unhealthy scans used for testing. 

AutoEncoder

Next,  a  Convolutional  AutoEncoder  was
trained using the healthy training set. Unlike a
standard Convolutional Neural Network (CNN)
structure in which an image’s important aspects
are  learned  and  stored,  which  are  then
transferred to  a  fully  connected  layer  for
classification;  in  the  Convolutional
AutoEncoder,  the  model  consisted  of  an

Encoder  and  Decoder  both  based  of
convolutional  layers.  The  Encoder  took  an
image,  and  reduced  the  dimensions  of  the
image using convolutional layers. Similar to a
CNN,  important  aspects  of  the  image  were
learned.  The  lower  dimension  representation,
also  known  as  the  bottleneck,  was  then
transferred  to  a  Decoder.  The  Decoder
attempted  to  reconstruct  the  image  based  on
only the bottleneck data.
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Figure 2. Model structure. The model architecture consisted of the Encoder which has 3 layers, and a Decoder which
has 4 layers.  

All  the  scans  started  at  the  size  of  128x128
pixels.  Then,  after  transferring into  the  first
convolutional  layer  and  a  MaxPooling  layer,
the  scans  were  altered  to 64x64x32.
MaxPooling helped to lower the dimension by
choosing a  pixel  to  represent  a  set  of  pixels.
The 64x64x32, images were then transferred to
another  convolutional  layer  and  MaxPooling,
that converted them to size 32x32x16. Then a

final  transfer through another analogous layer
decreased  the  scan  size  to  16x16x16.
Subsequently, the  Decoder,  consisting  of 3
convolutional  layers  combined  with
UpSampling,  converted the  image  of  size
16x16x16  to  32x32x16;  then  64x64x32;  and
finally  to  128x128  pixels..  A  sigmoid
activation function was used to ensure that all
pixel values were between 0 and 1.

Figure 3. Input to Reconstruction. A healthy MRI scan of the brain was inputted, then the lower dimension 
representation was shown, and finally the reconstruction. 

The reconstructed scans were then compared to
the original scan using the Mean Squared Error
(MSE)  loss  function.  The  difference  between
each  pixel  in  the  reconstructed  image  was
subtracted  from the  original  image.  All  these

differences  were  averaged  to  get  the  Mean
Squared Error loss.

      

Journal of High School Science, 7(4), 2023



Original article

As  the  AutoEncoder  was  only  trained  on
healthy  images,  the  idea  was  that  when  a
‘diseased’  scan  was  transferred through,  its
MSE loss would be  significantly greater  than
that  from  a  healthy  image.  To  create  a
threshold  for  this  classification,  the  average
loss and standard deviation of the loss on the
trained healthy images were first calculated. 

Kernel Density Estimation (KDE)

To address the problem of the high number of
false  positives  typically  seen  in  anomaly
detection problems, Kernel Density Estimation
was used as  a  second threshold for  detecting
scans with diseases. 

The difference  between the  AutoEncoder  and
the Kernel Density Estimation was the function
through  which  the  inputs  of  the  image  were
passed through. On one hand the AutoEncoder
attempted to reconstruct the input numbers to a
new output which was as similar to the input as
possible  (after  first  reducing  the  dimension),
while on the other hand KDE “plotted” all the
input  pixel  values  on  a  probability  density
function to see how likely it was to be present
in  a  set  of  data.  Both  methods  were  able  to
account  for  continuous,  as  well  as  discrete
values. 

Kernel Density Estimation was applied to the
output  of  the  trained  Encoder  part  of  the
AutoEncoder  to  enhance  the  performance  of
the probability function created.

 

Figure 4. KDE representation. The diagram shows a graph representing the process of Kernel Density Estimation. A
distribution function is created for each pixel. The Encoder output is 16x16x16 and there were 395 images used for
training, or a total of 1617920 pixel values. All the distribution functions were added together to create a probability
density function of all the healthy images pixel data. 

Journal of High School Science, 7(4), 2023



Original article

Kernel Density Estimation was applied to the
output of the trained Encoder for two reasons.
First, the pixels that did not contain the brain
would  be  part  of  all  scans,  healthy  and
unhealthy.  Hence, by using a lower dimension
representation, the number of such pixels was
reduced.  Furthermore,  since  the  Encoder  was
trained,  it  recognized  and  captured  the

important  features  of  the  scan;  if  it  did  not
succeed  in  capturing  the  important  features,
then it would not be able to reconstruct scans
well and not overfit.  Since the Encoder output
likely  contained  important  features,  it  was
likely to contain arrangements of pixels which
would  not  be  found  in  scans  of  unhealthy
brains. 

        Figure 5. MRI Scan of healthy Brain. Figure 6. MRI Scan of unhealthy Brain with a 
meningioma tumor

By  using  KDE,  access  was  obtained  to  a
probability density function that  was based on
the  pixels  of  the  lower  dimension
representation  of  healthy  images.  Next,  using
this  function  the  KDE  score  was  calculated.
Each  pixel  in  the  scan  was  measured  for  its
probability  to  occur  in  that  function.  For
example,  a  scan  with  a  Meningioma  Tumor
was transferred to the AutoEncoder. The output
of the Encoder  was stored and had its  pixels
compared against  those  of  the  probability
function.  In  other  words,  for  each  of  4096
pixels  of  the  bottleneck  representation
(16x16x16) the probability of each pixel being
in  that  distribution  was  checked.  All  the
probabilities were added to get a score. Hence,
by applying this  technique  on all  the  healthy

training scans, another threshold was created –
by  finding  the  average  KDE  score  on  the
healthy scans and standard deviation. If a scan
were to be found outside this threshold it would
most likely be a scan with a disease. Therefore,
using  both  the  loss  threshold  and  KDE
threshold,  the testing data  which consisted of
scans from 4 different disease classes as well as
healthy scans was tested.

Results and Discussion
In  order  for  the  thresholds  to  accurately
differentiate  between  diseased  and  healthy
brain  scans, it  was  important  to  find  a  right
balance, where the AutoEncoder reconstructed
the  healthy  images,  but  not  the  unhealthy
images.  Furthermore,  the  chosen  thresholds
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needed  to  ensure  that  false  positives  were minimized  and  that  all  unhealthy  scans  were
diagnosed correctly.

 

Figure 7. Thresholds. In order to ensure the best results, different epochs of training allowing for different average 
losses on the healthy train images and different average KDE scores were tested, which in turn allowed for different 
thresholds as shown.

Trying to find the best threshold also included
testing whether a loss only threshold or KDE 

score  only  threshold  generated  better  results
than  different  combinations  of  the  two
thresholds.

Figure 8. Results for each trial. The table above shows the different accuracy of each individual class and the overall
accuracy for each trial. A different threshold was used for each trial. This included thresholds that only used the 
AutoEncoder with MSE loss, only the KDE score, and also thresholds that used both. Specific thresholds are shown 
in Figure 7.
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Figure 9. ROC Curve for AutoEncoder with Kernel Density Estimation trials. The graph shows the ROC curve for 
the thresholds which used both the AutoEncoder and Kernel Density Estimation. The true positive rate stays 
consistent throughout all trials, while the false positive rate decreases. The horizontal ROC shows that this 
AutoEncoder and KDE approach does not have to tradeoff between sensitivity and false positives, rather, the 
tradeoff is only in becoming more conservative in what the algorithm deems to be a disease. The AUC is .8058 
which indicates that this approach arrives at accurate results a signficantly greater number of times than would be 
possible by chance alone. 

Figure 10. ROC Curve for only  Kernel Density Estimation trials. The graph shows the ROC curve for the 
thresholds which used only Kernel Density Estimation. Again the true positive rate stays consistent throughout all 
trials, while the false positive rate decreases. The AUC is .7961, which again shows the KDE arrives at accurate 
results a signficantly greater number of times than would be possible by chance alone. The AUC is lower than that 
of the AutoEncoder and KDE system, probably because fewer trials were performed. 

Journal of High School Science, 7(4), 2023



Original article

A  ROC  curve  was  not  calculated for
AutoEncoder-only trails because as seen in the
one trial which only used the AutoEncoder; the
sensitivity  or  true  positive  rate  dropped
significantly.  The AutoEncoder  alone  did  not
accurately differentiate between images of the
healthy and unhealthy brains.

Observations
From as low as 20 Epochs the model detected
scans  with  diseases  with  0% false  negatives.
However,  at low epochs, the model was only
slightly better at reconstructing healthy images
than  unhealthy  images;  a  loss-only  threshold
led to large amounts of false positives.  Some
healthy images had a high loss, however at low
epochs of training a KDE-score only threshold
still led to a high amount of false positives. 

On the other hand at high epochs of training the
reconstruction  loss  of  healthy  images  was
measurably lower than unhealthy images. This
was seen through a reduction in false positives
when using a KDE and loss threshold after at
least  300 epochs of  training.  However,  many
healthy images had a loss much higher than the
average reconstruction loss of healthy images.
But there was a significant difference between

the distribution (KDE score) of healthy images
and unhealthy images.  A KDE-only threshold
thus  gave  the  best  results.  The  probability
density  function  generated  at  high  epochs  of
training of the AutoEncoder  was best able  to
differentiate  between  healthy  and  unhealthy
images. 

Results
The best  results  were  achieved  with  a  KDE-
only threshold at 500 epochs of training.  This
resulted in an overall accuracy of 97.46% and 0
false negatives across 4 disease classes: Glioma
tumor,  Meningioma  tumor,  Pituitary  tumor,
and Alzheimers. However, if  a KDE that  was
not based on the Encoder outputs was trained,
i.e. it  was trained on all  pixels in the regular
dimension  representation,  and  which  used a
KDE only threshold, then an accuracy of only
77.14%  was  achieved.  Hence, the  best
approach was when a KDE-only threshold was
used,  with  a  KDE  that  was  trained  on  the
outputs of a trained Encoder. It was necessary
to train the AutoEncoder for optimal results. 

To  better  understand  the  results,  the  recall,
precision, and F1 Score were also calculated.

Recall =  
True Positives

True Positives+FalseNegatives
=
330
330+0

=100%

Precision = 
True Positives

True Positives+False Positives
=

330
330+11

=96.8%

F1 Score  = 
Precision∗Recall
Precision+Recall

×2=
.9677×1
.9677+1

×2=98.4 %

Journal of High School Science, 7(4), 2023



Original article

Figure 11. Confusion Matrix. A confusion matrix representing the final results. True Positive refers to a scan that 
has a disease and True Negative refers to a healthy scan. Out of 330 scans that had a disease, all 330 were predicted 
as having a disease. Out of 103 scans that were healthy, 92 were classified as healthy while 11 healthy scans were 
classified as having a disease. 

Discussion
The KDE only threshold, in which the Kernel
Density Estimation was trained on the outputs
of the Encoder, which, in turn was trained for
500 epochs,  was able to reach a 100% recall
rate without producing a significant amount of
false positives. The F1 score was > 98%. The
F1 score gives more importance to eliminating
false  negatives  than  false  positives  (diseases
going  undiagnosed  is  penalized  more).  The
model was hence found to be high performing
at  eliminating  the  problem of  diseases  going
undiagnosed, but at the same time not causing
many false positives. 

This  approach  outlined  in  this  paper  can
potentially be  transferred  to  other  medical
images  or  anomaly  detection  problems.  The
only  difference  would  be  what  the

AutoEncoder  and  Kernel  Density  Estimation
are trained on. For instance, if trying to identify
diseases in the lung, the AutoEncoder would be
trained on healthy lung scans. 

Overall,  this  solution  of  a  Convolutional
AutoEncoder  combined  with  Kernel  Density
Estimation  to  some  extent  exceeded  the
performance  of  previous  machine  learning
solutions  that  generated  many  false  positives
and doctors that produced many false negatives
(10).  It  did  this  while  only  being  trained  on
healthy  images;  an  efficient  and  effective
solution.

Limitations
Though  this  research  assisted  in  disease
identification it can only assist with identifying
that a scan has a disease and not the specific
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diagnosis. In order for this approach to be able
to identify specific  diseases,  the methodology
would need to be applied such that the system
is  trained  on  the  disease.  The  algorithm  can
then classify that  scan  as having the attributes
of that specific disease without the need to train
on healthy images. The cost to implement this
research in practice may be impractical in light
of  the  cost  of  MRI scans.  MRI scans  of  the
brain can cost up to $8,400, abdominal $7,600,
breast  $10,300,  and  the  chest  $7,900   (11).
Furthermore, preventive  diagnosis  screening
for  brain  tumors,  is  not  covered  by  health
insurance like Medicare. (12) With the average
cost of an MRI scan being $1,325 in the USA
(13), performing for instance, an MRI scan on
a number like 80,000 cases would lead to a cost
of over $100 million.  This does not include the
time and resource effect of conducting so many
scans.  However,  conducting  these MRI scans
would  come  with  the  potential  benefit  of
doctors  being  sure  that  a  patient  has  the
disease. 

Another consideration is that MRI scans, which
would  produce  the  scan  to  input  through the
system  expressed  in  this  paper,  are  often
conducted  after  preliminary  testing  through
which the doctor is sure of some abnormality in
the patient. In order for this research to perhaps
be  more  applicable,  disease  localization  must
be  incorporated.  Through  techniques  such  as
seeing where  the  reconstruction  is  the  worst,
the  specific  location  of  the  disease  can  be
identified  producing  a  greater  benefit  for
doctors,  assuming  that  geometry  specific
partical  scans  can  can be  conducted  and will
cost less.

In  summary  it  is  unlikely  that  insurance
companies  or  other  3rd  party  payers  would
adopt  this  universal  MRI scan,  pre  diagnosis
approach to perform analysis using the outlined
method in this paper. Rather litigation costs of
the  misdiagnoses  may  cost  less  than
universalizing   MRI  scans  at  entry  point.  In
fact, neurological diseases such as Alzheimer’s
and  Parkinson’s  can  be  diagnosed  through
paper cognitive assessment. In such cases MRI
scans serve as confirmation of diagnosis, not as
a  method  of  diagnosis.  As  MRI  scans  serve
often  as  confirmation,  comparing  MRI  scans
with  other  unhealthy  scans  of  the  disease  at
question will be more effective.

Conclusion
A convolutional autoencoder machine learning
model was developed to differentiate between
MRI brain scans of healthy persons and those
with neurological diseases such as Alzheimer’s
disease, Pituitary tumors, Glioma tumors, and
Meningioma tumors. The Encoder and Decoder
comprising the convolutional autoencoder were
implemented  in  a  symmetric  multi-layered
network  along  with  MaxPooling  and
UpSampling  to  capture  important  features  of
the images. Trained on only healthy MRI scans
of the brain, the model  was able to detect the
presence of any disease in the brain through a
Kernel Density Estimation (KDE) score. Using
thresholds  based  on  KDE  score,  this  study
achieved a  0  false  negative,  100%  accurate
result  for  detecting  unhealthy  brains  in  MRI
scans.  This approach  may  be  applied to  any
medical  image  to decrease  the  number  of
undiagnosed  patients  and  to  reduce  errors  in
diagnosis.
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