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Overview



Epilepsy Overview

Epilepsy: a chronic disorder that occurs when a person experiences two or more seizures

Goal: Use electronic patterns in the brain to detect seizures.

Generalized Focal




Overview

EEG (electroencephalogram) - electrophysiological technique for recording
electrical activity in the human brain

Goal: Use EEGs to find seizure-specific patterns in patients.
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An electroencephalogram (EEG)




UCI Epileptic Seizure Recognition Data Set

Y No seizures: 80%

Y Seizures: 20%



First Approaches



First Approaches

K-Nearest Neighbors
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First Approaches

Logistic Regression

Accuracy: .615
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First Approaches

Salary Is between
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Decision Tree Classifier
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Next Models [CNNI



Feature maps

Next models (CNN)

Convolutions Subsampling Convolutions Subsampling  Fully connected

CNN'’s are meant for image classification
Our CNN inputs images of EEG Spectrograms
Convolutional Layers- sliding window that identifies features

Max Pooling Layers- lowers resolution, reduces complexity



Test Accuracy: 90%



Final Models [RNNI]



What is an RNN?




RNN v. NN
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Other Examples

English Sentence Vector

French Sentence
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Sequence-to-Vector Vector-to-Sequence

Allows longer (LSTM-RNN) (LSTM-RNN)

sentences
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the search
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Fed to a Recurrent
Neural Network

Google search



Test Accuracy: 78%



Final Models [LSTMI



Final models (Long Short Term Memory, LSTM)
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Cell Structure
Sources:

https://stackoverflow.com/questions/50488427/what-is-the-architectu
re-behind-the-keras-Istm-cell (Left)
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-
neural-networks (Right)
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https://stackoverflow.com/questions/50488427/what-is-the-architecture-behind-the-keras-lstm-cell
https://stackoverflow.com/questions/50488427/what-is-the-architecture-behind-the-keras-lstm-cell
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks
https://stanford.edu/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networks

Test Accuracy: 89%



Exploring Different Structures

many to one many to many
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Source:
https://stackoverflow.com/questions/43034960/many-to-one-and-many-to-many-Istm-examples-in-keras



https://stackoverflow.com/questions/43034960/many-to-one-and-many-to-many-lstm-examples-in-keras

Many-to-One Prediction

Sequence Processing with LSTM
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Many-to-Many Prediction

EEG Sequence Input
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Prediction Visualization
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Ethics

% Patient Privacy
% Should adoctor trust an Al model’s
decisions?

% If thereis a misdiagnosis by the Al model,

who should take the responsibility?
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Conclusion

% The Final Model

% Further improvement

% Uses for the Future




Thank you for
listening!



Sources

1. https://www.hopkinsmedicine.org/health/conditions-and-diseases/epilepsy/evaluation-of-a-firstti
me-seizure

2.  https://www.epilepsyqueensland.com.au/about-epilepsy-epilepsy-gueensland/seizure-types/wha
t-are-the-different-types-of-seizures

3.  https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875



https://www.hopkinsmedicine.org/health/conditions-and-diseases/epilepsy/evaluation-of-a-firsttime-seizure
https://www.hopkinsmedicine.org/health/conditions-and-diseases/epilepsy/evaluation-of-a-firsttime-seizure
https://www.epilepsyqueensland.com.au/about-epilepsy-epilepsy-queensland/seizure-types/what-are-the-different-types-of-seizures
https://www.epilepsyqueensland.com.au/about-epilepsy-epilepsy-queensland/seizure-types/what-are-the-different-types-of-seizures
https://www.mayoclinic.org/tests-procedures/eeg/about/pac-20393875

