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A B S T R A C T

This paper aims at incorporating manufacturing and assembly features into a shape optimisation algorithm for
cold-formed steel (CFS) profiles. Genetic algorithm (GA) is used as the search algorithm and is combined with
the augmented Lagrangian constraint-handling method to avoid ill-conditioning. Manufacturable cross-sections
are arbitrarily drawn in the initial generation and subsequently treated as an integral part of the GA. The
assembly features considered in the study reflect the ones commonly encountered in the construction industry.
They include fastening elements (horizontal flange and vertical web) and allowances for utilities, and are treated
as constraints. The algorithm is applied to simply-supported singly-symmetric, free-to-warp open section
columns with various numbers of manufacturing bends. Three assembly cases for half sections are investigated:
(a) a horizontal flange, (b) a horizontal flange and a vertical web, and (c) a horizontal flange and a vertical web
with a utility clearance. A two-step optimisation process is used to optimise the columns: (i) the optimum
positions of the fastening elements (horizontal flange and vertical web) are determined first and (ii) the cross-
sectional shapes are then optimised. The optimised columns are discussed and compared to the unconstrained
optimised columns and the conventional lipped Cee-sections. The results demonstrate the robustness and
efficiency of the algorithm.

1. Introduction

Cold-formed steel (CFS) members, having a high strength-to-
weight ratio [1], have been widely used in engineered structures such
as low-to-medium rise buildings and storage racks where hot-rolled
steel profiles have been proven uneconomic. CFS members are
manufactured by bending thin-walled steel coils at room temperature
to the desired cross-sectional shapes. These light-gauge structural
components provide flexible member profiles for architects and
engineers, and facilitate onsite manufacturing and/or installation.

Finding new and optimised cross-sections can significantly enhance
the member capacity and reduce costs compared to the commonly used
“Cee”, “Zed” and “Sigma” shapes. However, previous research efforts
on shape optimisation of CFS members usually focused on uncon-
strained solutions [2–8], leading to cross-sections that cannot be
manufactured by the current cold-forming processes and/or be used
in construction.

Recently, manufacturing constraints have been introduced into
shape optimisation algorithms for CFS members in [9–12]. This
inclusion resulted in cross-sections with a marginal reduction in the

member capacity relative to their unconstrained counter-parts. Franco
et al. [12] developed a grammar-based model to shape optimise CFS
open profiles in which the manufacturing features, with given stiffener
sizes, were intrinsically considered in the algorithm. Leng et al. [9] and
Wang et al. [10] incorporated manufacturing constraints into CFS
shape optimisation algorithms by allowing limited numbers of roll-
forming bends per cross-section. Handling constraints, however, may
add complexity to the algorithm and cause convergence issues. For this
reason, Wang et al. [11] have improved their own algorithm and
proposed a method of incorporating the manufacturing features as an
integral part of the algorithm, addressing the challenges of dealing with
manufacturing constraints.

For assembly purposes, Leng et al. [13,14] introduced end-use
constraints into a stochastic shape optimisation algorithm, namely
simulated annealing (SA). The constraints include singly-symmetry or
point-symmetry, number of rollers (bends), vertical webs located at the
mid-point (mid-height) of the cross-section, parallel flanges, rear lips
and utility pass-through allowance. Both short (610 mm) to long
(4880 mm) columns were investigated. The SA converged to singly-
symmetric cross-sections for short and intermediate columns and to
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point-symmetric cross-sections with large number of rollers for long
columns.

The present study focuses on incorporating manufacturing and
assembly features into the published GA-based “self-shape” optimisa-
tion algorithm for CFS columns [4,5]. The algorithm is applied to
simply-supported singly-symmetric, free-to-warp open section col-
umns. Manufacturing features, defined in [10], are incorporated into
the algorithm as an intrinsic part of the cross-sections. Assembly
features, defined in this paper, are introduced as constraints into the
fitness function. Two main types of assembly features, aimed at
creating cross-sections that can be practically used on site, are taken
into account by having (i) fastening elements (horizontal flange and/or
vertical web elements) to connect the profile to adjacent structures/
elements and (ii) a clearance distance in the open part of the cross-
section to allow utilities passage. The optimised cross-sections are
discussed and compared to their unconstrained counter-parts and the
conventional lipped Cee-sections.

2. Shape-optimisation algorithm

2.1. Overview

This paper employs the previously developed GA-based shape
optimisation algorithm [4,5], referred to as the “self-shape optimisa-
tion algorithm”. The algorithm uses the coordinates (x, y) of the
floating points constituting the cross-sections to define the individuals
in a given design space. The stochastic search algorithm yields superior
off-springs that bear similarities to their parents in succeeding
generations. An augmented Lagrangian constraint-handling method
[15] is used to automatically control the penalty function coefficients to
remain finite in order to avoid ill-conditioned solutions. Cross-over and
mutation operators are performed on the floating points constituting a
cross-section (see [4,5], Sections 2.4 and 2.5 for more details). As the
problem is singly-symmetric, only half of the cross-section is consid-
ered by the GA operators. Nevertheless, the entire cross-section is used
to calculate the member capacity presented in Section 3.1.

2.2. Constraints

2.2.1. Manufacturing constraints
The same manufacturing rules published in [10], emerged from the

limitations of rolled-forming machines, are applied to the algorithm in
this paper. The rules are:

(1) The minimum length Lmin of a single straight cross-sectional
element (i.e. between roll-forming bends) is equal to 10 mm.

(2) The maximum number of straight cross-sectional elements is
limited to 20 (i.e. a maximum number of 19 roll-forming bends
per cross-section).

Sharp roll-forming bending corners are conservatively considered
herein and actual internal bending radii can be determined prior to
manufacture.

The new proposed method of allowing optimised cross-sections to
be manufactured and initially published in Wang et. al [11] is used
herein. Manufacturing rules are now introduced as an intrinsic part of
the cross-sectional shapes. Specifically, instead of drawing the cross-
sections in the first generation with short elements (2 mm long) and
aligning them using the Hough transform to ultimately create manu-
facturable cross-sections as in [10], the cross-sections are initially
drawn herein with a fixed number of longer elements of random sizes,
directly resulting in manufacturable cross-sections. The cross-over and
mutation operators keep the cross-sections manufacturable. More
details on this intrinsic feature of the algorithm are given Sections
2.3–2.5. The number of elements are set by the manufacturer, and is
less than or equal to the maximum possible number of elements

defined in the Rule (2). The self-avoiding random walks method
defined by Gilbert et al. [4] is used to generate the initial cross-sections
(see Section 2.3). The cross-over and mutation operators are detailed in
Sections 2.4 and 2.5, respectively.

2.2.2. Assembly constraints
Adjacent members are connected to columns at the horizontal

flange, the vertical web or both. Additionally, columns are often
designed with an “utility clearance”, as per [16], allowing bridging
system and/or conduits to pass through the web. While specific
applications of CFS columns are not considered in this paper, three
combinations of the assembly features introduced above are considered
herein for undertaking a case study:

• Case I: One horizontal flange per half cross-section, with the flange
at least Lmin,fas=25 mm long to connect a M12 bolt, as per [16].

• Case II: Case I with a vertical web per half cross-section, with the
overall web at least Lmin,fas=25 mm long also to connect a M12
bolt.

• Case III: Case II with utility allowance of a minimum overall
clearance of 2×Dmin=30 mm.

These cases have similar end-use purposes to those described in
[14].

Fig. 1 illustrates the assembly constraints per half cross-section for
Case III, with the x-axis being the axis of symmetry. The fastening
elements are formed in the initial population (see Section 2.3 for more
details). To satisfy the utility allowance constraint, the y-coordinate of
the last cross-sectional point P4 on the horizontal flange and all the
succeeding points shall be greater than the minimum utility distance
Dmin (also see Section 3.1) per half cross-section. The cross-over and
mutation operators allow the fastening elements to remain horizontal
and/or vertical, as explained in Sections 2.4 and 2.5, respectively.

2.3. Initial population

Manufacturable half cross-sections are arbitrarily drawn in the first
generation within the design space of xmax=100 mm×ymax=100 mm.
The steps to create the manufacturable half cross-sections in the initial
population are revised from [4,5], and are given below when fastening
elements are not considered:

• Step 1: Create the first element, as shown in Fig. 2(a):
1.1 Set the starting point P0 of the element on the symmetric x-

axis of the design space at the coordinate (xmax/4, 0), i.e. at
(25 mm, 0 mm) herein.

1.2 Randomly select the length Lele of the element in the interval
[Lmin, Lmax], where Lmin is set in Rule (1) in Section 2.2.1 and

Fig. 1. Assembly constraints per half cross-section with the vertical web shown for the
second element and the horizontal flange for the fourth element.
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Fig. 2. Creating an initial half cross-section.

Fig. 3. Cross-over operator, illustrated with cross-sections (five segments per half section).
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Lmax is an arbitrary maximum length of the element, selected by a
trial and error method to achieve an uniform distribution of the
initial population (see Section 3.1 and [17] for more details).

1.3 Randomly select the orientation angle θele of the element in
the interval [−45°, 45°] relative to the vertical direction.

1.4 Create the element.

• Step 2: Create a new element relative to the last built element, of the
length randomly selected in the interval [Lmin, Lmax] and of the
direction randomly chosen in the interval [−45°, 45°], as illustrated
in Fig. 2(b).

• Step 3: Perform the following checks:
3.1 If the last built element intersects the cross-section or the

boundary of the design space (x=0, x=xmax=100 mm, y=0 or
y=ymax=100 mm), delete this element and go to Step 2. If this
step is repeated more than 10 times per element, then the cross-
section is considered to be self-trapped (see [1] for more details) and
is subsequently removed.

3.2 Else, keep the element.
3.2.1 If the number of elements is less than the pre-defined

number per half cross-section Nele determined by the manufacturer,
go to Step 2,

3.2.2 Else, a new cross-section is generated. Go to Step 4.

• Step 4: Check the number of individuals in the population.
4.1 If the number of individuals equals the target number of

individuals per generation, then the initial population is created.
4.2 Else, go to Step 1.
When fastening elements are taken into account in the algorithm

and an element is selected to be a flange or a web, the above steps
are modified as follows:

• Lmin in Step 2 is replaced by Lmin,fas that is set in Cases I and II of
Section 2.2.2.

• The orientation of the element is set to be horizontal (flange) or
vertical (web).

The elements are labelled sequentially, as shown in Fig. 1, from the
first element (‘1’) (with its first node on the symmetry axis) to the final
element (‘Nele’). Similarly, the floating points representing the ele-
ments are sequentially ordered from point P0 on the axis of symmetry
to the last point PNele. In the algorithm, the horizontal flange is
allowed to be located at any element except for the first element (‘1’),
and the vertical web to be at any element from the first element to the
element before the horizontal flange.

2.4. Cross-over operator

The one-point cross-over operator used in this study is revised from
Gilbert et al. [5] to keep the sections manufacturable and the fastening
elements horizontal and vertical. Two parents, having the same
number of elements and the same location of fastening elements, are
selected for cross-over. This guarantees that the two offsprings have the
same number of elements and the same location of fastening elements
as their parents, therefore keeping the set number of elements and
location of the fastening elements by the manufacturer. The concept is
illustrated in Fig. 3.

A cross-over point, having the same sequential point number on
each of the two cross-sections, is randomly selected between the second
and the second last points constituting the cross-sections. These two
cross-over points are referred to as Pco1 and Pco2 for Parent 1 and
Parent 2, respectively, and are shown in Fig. 3(a). Two points Pt1 and
Pt2 are then defined using a linear interpolation between Pco1 and
Pco2 as [15],

P δP δ P= + (1 − )t co co1 1 2 (1)

P δP δ P= + (1 − )t co co2 2 1 (2)

where δ is a random number in the interval [0,1].

Two offsprings are created by stretching portions of the parents to
the new points Pt1 or Pt2 as illustrated in Fig. 3(b) and (c) and detailed
in the steps below. The first offspring is formed using the left-hand part
of Parent 1 (from its first point to Pco1) and the right-hand part of
Parent 2 (from Pco2 to its last point), and the second offspring using
the right hand part of Parent 1 (from Pco1 to its last point) and the left
hand part of Parent 2 (from its first point to Pco2). The procedure of
creating the first offspring is detailed below; a similar procedure applies
to the second offspring:

• Step 1: The left-hand part of Parent 1 is linearly stretched vertically
and horizontally, using its starting point P0 as the fixed (reference)
point, so its cross-over point Pco1 matches point Pt1 in Eq. (1) (see
Fig. 3(b)).

• Step 2: The right-hand part of Parent 2 is linearly stretched
vertically and horizontally, using its end point PNele as the fixed
(reference) point, so its cross-over point Pco2 matches point Pt1 in
Eq. (1) (see Fig. 3(b)).

• Step 3: The two parts created in Steps 1 and 2 are joined together
and form the first offspring, as illustrated in Fig. 3(b).

• Step 4: If the offspring intersects itself or the boundary of the design
space, the offspring is deleted.

The above cross-over operator allows the length of all elements,
including the fastening ones, to vary and therefore their length to be
optimised. The starting point of the cross-section P0 is a reference point
common to all cross-sections and avoids having duplicate cross-
sections with the exact same cross-sectional shape but different node
coordinates. The end point of the cross-sections PNele is fixed during
the cross-over operation but can mutate in Section 2.5, allowing new
cross-sectional shape to be created.

Offsprings are created until the overall population is replaced. As
the cross-over points Pco1 and Pco2 have the same sequential point
number for the two parents, the offsprings thus have the same number
of elements as their parents. Stretching the cross-sections vertically
and horizontally, and not rotating and scaling them as in [5], allows the
fastening element to remain horizontal or vertical in the offsprings.
Similar to [5], a cross-over probability of 0.8 is used in this study.

2.5. Mutation operator

The mutation operator allows a new cross-sectional shape to be
created by changing the coordinates of one or more cross-sectional
points. All points can mutate except for the starting point P0. Similar to
[5], each point has a probability of mutation of 0.01. If a point mutates,
the following steps, illustrated in Fig. 4, apply:

• Step 1: The point is randomly moved within a 20 mm radius circle
from its original position. The radius is chosen as twice the
minimum length of the manufacturable elements (see Section
2.2.1) and was found to adequately create new cross-sectional
shapes for the overall dimensions of cross-sections optimised in
this study. The new coordinates (x0, y0) of the mutated point is
calculated as a function of the coordinates (x, y) of the original point
as,

x r θ x= × cos +0 (3)

y r θ y= × sin +0 (4)

where r is the mutation radius randomly chosen in the interval [0 mm,
20 mm] and θ is the mutation angle randomly chosen in the interval
[0°, 360°].

• Step 2: Perform the following checks.
2.1 If the cross-section intersects itself or the boundary of the

design space, then move the point back to its original position (x, y)
and go to Step 1. If Step 2.1 is repeated more than 10 times, the
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point is not mutated.
2.2 If one of the two points of a fastening element is mutated, the

second point of the element is also mutated and moved by the same
vector of the mutated point so as to keep the fastening element
horizontal or vertical.

3. Optimisation problem

3.1. General

The algorithm is used to minimise the cross-sectional area As of
simply-supported singly-symmetric, free-to-warp open CFS columns
subject to an axial compressive load N* of 75 kN. The column length is
set to 2 m and the wall-thickness to 1.2 mm.

Numbers of cross-sectional elements per half-section Nele=4, 6 and
8 are investigated for each of the three assembly cases (see Section
2.2.2). A uniformly distributed initial population in terms of cross-
sectional areas (see [17] for more details) is created. If the maximum
element length Lmax is too large relative to Nele, the algorithm tends
to generate large cross-sections that do not fit in the design space and
therefore have difficulties creating the initial population. To address
this issue, the maximum element length Lmax was adjusted using a
trial-and-error method based on the value of Nele. The different values
of Lmax chosen are reported in Table 1.

Ten runs are performed for each scenario being investigated to
verify the robustness of the algorithm. The number of generations and
individuals per generation is reported in Section 3.2. The yield stress fy
is 450 MPa, the Young's modulus E is 200 GPa and the shear modulus
G is 80 GPa.

The general fitness functions, suitable for GA, are expressed for the

three assembly cases as,
For Cases I and II:
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where Asquash is the squash area, defined as the lower bound cross-
sectional area of the profile,

A N
f

=
*

squash
y (7)

αN, αL,i and αD,j are the penalty factors associated with the
capacity, the length of element i and the utility clearance violations
of point j, respectively. Le,i is the actual length of element i and Lm,i is
the minimum allowable length of element i, either equals Lmin,fas for
the fastening elements (see Cases I and II in Section 2.2.2) or Lmin for
the other elements (see the manufacturing Rule (1) in Section 2.2.1). If
a vertical web is located at the first element of the half cross-section,
Lmin,fas is then divided by two making the total length of the web as
Lmin,fas.

In Eq. (6), PD is the last point number of the horizontal flange,
PNele is the total number of cross-sectional points, and yj is the y-
coordinate of point number j. Nc is the nominal member capacity in
compression evaluated by the Direct Strength Method (DSM) [18], as
specified in Clause 7.2.1 of AS/NZS 4600 [19]. Therefore, the cross-
sections are optimised for global, local and distortional buckling. The
rules to automatically calculate Nc for shape optimisation purpose as
fully detailed in [5] are applied in the study. The open source software
CUFSM [20] is used to perform elastic buckling analysis on the full
cross-sections. To achieve required accuracy of analysis in CUFSM, the
cross-sectional elements are subdivided into two or three segments of
equal length, as defined in [10].

To avoid ill-conditioning, the fitness functions in Eqs. (5) and (6)
are re-arranged in Eqs. (8) and (9), respectively, to be used in the
algorithm with the augmented Lagrangian method [21], as,
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For Case III:

Fig. 4. Mutation operator.

Table 1
Maximum length of manufacturable elements per Nele.

Nele 4 6 8

Lmax (mm) 50 40 30

Table 2
Analysed position of fastening elements.

Nele 4 6 8

Fastening elements Vertical web Horizontal flange Vertical web Horizontal flange Vertical web Horizontal flange

Sequential positions ‘1’ to ‘3’ ‘2’ to ‘4’ ‘1’ to ‘5’ ‘2’ to ‘6’ ‘1’ to ‘7’ ‘2’ to ‘8’
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where γN, γL, i and γD,j are the penalty function coefficients associated
with the real parameters µN, µL, i and µD,j for the capacity, the length
of element i and the utility distance of point j, respectively. Adeli and
Cheng [21] recommended real parameters to be zero. Gilbert et al. [4]
investigated the initial penalty function coefficients from 0.35 to 5 and
eventually recommended the coefficient of 2. The initial values of
γN=γL,i=γD,j=2 and μN=μL,i=μD,j=0 are therefore used in this paper.
The penalty increasing constant is taken as β=1.05 and the conver-
gence rate as ρ=1.5 [4].

3.2. Two-step optimisation process

The fastening elements, i.e. horizontal flange and vertical web, can
be at various locations within a cross-section, and all possible locations
need to be investigated to fully optimise the cross-section. Therefore, a
two-step optimisation process is employed as below:

• Step 1: The location optimisation, solely aimed at finding the
optimum locations of the fastening elements using a large popula-
tion on a small number of iterations (generations), is performed
first. All possible locations of the fastening elements are equally
represented in the initial generation and compete to dominate the
overall population. The optimum location of the fastening elements
is found when all the individuals in the population have the
fastening elements at the same location. This step is further
articulated as follows:

1.1 Identify all possible locations of the fastening elements
(vertical web and/or horizontal flange), as tabulated in Table 2, for
all numbers of cross-sectional elements (Nele). Then perform the GA
analysis in the following manner.

1.2 Create an initial population (Section 2.3) composed of an
equal number of individuals from each identified fastening element
locations in Step 1.1. The number of individuals per fastening
element location is given in Table 3, aiming to keep the overall
population to a reasonable size, but with no less than 200 indivi-
duals for diversity per fastening element location.

1.3 Rank all individuals based on the AL fitness function in Eq.
(5) (Cases I and II) or (8) (Case III).

Table 3
Parameters and results of fastening element/s position for all Nele and assembly cases.

Assembly case Nele Initial number of
individuals per position

Number of
positions analysed

Total number of
individuals per
generation

Number of analysed
generations per run

Number of runs converging to
the same optimum position

Optimum
position

Case I 4 400 3 1200 10 10 Horizontal ‘2’
6 250 5 1300 25 10 Horizontal ‘2’
8 200 7 1400 25 10 Horizontal ‘3’

Case II 4 300 6 1800 25 10 Horizontal ‘3’
– Vertical ‘2’

6 240 15 3600 35 9 Horizontal ‘3’
– Vertical ‘2’

8 200 28 5600 35 9 Horizontal ‘3’
– Vertical ‘1’

Case IIIa 6 240 15 3600 35 9 Horizontal ‘3’
– Vertical ‘1’

8 200 28 5600 35 8 Horizontal ‘4’
– Vertical ‘1’

a Nele=4 is not shown for Case III (see Section 4.4.2 for more details).

Fig. 5. Number of individuals per possible locations of the fastening element, shown for
Nele=4 and Case I.

Fig. 6. Number of individuals per possible locations of the fastening elements, shown for
Nele=4 and Case II.
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1.4 Select the two parents for the cross-over operator amongst all
individuals using the roulette wheel.

1.5 Reproduce the offsprings by performing the cross-over
operator (outlined in Section 2.4) and the mutation operator (out-
lined in Section 2.5), and go to Step 1.4 until the entire new
population is created.

1.6 Update the AL coefficients and go to Step 1.3 until the
number of generations analysed, as given in Table 3, is met.

• Step 2: The shape optimisation aiming to find the optimum cross-
section using a small population and a large number of iterations is
then performed. This step is articulated as follows:

2.1 Create the initial population (Section 2.3) with 500 indivi-
duals, all having the fastening elements located at the optimum
location found in Step 1.

2.2 Perform the GA analysis detailed in [4,5] using the cross-over
and mutation operators described in Sections 2.4 and 2.5 over 80
generations.

2.3 Repeat Steps 2.1 and 2.2 over 10 runs.

Fig. 7. Convergence for assembly (a) Case I, (b) Case II and (c) Case III (see [5] for reference of no manufacturing and assembly features).

Table 4
Average results over 10 runs for assembly Case I.

Nele Cross-sectional area Nominal member capacity Ultimate compressive stress Element length constraint

As (mm2) CoV (%) Nc (kN) Errora (%) CoV (%) Nc/As (MPa) g (Lele)
b

4 343.9 0.30 75.1 0.24 0.28 218.4 3.3×10−4

6 339.4 0.16 75.0 0.18 0.25 221.0 3.5×10−4

8 339.6 0.49 75.1 0.22 0.38 221.1 8.7×10−4

∞c 337.4 0.25 75.1 0.21 0.24 222.6 –

a Absolute error when compared to 75 kN.
b Element length constraint per half cross-section expressed as the 3rd term in Eq. (5) without αL.
c Algorithm ran without manufacturing and assembly constraints (see [5] for reference).
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4. Results and discussions

4.1. Optimum location of fastening elements (Step 1)

Figs. 5 and 6 plot the evolution of the average number of individuals
per fastening element position over 10 runs for Nele=4 for Cases I and
II, respectively. Other configurations investigated show a similar trend
to Figs. 5 and 6, with the individuals of one fastening element position
dominating the entire population in a relatively small number of
generations. In Figs. 5 and 6, typically, two or three fastening element
positions compete in the first 10 generations and one position starts
dominating afterwards.

The optimum locations of the fastening elements for all configura-
tions investigated are given in Table 3. For Case I, all 10 runs converge
to the same location of the fastening elements. For Cases II and III, at
least 8 out of 10 runs converge to the same location. These results
demonstrate the consistency of the algorithm in finding the optimum
position of the fastening elements. The optimum position of the

horizontal flange is usually found at element 2, 3 or 4, while the
optimum location of the vertical web is usually observed at element 1
or 2.

4.2. Convergence (Step 2)

Fig. 7 illustrates the average fitness function f in Eq. (5) for Case I
(Fig. 7(a)) and Case II (Fig. 7(b)), and f in Eq. (6) for Case III
(Fig. 7(c)), with αN, αL, i and αD,j=10, over 10 runs. The average
fitness f in Fig. 7 is multiplied by Asquash for the equations to converge
to the optimum cross-sectional area. For comparison purposes, the
constrained (Nele=4, 6 and 8 in this paper) and unconstrained (no
assembly and manufacturing constraints published in [5]) cases are
plotted. The comparison shows that the algorithm always converges to
an optimised solution. The unconstrained case converges slightly faster
than the constrained ones. The convergence rate of all constrained
cases is similar to each other, in about 50–60 generations.

Based on the runs performed on a cluster consisting of a mixture of
SGI Altix XE and SGI® Rackable™ C2114-4TY14 servers, with the set
no more than eight computer cores used per run, the average
computation time of the constrained cases is 30 min per generation.
This compares with an average computational time of 45 min per
generation when the Hough transform was used to formulate manu-
facturable cross-sections in the authors’ previous work [10]. In Fig. 7,
to obtain convergence, 30,000 solutions (up to 60 generations) were
investigated, compared to 70,000 solutions (up to 140 generations) in
[10].

4.3. Average results

Tables 4–6 summarise the average results of the optimised solu-
tions over 10 runs for all the cases investigated. The algorithm
reasonably satisfies all the constraints, with the average violation on
the element length and utility clearance constraints in Eqs. (5) and (6)
being close or equal to zero. The maximum constraint violation is
found for Case III and Nele=8 (Table 6) on the utility clearance in Eq.
(6), and is equal to 2.7×10−3. The algorithm always converges to a

Table 5
Average results over 10 runs for assembly Case II.

Nele Cross-sectional area Nominal member capacity Ultimate compressive stress Element length constraint

As (mm2) CoV (%) Nc (kN) Errora (%) CoV (%) Nc/As (MPa) g (Lele)
b

4 361.6 0.41 75.2 0.34 0.54 208.0 2.0×10−3

6 340.3 0.20 75.0 0.17 0.30 220.4 9.1×10−4

8 338.9 0.20 75.0 0.08 0.12 221.3 0.0
∞c 337.4 0.25 75.1 0.21 0.24 222.6 –

a Absolute error when compared to 75 kN.
b Element length constraint per half cross-section expressed as the 3rd term in Eq. (5) without αL.
c Algorithm ran without manufacturing and assembly constraints (see [5] for reference).

Table 6
Average results over 10 runs for assembly Case III.

Nele Cross-sectional area Nominal member capacity Ultimate compressive stress Element length constraint Utility clearance constraint

As (mm2) CoV (%) Nc (kN) Errora (%) CoV (%) Nc/As (MPa) g (Lele)
b g (y)c

4d 361.6 0.41 75.2 0.34 0.54 208.0 2.0×10−3 0.0
6 348.8 0.41 75.0 0.07 0.08 215.0 0.8×10−4 0.0
8 346.0 0.37 75.1 0.22 0.32 217.1 2.4×10−4 2.7×10−3

∞e 337.4 0.25 75.1 0.21 0.24 222.6 – –

a Absolute error when compared to 75 kN.
b Element length constraint per half cross-section expressed as the 3rd term in Eq. (6) without αL.
c Utility constraint per half cross-section expressed as the 4th term in Eq. (6) without αD.
d The results are replicated from Nele=4 for Case II (Table 5).
e Algorithm ran without manufacturing and assembly constraints (see [5] for reference).

Fig. 8. Average ultimate compressive stress for all the cases investigated.
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consistent optimised solution, with a maximum CoV of 0.49% on the
cross-sectional area for Case I and Nele=8 (Table 4). This outcome
demonstrates the robustness of the algorithm. The most optimised
unconstrained cross-section (Nele=∞ in Table 4–6) has a higher
average ultimate compressive stress, defined as the ratio between the
capacity Nc and the cross-section area As, than all assembly cases by up
to 7%. For each assembly case, the more the cross-sectional elements,
the greater (more efficient) the average ultimate compressive stress is.
As the assembly cases become more complex, i.e. from Case I to Case
III, the average ultimate compressive stress of the optimised solutions
usually decreases to satisfy the constraints, as illustrated in Fig. 8. Case
I and Case II yield similar (within 0.3%) average ultimate compressive
stresses for Nele=6 and 8. For Nele=4, the difference in average
ultimate compressive stresses reaches 4.8%.

4.4. Cross-sectional shapes

4.4.1. Unconstrained shapes
Fig. 9 illustrates the two fittest (Fig. 9(a) and (b)) and two least fit

(Fig. 9(c) and (d)) unconstrained optimised cross-sections (see [5] for
reference). The ultimate compressive stress Nc/As is used to rank the
cross-section from the fittest to the least fit. Closed or nearly closed
rounded “bean” shapes are observed. The fittest solution in Fig. 9(a)
has an ultimate compressive stress of 223.2 MPa, a cross-sectional
depth of 108.3 mm, a width of 61.1 mm, and therefore a depth-to-
width ratio of 1.8.

4.4.2. Case I shapes
Figs. 10–12 show the optimised cross-sections for assembly Case I

(only horizontal flange) and all investigated number of elements Nele

per half cross-section. The two fittest cross-sections (subscript (a, b))
and two least fit ones (subscript (c, d)) for each number of elements

Fig. 9. Optimised cross-sections of unconstrained algorithm (see [5] for reference), (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 10. Optimised cross-sections for assembly Case I and Nele=4, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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Nele are presented in these figures. “Sigma” or “Cee” type shapes are
found, with the cross-section being open for Nele=4 and closed up
when Nele increases to 8. As Nele increases from 4 (Fig. 10) to 8
(Fig. 12), the shape of the two fittest cross-sections tends to approach
the unconstrained ones (Fig. 9). The fittest cross-section when Nele=8
in Fig. 12(a) has a depth of 100.8 mm, a width of 60.6 mm and
therefore a depth-to-width ratio of 1.7. It is therefore slightly shallower
(6.9%) than the unconstrained solution in Fig. 9(a), while being of a
similar width (within 0.7%).

For all values of Nele, the algorithm tends to have a horizontal
flange about 25–35 mm long and to curve the cross-section next to the
horizontal flange with a nearly uniform curvature radius (subscript (a,
b) in Figs. 10–12) to resist flexural-torsional and distortional buckling.
The web is typically composed of two (subscript (a, b) in Figs. 10 and
11) or three (Fig. 12(a) and (b)) segments (per entire section) forming a
long web stiffener about 35–55 mm long located at the first or second
element (per half section), to enhance the local buckling resistance of

the overall web.

4.4.3. Case II shapes
Figs. 13–15 illustrate the optimised cross-sections for assembly

Case II (horizontal flange and vertical web). Similar to Case I, open
“Sigma” type shapes for Nele=4 (Fig. 13) and closed or nearly closed
“Sigma” type shapes are observed for Nele=6 (Fig. 14) and Nele=8
(Fig. 15). The vertical web and horizontal flange for Nele=4 (Fig. 13)
and 6 (Fig. 14) are consecutive and forms a “right-angle” bend. As the
vertical web is positioned at the second element number, an odd
number of manufacturing bends is observed for these cross-sections.
For Nele=8 in Fig. 15, as the vertical web is located at the first element
and an even number of manufacturing bends is required for these
cross-sections.

The cross-sectional shape of the fittest solution for Nele=8 in
Fig. 15(a) is similar to the one for assembly Case I (Fig. 12(a)), for
which a vertical web was generated by the algorithm, despite not being

Fig. 11. Optimised cross-sections for assembly Case I and Nele=6, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 12. Optimised cross-sections for assembly Case I and Nele=8, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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part of the constraints. Similar to assembly Case I, for the two fittest
cross-sections when Nele=6 (Fig. 14(a) and (b)) and 8 (Fig. 15(a) and
(b)), the algorithm tends to curve the elements next to the flange and to
create a large web stiffener.

For Nele=4 in Fig. 13, the algorithm generates cross-sections that
are on average about 38% deeper and 16% wider than those for Nele=6
(Fig. 14) and 8 (Fig. 15). The depth and width of the fittest cross-
sections in Fig. 13(a) is 140.8 mm and 69.6 mm, respectively, therefore
leading to a depth-to-width ratio of 2.0. Its cross-sectional area is
363.9 mm2, which is 7.6% and 6.2% larger than the one of the fittest

cross-section for Nele=8 in Fig. 15(a) (assembly Case II) and Nele=4 in
Fig. 10(a) (assembly Case I), respectively. To satisfy the strength
criteria with the small number of elements (Nele=4) and the two
fastening elements, the algorithm tends to enlarge and open the cross-
section when compared to Nele=8 for Case II and Nele=4 for Case I.

Again for Nele=4 in Fig. 13, the sections have a relatively long
horizontal flange (approximately 50–55 mm long), when compared to
Nele=6 (Fig. 14) and 8 (Fig. 15), to resist lateral and flexural-torsional
buckling by increasing the second moment of area about the axis
perpendicular to the axis of symmetry. The sections also have a short

Fig. 13. Optimised cross-sections for assembly Case II and Nele=4, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 14. Optimised cross-sections for assembly Case II and Nele=6, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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lip stiffener (approximately 20–25 mm long), oriented at approxi-
mately 45° to the horizontal flange, to resist distortional buckling. On
the other hand, similar to assembly Case I, a long web stiffener,
oriented at approximately 20° to the vertical web, allows deep cross-
sections by improving the local buckling resistance of the web. Due to
the large open cross-section for Nele=4, the utility constraint (set in
assembly Case III) is satisfied. The y-coordinate of the last cross-
sectional point of all cross-sections in Fig. 13 is greater than the
minimum utility clearance distance Dmin=30 mm. Nele=4 for assem-
bly Case III is therefore not run and results from Nele=4 for assembly

Case II are used in the following Sections.

4.4.4. Case III shapes
Figs. 16 and 17 represent the two fittest (a, b) and two least fit (c, d)

optimised cross-sections for Nele=6 and 8, respectively, for assembly
Case III. Open “Sigma” type cross-sectional shapes are typically
observed. The fittest solutions for Nele=6 and 8 have utility distances
of 30.6 mm (Fig. 16(a)) and 29.4 mm (Fig. 17(a)), respectively. These
distances are close (within 2%) to the minimum utility clearance Dmin

of 30 mm set per half cross-section (see Section 2.2.2). Similar to all

Fig. 15. Optimised cross-sections for assembly Case II and Nele=8, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Fig. 16. Optimised cross-sections for assembly Case III and Nele=6, (a, b) fittest cross-sections and (c, d) least fit cross-sections.
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previous assembly cases, except for Nele=4 in Case II, the algorithm
tends to have a short horizontal flange, curve elements next to the
flange and large web stiffener. The fittest cross-section for Nele=8 in
Fig. 17(a) has an ultimate compressive stress of 218.3 MPa. It is
118.8 mm deep and 67.7 mm wide, which is 8.8% deeper and 9.8%
wider than the fittest unconstrained cross-section in Fig. 9(a). Its
depth-to-width ratio is 1.8. It is worth mentioning that while the
vertical web is located at the first element in Fig. 17(a), the third
element is also vertical and forms a “right-angle” bend with the
horizontal flange, creating the overall web stiffener.

4.5. Capacity improvement

The average nominal member capacity in compression of the
constrained optimised solutions in Table 4–6 is compared to the
capacity of conventional lipped channels that have similar aspect ratios
to the cross-sections manufactured by Bluescope Lysaght [16] in
Australia. These conventional lipped channels satisfy the geometric
limitations for compression members for design using the Direct
Strength Method given in Table 7.1.1 of the Australian Standard
AS4600 [19]. The conventional cross-sections have a wall thickness
of 1.2 mm (same as the optimised cross-sections) and are designed
with a cross-sectional area equal to the ones of the optimised solutions
for Nele=4 in Tables 4 and 6. Table 7 summarises the comparison
between the conventional cross-sections and the optimised ones for
each assembly case. The nominal member capacity of the optimised

solutions is significantly higher (up to 116% and no less than 101%)
than the conventional cross-sections.

5. Conclusions

This paper has introduced manufacturing and assembly features
into a shape optimisation algorithm for CFS columns. The principles of
the algorithm have been explained and applied to simply-supported
singly-symmetry, free to warp open section columns. The major
findings are:

• The robustness of the algorithm was verified by having consistent
optimised solutions with a maximum CoV of 0.49% (Nele=8 in Case
I) and 0.54% (Nele=4 in Cases II and III) for the cross-sectional area
and the member capacity, respectively, over 10 runs.

• The algorithm converged rapidly in 50–60 generations to an
optimised solution, and 500 individuals and 80 generations
(40,000 solutions) are found adequate for convergence.

• The more the cross-sectional elements, the less the cross-section
area is. Moreover, when the number of cross-sectional elements
increases, the cross-section tends to close. Specifically, a small
number of elements (Nele=4) with a horizontal flange and a vertical
web resulted in (i) largely open “Sigma” type cross-sectional shapes,
(ii) long horizontal flange and web stiffener and (iii) lip stiffener
oriented at 45° to the horizontal flange. A large number of elements
(Nele=8), on the other hand, resulted in (i) closed “Sigma” type

Fig. 17. Optimised cross-sections for assembly Case III and Nele=8, (a, b) fittest cross-sections and (c, d) least fit cross-sections.

Table 7
Comparison to conventional lipped Cee-sections.

Assembly category by cross-
sectional area

Conventional lipped channel section Difference in capacity
(%)

Depth (mm) Width (mm) Lip (mm) Thick-ness
(mm)

Cross-section area
(mm2)

Nominal member capacity
(kN)

Case I, Nele=4 146.9 62.7 14.3 1.2 343.9a 34.7 116
Case II and III, Nele=4 156.2 65.1 14.8 1.2 361.6b 37.4 101

a Same cross-sectional area as the optimised cross-section when Nele=4 in Table 4.
b Same cross-sectional area as the optimised cross-section when Nele=4 in Table 6.
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cross-sectional shapes, (ii) short horizontal flange and long web
stiffener and (iii) curved elements next to the flange.

• When the utility constraint was considered (assembly Case III) with
a large number of cross-sectional elements (Nele=8), the algorithm
tended to close the cross-section to its maximum while satisfying the
minimum utility clearance. The curved cross-sectional shape next to
the flange was also present.

• The optimised manufacturable and usable cross-sections are only up
to 7% less efficient than the optimised unconstrained ones. The
optimised solutions exhibit a member capacity in compression more
than twice that of the conventional lipped Cee-sections of a similar
cross-section area.
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