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a b s t r a c t

This paper introduces manufacturing constraints into a recently developed evolutionary algorithm for
shape optimisation of CFS profiles. The algorithm is referred to as “self-shape optimisation” and uses
Genetic Algorithm (GA) together with the Augmented Lagrangian (AL) method to avoid ill-conditioned
problems. Simple manufacturing rules derived from the limitations of current cold-forming processes, i.e.
a limited ability to form continuously curved surfaces without discrete bends, are described in the paper
and incorporated into the algorithm. The Hough transform is used to detect straight lines and transform
arbitrarily drawn cross-sections into manufacturable ones. Firstly, the algorithm is verified against a
known optimisation problem and found to accurately converge to a manufacturable optimum solution.
Secondly, the algorithm is applied to singly-symmetric CFS columns each of which is subject to an axial
compressive load of 75kN and has a uniform wall thickness of 1.2 mm. The strength of the columns is
evaluated by the Direct Strength Method (DSM) and all buckling modes are considered. Various column
lengths (from 500 mm to 3000 mm) and numbers of roll-forming bends were investigated. The opti-
mised cross-sections are presented and discussed.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cold-formed steel (CFS) profiles are usually an attractive and
cost-effective building structural solution relative to more “con-
ventional” building materials, such as hot-rolled steel and con-
crete. They are thin-walled structural members with a high ca-
pacity-to-weight ratio [1] and can be pre-fabricated off-site and
readily installed on-site.

The main advantage of CFS members lies in their manufactur-
ing processes that allow the formation of almost any cross-sec-
tional shape at room temperature. The profiles are typically
formed by bending coils of thin steel sheets (up to 6 mm thick)
with a finite number of rollers (roll-forming) or die blocks (brake-
pressing). However, despite this flexibility, the use of CFS sections
has been mainly restricted to Cee, Zed and Sigma cross-sectional
shapes, with or without stiffeners, as shown in Fig. 1. As the cross-
sectional shape controls the strength of CFS members, there is a
real potential to eventually discover new optimised cross-sectional
shapes tailored to specific applications, such as purlins, girts and
studs for buildings, and uprights for storage racks for instance.
Such discoveries will enhance the competitiveness of CFS
.

structures and are now facilitated by the development of a new
structural design method, the Direct Strength Method (DSM) [2],
which allows any cross-sectional shapes with the same degree of
complexity to be designed.

This paper aims at incorporating manufacturing constraints for
optimising the cross-sectional shape of CFS columns by minimis-
ing the cross-sectional area for a given design axial compressive
load. Optimisation for specific applications is not considered in the
present study, and will be investigated in the future. Simple roll-
forming (or brake-pressing) manufacturing rules are defined and
incorporated into the recently developed “self-shape optimisation”
algorithm [3,4] as manufacturing constraints. The specificity of the
algorithm is briefly described in the paper. The Hough transform,
used to detect straight lines and transform non-manufacturable
cross-sections into manufacturable ones, is explained herein. The
algorithm is verified against a known optimisation problem, being
the optimisation of the cross-sectional shape of a doubly-sym-
metric closed thin-walled profile for given second moments of
area. The verified algorithm is then used to optimise simply-sup-
ported, singly-symmetric and free-to-warp open-section CFS col-
umns. The optimised manufacturable cross-sections are presented
and discussed in the paper. For comparison purposes, the algo-
rithm is also run to obtain non-manufacturable cross-sections.
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Fig. 1. Conventional CFS profiles with or without stiffeners, (a) Cee, (b) Z and (c)
Σ-sections.
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2. Background

2.1. General

One of the early studies on shape optimisation of CFS profiles is
attributed to Liu et al. [5]. A knowledge-based global optimisation
algorithm, aiming at optimising the capacity of CFS columns
manufactured from coils of set width and thickness, was used.
Leng et al. [6] optimised the cross-sectional shapes of CFS open
columns using three different optimisation algorithms, namely
gradient-based steepest descent method, Genetic Algorithm (GA)
and Simulated Annealing (SA). Sections having a wall thickness of
1 mm and a perimeter of 280 mm were divided into 21 elements
and optimised. “Open circular” and “S” cross-sections were found.
Moharrami et al. [7] improved the study in [6] by introducing
various types of boundary conditions into the algorithm. Gilbert
et al. [3] proposed a GA-based Augmented Lagrangian (AL) con-
straint-handling shape optimisation method for CFS profiles. The
accuracy of the algorithm was verified against an optimisation
problem for which an analytical solution is known. Gilbert et al. [4]
then applied the verified algorithm to optimise the cross-sectional
shape of CFS simply-supported, singly-symmetric and open-sec-
tion columns, subjected to a certain axial compressive load. A set
of rules to accurately determine the local and distortional elastic
buckling stresses from the Finite Strip signature curves was also
developed.

Manufacturing constraints were first introduced into shape
optimisation algorithms for CFS profiles by Leng et al. [8]. The
authors introduced partial manufacturing and construction (geo-
metric end uses) constraints using an SA algorithm. The con-
straints were implemented by defining (i) flat “horizontal” flanges,
(ii) minimum dimensions for the “vertical” web, flanges and lips,
(iii) allowance passage for utilities between lips and (iv) no over-
lapping elements in the cross-sections. The study was improved in
Leng et al. [9] by introducing a limited number of rollers (re-
presenting the number of discrete bends between flat segments,
see Section 2.3). These enhancements resulted in manufacturable
cross-sections with improved capacities when compared to con-
ventional Cee-sections of identical cross-sectional area. Leng et al.
[10] also presented optimised cross-sectional shapes, i.e. singly-
symmetric “Cee” and “Sigma” and anti-symmetric “S”, with both
manufacturing and construction constraints. Franco et al. [11]
proposed CFS shape grammar rules, with an “alphabet”, for shape
optimisation of CFS profiles. Manufacturing constraints, with given
stiffener sizes, were intrinsic to the shape grammar resulting in
manufacturable cross-sections. Genetic Algorithm (GA) was used
in [11] as a search algorithm.

2.2. Present shape optimisation algorithm

The algorithm referred to as “self-shape optimisation” and de-
veloped in [3,4] is used in the current study. The method rigor-
ously explores the natural evolution process and the latent po-
tential of GA in an innovative way. GA was initially developed by
Holland [12] and is an adaptive heuristic search algorithm that
mimics the Darwin's evolutionary survival of the fittest theory. It is
less susceptible to be self-trapped into local optima, and is able to
handle non-linear problems. The classical GA principles can be
found in Adeli and Sarma [13].

GA is an unconstrained optimisation method, and constrained
problems are transformed into unconstrained problems by using a
fitness function f expressed as,
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where f(x) is the objective function, x is the vector of design
variables, gi(x) and hi(x) are the ith inequality and equality con-
straint violations (n inequality and k-n equality constraints), re-
spectively, and αi and βi are penalty factors. The algorithm aims at
minimising f.

In theory, the penalty factors in Eq. (1) increase when the
constraint violations decrease and convergence can be facilitated
by increasing the penalty factors. Nevertheless, large values of the
penalty factors lead to ill-conditioned problems or slow down the
algorithm [14,15]. To avoid the problem of having penalty factors
increasing to infinity, the Augmented Lagrangian (AL) constraint-
handling method for GA proposed by Adeli and Cheng [14] is used
in this research to solve the problem. The fitness function f is then
re-arranged as,
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where γi and mi are penalty function coefficients and real para-
meters associated with the ith inequality and equality constraints,
respectively. γi and mi are automatically updated at each GA gen-
eration but are kept to finite values [14].

The main characteristics of the “self-shape optimisation” prin-
ciple [3] are summarised below:

� The initial population in the GA is generated by arbitrarily
drawing cross-sections using self-avoiding random walks in a
defined design space. These random walks enable cross-sec-
tions to be generated without presumptions of their shapes.

� A floating-point type GA is used, implying that a cross-section is
defined by floating-point numbers representing the coordinates
of the points constituting the cross-section.

� Cross-over and mutation operators are performed in relation to
the design space but not to the floating-point variables. The
cross-over operator allows for the merging of two cross-sections
to generate off-springs bearing similarity in cross-sectional
shapes to the two parents. In the mutation operator, a part of
the cross-section is deleted and redrawn.

2.3. Manufacturing constraints

2.3.1. Traditional manufacturing processes
CFS profiles are typically mass-produced by two main cold-

forming processes, referred to as “roll-forming” and “brake-press-
ing”. Both processes involve bending a flat sheet of steel to a de-
sired cross-sectional shape. In roll-forming operations, as shown in
Fig. 2(a), the sheet is gradually rolled to a desired cross-sectional
shape through successive rollers. This continuous manufacturing
process allows long profiles to be manufactured. In brake-pressing
operations, as shown in Fig. 2(b), the sheet is repetitively pressed
between differently shaped brake punches and die blocks to bend
it to the desired cross-sectional shape. Brake-pressing is limited in
manufacturing long members. Both manufacturing processes can
only bend the flat sheet of metal at discrete bending locations,



Fig. 2. Cold-forming processes (Courtesy of CustomPartNet Inc.).

Fig. 3. Manufacturing rules.
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leaving flat (straight) segments between bends. This limitation
needs to be considered in the shape optimisation algorithms to
obtain manufacturable cross-sections.

2.3.2. Simple manufacturing rules
Simple manufacturing rules have been defined herein based on

the basic roll-forming constraints encountered by a European steel
storage rack manufacturer. They consist of three main rules:

(1) The minimum internal bending radius r to steel sheet thick-
ness t ratio is 1.0 (Fig. 3);

(2) The minimum length of a single flat segment is 10 mm (Fig. 3);
(3) The number of flat segments per cross-section cannot exceed

20 (i.e. a maximum number of 19 bends per open cross-sec-
tion and 10 flat segments per half cross-section).

In the present study, Rule (1) is neglected since it does not
affect the basic shape of the optimised manufacturable cross-
section, and only Rules (2) and (3) are considered. A nil internal
bending radius (i.e. perfect bends) is assumed to simplify the al-
gorithm. Actual bending radii can be added to the optimised cross-
section prior to manufacture.

2.3.3. Hough transform
The Hough transform is used in this paper to detect straight

lines, i.e. flat manufacturable segments, in the cross-section. This
transform is commonly used in image processing to detect regular
shapes, such as straight lines, circles and ellipses, from the discrete
points forming the image [16].

The method consists of defining a “parametric space” in which
each straight line in the image is represented by its orientation
angle θ, with respect to the Cartesian x-axis, and its normal dis-
tance r to the origin, as shown in Fig. 4(a). If θ is restricted to the
interval [0°; 180°], each straight line is represented by an unique
coordinate (r, θ) in the parametric space. An image point of co-
ordinate (xi, yi) in the Cartesian x-y space is transformed into a
sinusoidal curve in the parametric r-θ space as

θ θ= + ( )r x ycos sin 3i i

Sinusoidal curves having common intersecting points have
collinear (aligned) points in the image. This is illustrated in Fig. 4
(b) with 4 points aligned on the line of coordinate (r¼10 mm,
θ¼60°) in the parametric space.

For image processing purposes, an array referred to as the ac-
cumulator array (or accumulator matrix), is created in the dis-
cretised parametric space. The columns of the array correspond to
the increasing values of θ, at Δθ intervals, and the lines to in-
creasing values of r, at Δr intervals. Aligned image points are de-
tected as,

� Step 1: Set θ¼0°.
� Step 2: For each image point (i) calculate its r value from Eq. (3)

for the set value of θ, (ii) calculate the closest discrete r value
matching the lines of the accumulator array and (iii) add the
point reference number to the corresponding cell in the
accumulator array.

� Step 3: Set θ¼θþΔθ. If θZ180° go to Step 4, else go to Step 2.
� Step 4: All points sharing the same cell in the accumulator array

are considered aligned.

The choice of the intervalsΔθ andΔr influences the ability and
accuracy of the Hough transform in detecting straight lines. The
smallerΔθ, the more refined the search space. A larger value ofΔr
(wider corridor) represents a less stringent alignment tolerance, as
illustrated in Fig. 5, where two values of Δr are shown. A larger
Δr1 results in all the four points in Fig. 5 being aligned by the
Hough transform. A smaller Δr2 results in only two points being
aligned by the Hough transform.

2.3.4. Manufacturing constraints in the GA
The manufacturing constraints are introduced into the fitness

function (see Eq. (1)) as an equality constraint halign, expressed as,

ω= −
( )

h
nbAligned
nbElement

1
4

align



Fig. 4. Hough transform from Cartesian space to Hough parametric space.

Fig. 5. Alignment tolerance for Hough transform.

Fig. 6. Optimum octagon, only a quarter section shown.

Table 1
AL penalty function coefficient γalign and associated weight ω selected for para-
metric study.

Combination γalign

0.01 0.10 1.00

ω 0.3 (1) (4) (7)
0.5 (2) (5) (8)
0.7 (3) (6) (9)

Fig. 7. Average fitness f for parametric study of AL penalty function coefficient γalign
and weight ω.
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where ω is a weight associated with the constraint, nbElement is
the total number of elements per half cross-section and nbAligned
represents the number of aligned elements composed of the
longest non-concurrent flat segments per half cross-section. The
number of non-concurrent flat segments is taken to Nmax if there
are more than Nmax non-concurrent flat segments per half cross-
section or to the actual number of non-concurrent flat segments
otherwise. Nmax corresponds to a maximum number of flat seg-
ments per half cross-section set by the manufacturer, with Nmax

less than or equal to the maximum possible number of flat seg-
ments defined in Rule (3) outlined in Section 2.3.2. In the algo-
rithm, a flat segment is determined from the Hough transform as
consecutive aligned cross-sectional elements of total length equal
to or greater than the minimum manufacturable length as defined
in Rule (2) in Section 2.3.2. If the cross-section is made of less than
Nmax flat segments, the constraint is considered satisfied and halign
¼0.
3. Validation

3.1. Optimisation problem

A similar optimisation problem to the one used in [3], for which
an analytical solution exists, is used herein to verify the ability and



Table 2
Average results over 10 runs for parametric study of γalign and ω.

Combination Cross-sectional area Second moment of area Ix Second moment of area Iy nbAligned/nbElement

As (mm2) Errora (%) CoV (%) Errorb (%) CoV (%) Errorb (%) CoV (%) Error (%) CoV (%)

(1) 132.01 �0.4 0.5 �0.1 3.7 �0.2 2.1 �1.1 3.4
(2) 132.32 �0.2 0.6 0.5 2.3 �0.3 1.6 0.0 0.0
(3) 132.36 �0.1 0.6 0.5 2.0 0.4 0.8 0.0 0.0
(4) 132.13 �0.3 0.4 0.1 0.6 0.4 0.6 0.0 0.0
(5) 131.96 �0.4 0.2 0.1 0.2 0.1 0.3 0.0 0.0
(6) 132.20 �0.3 0.3 0.0 0.2 0.4 0.6 0.0 0.0
(7) 132.88 0.2 0.3 0.2 0.7 0.6 1.0 0.0 0.0
(8) 133.12 0.4 0.9 1.4 4.0 0.2 0.5 0.0 0.0
(9) 133.71 0.9 0.6 1.0 2.5 0.6 1.1 0.0 0.0

Note: the negative error represents the optimised results are less than the optimum octagon's
a Relative error when compared to Ao¼132.55 mm2 of the optimum octagon.
b Relative error when compared to Ixt¼ Iyt are 28,043.3 mm4 of the optimum octagon.

Table 3
Alignment tolerance Δr selected for parametric
study.

Δr (mm) Δr/Lele

0.5t 0.03
1.0t 0.06
1.5t 0.09
2.0t 0.12

Fig. 8. Average fitness f for parametric study of alignment tolerance Δr.
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accuracy of the algorithm in optimising manufacturable cross-
sectional columns. It consists of minimising the cross-sectional
area As of a thin-walled bisymmetric closed cross-section for given
Table 4
Average results over 10 runs for parametric study of Δr.

Case of Δr Cross-sectional area Second moment of area

As (mm2) Errora (%) CoV (%) Errorb (%) CoV

0.5t 131.96 �0.4 0.2 0.1 0.2
1.0t 131.06 �1.1 0.1 �0.1 0.2
1.5t 131.23 �1.0 0.1 0.2 0.4
2.0t 130.43 �1.6 0.0 0.0 0.1

Note: the negative error represents the optimised results are less than the optimum oc
a Relative error when compared to Ao¼132.55 mm2 of the optimum octagon.
b Relative error when compared to Ixt¼ Iyt are 28,043.3 mm4 of the optimum octago
second moments of area, Ixt and Iyt, about the two axes of sym-
metry. Ragnedda and Serra [17] indicated that, when Ixt equals Iyt,
the optimised cross-section is a circle and therefore a regular
polygon of n sides if the cross-section is manufactured with n flat
segments.

A regular octagon (n¼8) with apothem a (at mid-wall thick-
ness) of 20 mm and wall thickness t of 1 mm is used herein to
verify the algorithm. The cross-sectional area of the octagon Ao is
132.55 mm2 and the length Lside of one side for the octagon is
therefore 16.6 mm. Its second moments of area Ixt¼ Iyt are
28,043.3 mm4. As the problem is bisymmetric, only a quarter of
the cross-section in Fig. 6 is optimised herein and the maximum
number of flat segments Nmax is therefore set to 2. The fitness
function f derived from (Eqs. (1) and 4) is expressed as,

α α
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where Ix and Iy are the calculated second moments of area of the
cross-section, and αx, αy and αalign are penalty factors associated
with each constraint. In Eq. (5), the constraints on the given sec-
ond moments of area are expressed as inequality constraints. In
other words, the algorithm is not penalised if IxZ Ixt or IyZ Iyt. This
was found to have significantly improved convergence.

In Fig. 6, the circle with the same second moment of area and
wall thickness as the octagon is also shown for comparison. The
cross-sectional area Ac of the circle is 130.31 mm2, i.e. 1.7% less
than that of the manufacturable octagon.

The AL fitness function used in the algorithm and derived from
(Eqs. (2) and 5) is given as,
Ix Second moment of area Iy nbAligned/nbElement

(%) Errorb (%) CoV (%) Error (%) CoV (%)

0.1 0.3 0.0 0.0
0.1 0.1 0.0 0.0
0.1 0.3 0.0 0.0
0.0 0.1 0.0 0.0

tagon's.

n.



(a) Δr = 0.5t (b) Δr = 1.0t (c) Δr = 1.5t (d) Δr = 2.0t
As = 131.7 mm2 As = 131.0 mm2 As = 130.9 mm2 As = 130.4 mm2

Ix = 28096.6 mm4 Ix = 27989.9 mm4 Ix = 28011.2 mm4 Ix = 28036.7 mm4

Iy = 28076.7 mm4 Iy = 27984.8mm4 Iy = 28019.4 mm4 Iy = 27999.2 mm4

Fig. 9. Fittest optimised cross-sections at the last generation (150th) for all cases of Δr from (a) to (d).

Fig. 10. Optimised cross-sections at the last generation (150th), for the second fittest (a), third fittest (b), second least fit (c) and least fit (d) cross-sections out of 10 runs for
the case Δr¼0.5t.

Fig. 11. Optimisation problem.
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where γx, γy and γalign are the AL penalty function coefficients, mx, m

y and malign are the real parameters associated with each penalty
function coefficient. Gilbert et al. [3] investigated the appropriate
initial values for γx and γy, and their recommendation of γx
¼γy¼2.0 is used herein. For initial values of γx and γy less than 0.5,
the algorithm tends to select cross-sections with a small number
of elements as the fittest ones. The appropriate initial value of
γalign, associated with ω, is investigated in Section 3.3.1. Initial
values of μx¼μy¼μalign¼0 are used, as recommended by Bele-
gundu and Arorat [18].

3.2. Other parameters used

An AL penalty increasing constant β of 1.05 and a convergence
rate ρ of 1.5, as recommended in [3], are used. A value of β greater
than 1.5 forces the algorithm to converge prematurely [3]. The
design space is set to 40 mm � 40 mm [3] and the maximum
number of generations to 150 per run. Ten runs are performed to
verify the robustness of the algorithm. The number of individuals
is set to 700 per generation and the cross-sections are drawn with
short elements of nominal length of 2 mm (see [3] for more de-
tails). The probabilities of cross-over and mutation operations in
the GA are equal to 80% and 1%, respectively, as used in [3].

3.3. Parametric studies and results

3.3.1. AL penalty function coefficient γalign and associated weight ω
In order to determine the appropriate initial value for γalign and

constant value for weight ω, nine different combinations are



Fig. 12. Simplified flowchart of the algorithm.

Table 5
Alignment tolerance Δr proposed for various Nmax and column length (t¼1.2 mm).

500 mm Column 1500 mm Column 3000 mm Column

Nmax Δr (mm) Lmax (mm) Δr/Lmax Nmax Δr (mm) Lmax (mm) Δr/Lmax Nmax Δr (mm) Lmax (mm) Δr/Lmax

3 1.5t 40 0.045 3 2.5t 50 0.060 3 4.0t 65 0.074
4 1.3t 32 0.049 4 2.5t 44 0.068 4 3.7t 60 0.074
5 1.0t 32 0.038 5 2.0t 36 0.067 5 3.5t 46 0.091
6 1.0t 32 0.038 6 1.5t 36 0.050 6 3.5t 46 0.091
– – – – 7 1.5t 36 0.050 7 3.0t 40 0.090
– – – – – – – – 8 2.5t 36 0.083
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investigated, as shown in Table 1. The value of γalign and ω are
selected in the intervals [0, 1]. The alignment tolerance and step of
orientation angle in the Hough transform are set to Δr¼0.5t and
Δθ¼0.5°, respectively, in this section.

Fig. 7 illustrates the average fitness function f given in Eq. (5)
over 10 runs, with α¼10, for all studied combinations of γalign and
ω. The convergence rate improves as γalign increases from 0.01 to
1.0. The algorithm tends not to converge when γalign is too small
(equal to 0.01), as the weight of the alignment penalty function in
the AL fitness function in Eq. (6) is too small when compared to
the objective function. The algorithm, on the other hand, is able to
converge to a solution for the remaining studied combinations
(4) to (9).

Table 2 compares the average results over 10 runs to the known
optimum solution for all studied combinations. A negative sign in
Table 2 means that the optimised results are less than the opti-
mum solution. Combination (1), i.e. γalign¼0.01 and ω¼0.3, ex-
periences incomplete alignment with a relative alignment error of
�1.1%, while all the remaining combinations allow complete
alignment. The average second moments of area are similar to the
optimum ones for all combinations within a maximum average
error of 1.4% (combination (8)). Yet, the coefficient of variation
(CoV) on the second moments of area is minimum for γalign¼0.1
(combination (4) to (6)). The minimum average cross-sectional
area of 131.96 mm2 is found for combination (5) and is 0.4% less
than the one of the optimum octagon, therefore implying this
combination represents a more optimal solution. Combination (5),
i.e. γalign¼0.1 and ω¼0.5, is therefore chosen for further analysis
in this study.
3.3.2. Alignment tolerance Δr
Table 3 shows the values of Δr and corresponding alignment

tolerance ratios Δr/Lside analysed to find the appropriate value of
the alignment tolerance to ensure convergence and accuracy of the
algorithm. Δθ is kept constant at 0.5°.

Similar to Fig. 7, Fig. 8 plots the average fitness function f over
10 runs for all studied cases ofΔr. The algorithm always converges
to a solution. The larger the alignment tolerance Δr, the faster the
convergence rate is, with Δr¼2.0t converging at the 50th gen-
eration approximately. The algorithm converges in about 100
generations for Δr¼0.5t.

Table 4 summarises the average results for all studied cases of
Δr. The algorithm always satisfies the alignment criteria and
converges to consistent solutions with small CoVs (within 0.5%) for
all cases. In the case Δr¼2.0t, the average relative errors on the
cross-sectional area and second moments of area about the two
axes of symmetry are �1.6% (CoV¼0.0%) and 0.0% (CoV¼0.1%),
respectively. This average cross-sectional area (130.43 mm2) is
closer to (less than 0.1%) the absolute optimum circle cross-sec-
tional area than the targeted octagon. To illustrate, Fig. 9 plots the
fittest optimised cross-sections, with the wall thickness of 1 mm
shown, at the 150th (final) generation for all cases of Δr. The
larger the alignment tolerance is, the closer the cross-section to
the absolute optimum circle is. A “circle” like shape is mainly ob-
served for the case Δr¼2.0t, while an “octagon” like shape is
mainly observed for the other cases. Fig. 10 shows the second,
third, second least and least fit optimised cross-sections, out of ten
runs, for the stringiest alignment tolerance, Δr¼0.5t. The fittest
cross-section for this case is given in Fig. 9(a). All cross-sections



Fig. 13. Average fitness f for the (a) 500 mm, (b) 1500 mm and (c) 3000 mm long
columns.
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can converge to a consistent “octagon” shape outlining the ro-
bustness of the algorithm.

Based on the above results and as a simple rule, an alignment
tolerance ratio Δr/Lside greater than 0.03 but no more than 0.1 is
used in the Hough transform through this research, as a compro-
mise between accuracy and convergence rate. Alignment tolerance
ratios Δr/Lside less than 0.03 would allow more optimal shapes, i.e.
closer to the octagon, but will require a large number of genera-
tions to be analysed and may cause convergence issues due to a
stringent alignment tolerance.
4. Optimisation of CFS columns

4.1. Optimisation problem

The validated algorithm is applied to minimise the cross-sec-
tional area As of manufacturable CFS columns subjected to an axial
compressive force N* of 75 kN. The columns are simply-supported,
symmetric and free to warp, with a uniform wall thickness t of
1.2 mm. Column lengths of 500 mm (short), 1500 mm (inter-
mediate) and 3000 mm (long) are investigated. The yield stress fy
of the column is 450 MPa, the Young's modulus E is 200 GPa and
the shear modulus G is 80 GPa. The optimisation problem is illu-
strated in Fig. 11. The algorithm is also run without considering the
manufacturing constraints for comparison purposes.

The constrained optimisation problem is transformed into an
unconstrained problem suitable for the GA and involves mini-
mising the fitness function f,
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where the first term in the equation represents the objective.
Asquash is the squash area, defined as the lower bound cross-sec-
tional area of the profile:

=
*

( )
A

N
f 8

squash
y

The second term in Eq. (7) represents the constraint on the
axial capacity and is expressed as an inequality constraint. In other
words, the cross-section is not penalised if its capacity exceeds the
targeted capacity of 75 kN. Nc is the nominal member capacity in
compression, calculated from the Australian standard AS4600 [19]
(see Section 3.1), and α is the penalty factor associated with the
capacity constraint. The last term represents the manufacturing
constraint and is expressed as an equality constraint (see Section
2.3.4). Nmax is the maximum possible number of flat segments per
half cross-section set by the manufacturer, but is less than the
upper limit of flat segments defined in Rule (3) in Section 2.3.2. In
the algorithm, a flat segment is determined from the Hough
transform as consecutive aligned cross-sectional elements of a
total length equal to or greater than the minimum manufacturable
length (10 mm), defined in Rule (2) in Section 2.3.2. If the half
cross-section is made of less than Nmax flat segments, the con-
straint is considered satisfied.

The AL method for GA proposed by Adeli and Cheng [14] is also
used herein to handle the axial capacity and manufacturing con-
straints. The fitness function f is then expressed as,
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where γ and γalign are the penalty function coefficients, and m and
malign are the real parameters associated with each penalty function
coefficient. From the parametric study in Section 3 and [3], initial
values of γ¼2.0, γalign¼0.1, μ¼μalign¼0 andω¼0.5 are used. An AL
penalty increasing constant β of 1.05 and a convergence rate ρ of
1.5 are also used [3].

4.2. Column capacity

4.2.1. Design method for CFS columns
Similar to [4], the DSM [2] as detailed in Section 7 of the

Australian Standard AS4600 [19] is used in this research to



Table 6
Average results over 10 runs for the 500 mm long columns.

Nmax Cross-sectional area Nominal member capacity Ultimate compressive stress Alignment

As (mm2) CoV (%) Nc (kN) Errorb (%) CoV (%) Nc/As (MPa) Error (%) CoV (%)

3 196.8 0.64 74.99 0.06 0.08 381.0 0.00 0.00
4 195.4 0.33 75.01 0.04 0.05 383.9 0.00 0.00
5 196.1 0.63 74.98 0.05 0.07 382.4 0.00 0.00
6 195.6 0.74 75.00 0.03 0.04 383.4 0.00 0.00
1a 194.7 0.48 75.00 0.16 0.19 385.2 – –

a Algorithm ran without manufacturing constraints (non-manufacturable cross-section).
b Absolute error when compared to N*¼75k N.

Table 7
Average results over 10 runs for the 1500 mm long columns.

Nmax Cross-sectional area Nominal member capacity Ultimate compressive stress Alignment

As (mm2) CoV (%) Nc (kN) Errorb (%) CoV (%) Nc/As (MPa) Error (%) CoV (%)

3 297.0 0.91 75.30 0.40 0.49 253.6 0.0 0.00
4 292.1 0.56 74.97 0.23 0.29 256.7 0.0 0.00
5 290.4 0.27 74.99 0.12 0.13 258.5 0.0 0.00
6 289.6 0.35 75.07 0.06 0.06 259.0 0.0 0.00
7 289.1 0.31 75.01 0.04 0.05 259.4 0.0 0.00
1a 288.1 0.26 74.97 0.16 0.20 260.2 – –

a Algorithm ran without manufacturing constraints (non-manufacturable cross-section).
b Absolute error when compared to N*¼75 kN.

Table 8
Average results over 10 runs for the 3000 mm long columns.

Nmax Cross-sectional area Nominal member capacity Ultimate compressive stress Alignment

As (mm2) CoV (%) Nc (kN) Errorb (%) CoV (%) Nc/As (MPa) Error (%) CoV (%)

3 444.7 0.64 75.37 0.50 0.35 169.5 0.0 0.00
4 440.3 0.32 75.30 0.40 0.32 171.0 0.0 0.00
5 436.5 0.20 75.15 0.20 0.30 172.2 0.0 0.00
6 435.8 0.23 75.10 0.13 0.34 172.3 0.0 0.00
7 434.3 0.19 75.03 0.04 0.16 172.8 0.0 0.00
8 434.5 0.29 75.02 0.02 0.08 172.7 0.0 0.00
1a 435.3 0.35 75.16 0.21 0.54 172.7 – –

a Algorithm ran without manufacturing constraints (non-manufacturable cross-section).
b Absolute error when compared to N*¼75 kN.

Fig. 14. Optimised cross-sections for the 500 mm long columns and the non-manufacturable case, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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Fig. 15. Optimised cross-sections for the 500 mm long columns and Nmax¼3, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 16. Optimised cross-sections for the 500 mm long columns and Nmax¼4, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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calculate the nominal member capacity in compression, Nc of the
cross-sections given as,

( )= ( )N N N Nmin , , 10c c cl cde

where Nce, Ncl and Ncd are the nominal axial compressive capa-
cities for global, local and distortional buckling, respectively (see
[19] for more details).
4.2.2. Determination of the elastic buckling stresses
In this study, the elastic global buckling stress foc of the cross-

sections is estimated from Timoshenko's buckling theory, as given
in Clause 3.4.3 for singly-symmetric open cross-section of the
Australian Standard AS4600 [19]. The rules developed in [4] to
automatically estimate the elastic local and distortional buckling
stresses fol and fod, respectively, from the Finite Strip Method (FSM)
[20] and the constrained Finite Strip Method (cFSM) [21] signature
curves, are used. The open source software CUFSM [22] is used to
perform the Finite Strip analyses.
4.3. Other parameters

To study the influence of the maximum number of discrete
bends on the optimised cross-sectional shape, various maximum
numbers of flat segments Nmax per half cross-section are in-
vestigated. The number of investigated flat segments Nmax con-
sidered for each column length is given in Table 5. Δr is adjusted
to the value of Nmax and column lengths according to the results
obtained from Section 3.3.2. Specifically, the maximum length of
the cross-sectional elements Lmax for the optimised solutions was
first estimated for each combination of Nmax and column length by
pre-running the algorithm with a large alignment tolerance. Δr
was then chosen for each case to satisfy Δr/ Lmax within the in-
terval [0.03, 0.1]. The value of Δr for each studied case is given in
Table 5. The step of orientation angle Δθ is set to 1° for all cases.

In view of the parameters of the GA, the design space is set to
100 mm�100 mm [3] and the maximum number of generations
per run to 150 for manufacturable cross-sections and 80 [4] for
non-manufacturable ones. 10 runs are performed. The number of
individuals per generation is set to 500 and the cross-sections are



Fig. 17. Optimised cross-sections for the 500 mm long columns and Nmax¼5, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 18. Optimised cross-sections for the 500 mm long columns and Nmax¼6, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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arbitrarily drawn with short elements of nominal length of 4 mm
[3]. The cross-over and mutation operators for singly-symmetric
cross-sections detailed in [4] apply. The probabilities of the cross-
over and mutation operators in the GA are equal to 80% and 1%,
respectively [3].

To improve computation time when elements are aligned, i.e.
forming a flat segment, only the coordinates of the flat segments
are entered into CUFSM [22]. However, for accuracy of the Finite
Strip analysis [10], flat segments between 10 mm and 15 mm in
length are divided into two segments of equal length, and flat
segments longer than 15 mm are divided into three segments of
equal length.

A simplified flowchart is presented in Fig. 12 showing that half
cross-sections are used in the GA and entire cross-sections are
only formed for elastic bucking analyses in CUFSM [22]. The de-
tailed flowchart of the algorithm is shown in [3]. While singly-
symmetric and/or anti-symmetric sections can be readily in-
corporated into the algorithm, only singly-symmetric columns are
optimised in this study.
4.4. Results and discussions

4.4.1. Convergence
Fig. 13 shows the average fitness functions f given in Eq. (7)

times the squash area Asquash over 10 runs for 500 mm (Fig. 13(a)),
1500 mm (Fig. 13(b)) and 3000 mm (Fig. 13(c)) long columns. In
Fig. 13, the penalty factor in Eq. (7) is set to α¼10. The algorithm
always converges to an optimised solution. Typically, the higher
Nmax, the fastest the convergence is, likely because the length of
the flat segments of the optimised cross-sections increases when
Nmax decreases. The algorithm always converges the fastest for the
non-manufacturable cases. The algorithm approaches an opti-
mised solution at about the 100th generation for all manufactur-
able cases of the 500 mm long columns (Fig. 13(a)), Nmax¼5 to 7 of
the 1500 mm long columns (Fig. 13(b)) and Nmax¼5 to 8 of the
3000 mm long columns (Fig. 13(c)). An optimum solution is ap-
proached after the 140th generation for the remaining cases. For
the non-manufacturable cases, 60 generations are sufficient to
approach an optimised solution for all column lengths.



Fig. 19. Optimised cross-sections for the 1500 mm long columns and the non-manufacturable case, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 20. Optimised cross-sections for the 1500 mm long columns and Nmax¼3, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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The computation time is highly dependent on the number of
cross-sectional elements analysed in CUFSM [22] (written in MA-
TLAB), to perform the Finite Strip analyses. The greater the number of
elements, the longer the computation time is. The main algorithm is
written in Python and does not use parallel processing, while the
Finite Strip analyses operated in CUFSM does. Up to 8 computer cores
are selected per MATLAB analysis in a high performance computer
cluster consisting of a mixture of SGI Altix XE and SGIs Rackable™
C2114-4TY14 servers for this purpose. The Finite Strip analyses take
about 80% of the computation time and the main algorithm takes the
remaining 20%. It takes on average 20, 35 and 65min to optimise one
generation for the manufacturable columns and 30, 50 and 75min for
the non-manufacturable ones for the 500 mm, 1500 mm and
3000 mm long columns, respectively.

In this study, a strict maximum of 75,000 solutions are eval-
uated (150 generations�500 cross-sections) per run with the al-
gorithm often converging in less than 50,000 solutions. This
number is of the same order of magnitude as the 40,000 solutions
evaluated in [6,23].
4.4.2. Average results
Table 6 to Table 8 summarise the average results over 10 runs

for the 500 mm, 1500 mm and 3000 mm long columns, respec-
tively. When the algorithm is run with manufacturing constraints,
the algorithm always satisfies the alignment criteria and converges
to consistent solutions with small CoVs on the cross-sectional area
(maximum of 0.91% when Nmax¼3 in Table 7). This further con-
firms the robustness of the algorithm. The average nominal
member capacity Nc is always close to the targeted axial com-
pressive capacity of 75 kN, with the largest average absolute error
equal to 0.50% for the 3000 mm long columns when Nmax¼3 (see
Table 8). For all cases, except for Nmax¼7 and 8 of the 3000 mm
long columns, the average ultimate compressive stress (nominal
axial capacity-to-area ratio) is always lower than the same of the
non-manufacturable solutions, as the latter are more optimum.
However, for Nmax¼7 and 8 of the 3000 mm long columns (Ta-
ble 8), the average ultimate compressive stress is up to 0.6% higher
than the same of the non-manufacturable cross-sections. This
outcome is due to the extremely close cross-sectional shapes be-
tween the manufacturable and non-manufacturable cases and the



Fig. 21. Optimised cross-sections for the 1500 mm long columns and Nmax¼4, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 22. Optimised cross-sections for the 1500 mm long columns and Nmax¼5, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 23. Optimised cross-sections for the 1500 mm long columns and Nmax¼6, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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Fig. 24. Optimised cross-sections for the 1500 mm long columns and Nmax¼7, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 25. Optimised cross-sections for the 3000 mm long columns and the non-manufacturable case, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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large number of elements for the non-manufacturable cross-sec-
tions that limits the ability of the algorithm in forming perfectly
curved cross-sections. The lowest average ultimate compressive
stress of the manufacturable cases, found for Nmax¼3, is 1.1%, 2.5%
and 1.9% lower than the same of the non-manufacturable case for
the 500 mm (Table 6), 1500 mm (Table 7) and 3000 mm (Table 8)
long columns, respectively. This validates the finding in [8] that
introducing manufacturing constraints into shape optimisation
algorithms marginally reduces the performance of the sections.

4.4.3. Cross-sectional shapes
Figs. 14–18 illustrate the optimised non-manufacturable

(Fig. 14) and manufacturable (Figs. 15–18) cross-sections for the
500 mm long columns. Based on the value of the ultimate com-
pressive stress, the two fittest and two least fit cross-sections are
shown in each figure. The two fittest cross-sections for all cases
typically converge to “bean” cross-sectional shapes (subscripts (a-
b) in Fig. 14 to Fig. 18), while the least fit ones mostly converge to
open “Cee” sections (Fig. 13(c), Fig. 16(d), Fig. 17(d) and Fig. 18(c,
d)). Fig. 17(c) shows a closed “Cee” section, Fig. 14(d) and Fig. 13
(d) a “Sigma” cross-sectional shape, and Fig. 14(c) and Fig. 16(c) a
“bean” cross-sectional shape. The fittest non-manufacturable
cross-section in Fig. 14(a) has the largest ultimate compressive
stress, 387.8 MPa, of all cross-sections. Its cross-sectional depth
and width are 64.9 mm and 36.5 mm, respectively, i.e. a depth-to-
width ratio of 1.78. The case Nmax¼3 (Fig. 13(a)) has the lowest
ultimate compressive stress of all fittest manufacturable cross-
sections, which is only 0.9%lower than that of the fittest non-
manufacturable solution (Fig. 14(a)). Its cross-sectional depth and
width are 5.2% and 1.4%, respectively, greater than the fittest non-
manufacturable solution.

Similar to Figs. 14–18, Figs. 19–24 show the fittest and least fit
optimised cross-sections for the 1500 mm long columns. The fit-
test cross-sections converge to “bean” (Fig. 19(a, b), Fig. 20(a, b),
Fig. 22(b), Fig. 23(b) and Fig. 24(a, b)) and closed “Cee” (Fig. 21(a,
b), Fig. 22(a) and Fig. 23(a)) cross-sectional shapes, while the least
fit ones converge to “Sigma” cross-section shapes (subscripts (c, d)
in Figs. 19 and 21 to Fig. 23) and nearly closed “Cee” (Fig. 20(c, d)).



Fig. 26. Optimised cross-sections for the 3000 mm long columns and Nmax¼3, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 27. Optimised cross-sections for the 3000 mm long columns and Nmax¼4, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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For Nmax¼7, Fig. 24(c, d) show closed (or nearly closed) “Cee”
sections with lip stiffeners.

Similar conclusions to the ones drawn for the 500 mm long
columns apply: (i) the fittest non-manufacturable cross-section
(Fig. 19(a)) has the largest ultimate compressive stress (261.0 MPa)
of all studied cases, and (ii) the fittest manufacturable cross-sec-
tion with the lowest ultimate compressive stress (Nmax¼3 in
Fig. 20(a)) performs similarly to the fittest non-manufacturable
solution, with only 2.5% difference in ultimate compressive stres-
ses between the two solutions. The cross-sectional depth and
width of the former manufacturable cross-section are 7.5% and
2.8%, respectively, lower than that of the fittest non-manufactur-
able solution.

Figs. 25–31 show the two fittest and two least fit optimised
non-manufacturable and manufacturable cross-sections for the
3000 mm long columns. All cross-sections converge to “bean”
cross-sectional shapes, with the least fit cross-sections usually
having a more open cross-sectional shape than the fittest ones.
The large number of elements forming the non-manufacturable
cross-sections in Fig. 25 results in not perfectly curved shapes, and
the largest ultimate compressive stress (173.6 MPa) is found for
the manufacturable case Nmax¼6 in Fig. 29(a). However, this value
is only 0.11% greater than the ultimate compressive stress of the
fittest non-manufacturable case in Fig. 25(a). The cross-sectional
depth and width of the fittest cross-section are 134.1 mm and
82.6 mm, respectively, which represents a cross-section that is
1.8% less deep and 4.2% wider than the fittest non-manufacturable
solution. The ultimate compressive stresses of the fittest cross-
sections for all studied cases are close to each other and no more
than 1.8% apart.

4.4.4. Improvement in capacity
The nominal member capacities in compression of the opti-

mised manufacturable solutions in Table 6 through Table 8 are



Fig. 28. Optimised cross-sections for the 3000 mm long columns and Nmax¼5, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 29. Optimised cross-sections for the 3000 mm long columns and Nmax¼6, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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compared to conventional lipped channel cross-sections that have
similar aspect ratios to the sections manufactured in Australia by
Bluescope Lysaght [24] and the same cross-sectional area of the
optimised sections. Table 9 summarises the dimensions and ca-
pacity of the conventional lipped channels used for each in-
vestigated column length. The conventional sections in Table 9
satisfy the geometric limitations for pre-qualified DSM compres-
sion members given in Table 7.1.1 of Australian standard AS4600
[19]. As noted in Table 9, the nominal member capacities of the
optimised solutions are significantly larger than the corresponding
conventional ones. The improvement ranges from 30% for the
500 mm long columns to 151% for the 3000 mm long columns.

5. Conclusions

This paper has defined a set of simple manufacturing rules and
incorporated them into the previously developed “self-shape
optimisation” algorithm for CFS profiles using the Hough trans-
form. The objective of the fitness function is to minimise cross-
sectional area subjected to a targeted axial member compressive
capacity and manufacturing constraints. The ability and accuracy
of the algorithm in optimising manufacturable thin-walled cross-
sections have been verified against a known optimisation problem.
The algorithm was used to shape-optimise manufacturable
simply-supported, singly-symmetric and free to warp CFS open-
section columns for all buckling modes. Short, intermediate and
long columns, with various numbers of manufacturable flat seg-
ments, were investigated. The main conclusions are summarised
below:

� The robustness of the algorithm is demonstrated by the con-
sistency of the optimised solutions over 10 runs.

� The Hough transform accurately allows the formation of man-
ufacturable CFS cross-sections, and the algorithm always



Fig. 30. Optimised cross-sections for the 3000 mm long columns and Nmax¼7, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 31. Optimised cross-sections for the 3000 mm long columns and Nmax¼8, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Table 9
Results of conventional lipped channel cross-sections.

Column length
(mm)

Conventional lipped channel section Improvement in
capacityb (%)

Depth
(mm)

Width
(mm)

Lip (mm) Thick-ness
(mm)

Cross-section
areaa (mm2)

Nominal member
capacity (kN)

Ultimate compressive
stress (MPa)

500 68.6 42.3 10.8 1.2 196.0 57.7 294.4 30
1500 118.6 55.3 13.1 1.2 290.3 39.3 135.4 91
3000 195.2 75.2 16.5 1.2 435.3 29.9 68.7 151

a Equal to the average optimised cross-sectional area of manufacturable cases.
b Compared to the average optimised capacity of manufacturable cases.
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converges to optimised solutions. The convergence rate for
manufacturable cross-sections is slower than for non-manu-
facturable ones.

� However, the computation time per generation to shape-opti-
mise short to long manufacturable columns is approximately
26–66% faster than for non-manufacturable ones, because in
CUFSM it takes more time to analyse non-manufacturable cross-
sections composed of a large number of short elements than to
analyse manufacturable ones with a small number of flat
segments.
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� Introducing manufacturing constraints into shape optimisation
algorithms was found to marginally affect the performance of
the resulting sections, with the average ultimate compressive
stress of the manufacturable columns being within 1.1% of that
of the non-manufacturable ones.

� The manufacturable cross-sectional shapes were usually found
to be similar. “Bean” and closed “Cee” cross-sectional shapes
without local stiffeners were mainly found to be the fittest, and
likely represent optimum manufacturable or non-manufactur-
able cross-sectional shapes. Typically, local buckling is pre-
vented by shaping these rounded optimum cross-sections ra-
ther than forming local stiffeners in the algorithm.

� The optimised singly-symmetric manufacturable cross-sections
have a capacity 30–151% higher than that of the conventional
lipped channel sections.
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