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A B S T R A C T   

This paper presents the results of a study aiming at shape optimising singly-symmetric cold-formed steel purlins. 
The “self-shape” optimisation algorithm previously developed, proven to be robust and to converge to known 
solutions is used for this purpose. Eight optimisation cases are considered, consisting of 1.5 mm and 1.9 mm thick 
purlins, spanning either 3000 mm or 8000 mm and drawn with either 4, 6 or 8 elements per half cross-section. 
The aim of the algorithm is to minimise the cross-sectional area subjected to the following constraints: (i) the 
sections must at least match the second moment of area, and the inward and outward bending capacities of 
commercial purlins used as reference profiles, (ii) be readily manufacturable using existing roll-forming process, 
(iii) can be connected similarly to existing purlins by offering vertical and horizontal flat elements long enough 
and strategically positioned to bolt the purlins to gusset plates and screw the roof to them, respectively, and (iv) 
have an opening wide enough to run services. The restraints provided by the roof sheeting is considered in the 
algorithm when calculating the bending capacities. Results show that the algorithm converges to consistent 
solutions and satisfactory satisfies all constraints, resulting in manufacturable and useable purlins. When 
compared to the reference purlins, the optimised solutions result in saving up to 6.6% of steel. This cost saving in 
material is quite significant for a mass-produced product such as purlins. The efficiency of the optimised purlins 
relative to the reference sections were further validated with FE analysis. The FE analyses confirm that the 
optimised 1.5 mm thick purlins are superior to the reference section. The optimised purlins may therefore benefit 
the cold-formed steel industry as they represent more economical solutions without compromising on the us-
ability and performance of the products. However, the FE model shows that the 1.9 mm thick purlins may not 
have the expected performance and experimental testing is fully validate the optimised sections.   

1. Introduction 

Cold-formed steel (CFS) members are intensively used in civil engi-
neering in various applications such as storage racks, portal frames, wall 
girts and roof purlins. The latter represents a cost-effective solution to 
support the roof in many buildings due to its large span to weight ratio 
[1]. Typically, CFS purlins are thin-walled open cross-sections which are 
subjected to both inward and outward wind loading (c.f. Fig. 1). The 
connection between purlins and the roof is typically achieved either 
through self-tapping screws, interlocking sheeting or standing seam 
clips [2]. Depending on the type of fasteners used, the roof may add 
extra rigidity to the purlin members, therefore providing partial lateral, 
rotational and torsional restraints [2]. These effects should be taken into 
account to calculate the purlin’s inward and outward bending capac-
ities. The connection to the main frame of the building is generally 
achieved with the purlins being bolted to gusset plates welded to the 

rafters for Cee and Zee purlins [3]. Bridging elements commonly provide 
lateral and torsional restraint to the purlins. 

While efforts have been made to optimise the cross-sectional di-
mensions of existing purlins in particular or given CFS beams in general 
[4–10], cross-sectional shape optimisation of CFS purlins has not been 
performed to date. Cross-sectional shape optimisation consists at finding 
the optimum cross-sectional shape for given constraints without pre-
sumption on the final shape. Several shape optimisation or shape opti-
misation type algorithms have looked at optimising CFS profiles with [8, 
11–14] or without [15–17] practical and manufacturable constraints, 
yet they usually optimised profiles with no specific end applications in 
mind. Consequently, this paper aims at shape optimising practical and 
manufacturable singly-symmetric CFS roof purlins subjected to inward 
and outward wind loadings. To do so, the paper applies the previous 
research in Ref. [9,18–21] and intent to inform researchers and industry 
representatives of optimised and novel purlins which could directly 
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compete with existing ones. The purlins are optimised to be connected to 
both the main frame of the building and the roof the same way as 
currently commercialised Cee purlins [3], therefore ensuring their 
compatibility to current construction methods. Only the bending and 
serviceability design criteria are considered in the optimisation process. 
First, the paper introduces the shape-optimisation algorithm used. Sec-
ond, the studied optimisation problems are detailed, and the associated 
design assumptions are explained. Third, the optimised roof purlins are 
presented. For the sake of computational efficiency, simplified design 
assumptions were used in the optimisation process. A finite element (FE) 
model was therefore built and is presented in the last part of the paper to 
fully validate the efficiency of the optimised purlins relative to existing 
purlins, used as reference sections. While computationally intensive and 
not practical for optimisation purpose, FE models allow to more accu-
rately reproduce the loading, restraints and boundary conditions of 

cold-formed steel elements and represent a valuable tool to confirm the 
accuracy of the optimisation algorithm. 

2. SHAPE-OPTIMISATION algorithm OF CFS profiles used 

2.1. General 

The “self-shape” optimisation algorithm developed by Gilbert et al. 
in Refs. [18,19] and applied in Ref. [9,20,21] to optimise either CFS 
columns with manufacturing and construction constraints or uncon-
strained CFS beam-columns is employed in this study. Genetic algorithm 
(GA) [22,23] is used as the search engine and the Direct Strength 
Method (DSM) [24], as published in the Australian/New Zealand stan-
dard (AS/NZS 4600) [25], is employed to calculate the capacities of the 
members. Rules have been defined and validated in Refs. [9,18] to 

Fig. 1. Purlin attached to roof sheeting and subjected to either inward or outward wind loading.  

Fig. 2. Examples of cross-sections created in the initial population – (fittest cross-section in the 1st generation shown), with (a) 4 flat elements, (b) 6 flat elements 
and (c) 8 flat elements per half cross-section. 
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automatically extract the axial and bending elastic buckling stresses 
from the signature curves, obtained from the Finite Strip Method (FSM) 
[26–29]. The accuracy of the algorithm has been validated in Ref. [18, 
21] against known optimisation problems for which an analytical so-
lution exists. The augmented Lagrangian constraint handling method 
(AL) [30] is used in the algorithm to control the penalty parameters and 
avoid ill-conditioned solutions, therefore ensuring finite values of the 
penalty factors. 

The main operators of the GA-based algorithm to create manufac-
turable and useable CFS profiles, as published in Ref. [20], are used in 
this study. Their key principles are summarised in the following sub-
sections. For more details, the reader is kindly referred to Ref. [20]. 

2.2. Initial population 

The initial population is formed by drawing cross-sections from 
random walks, therefore allowing the creation of cross-sections with no 
presumptions on their final shape. To create manufacturable CFS pro-
files, the cross-sections are drawn with a fixed number of flat elements 
Ne in a given design space (x,y). This design space is limited in the 
current research to xmax = 250 mm and ymax = 250 mm. As singly- 
symmetric cross-sections are considered in this study, only half of the 
cross-sections is drawn in the design space. All cross-sections have the 
same starting point P0 at the coordinates (xmax/4,0) [9,18,20]. 

Usability of the cross-sections are considered by forcing predefined 
elements to be drawn vertically or horizontally, therefore allowing 
connections to gusset plates or roof for instance. More details on the 
location and size of these elements are provided in Sections 3.3.1 and 
3.3.2. 

The cross-sectional areas in the initial population are evenly 
distributed to explore more variations in the cross-sectional shapes. A 
self-avoiding operator is used to prevent the flat elements to cross each 
other and the design space boundaries, therefore preventing unrealistic 
cross-sectional shapes to be created. 

Fig. 2 shows examples of cross-sections created in the initial 
population. 

2.3. Cross-over 

A one-point cross-over operator (CO) performed on the design space 
is used herein. The two parents selected by the operator must have the 
same number of flat elements Ne, as well as the same location of hori-
zontal and vertical elements [20]. For the cross-section of Ne + 1 
cross-sectional points, the cross-over point is randomly chosen between 
the second and second last points, cutting each parent in two. The first 
offspring is created following the rules detailed in Ref. [20] from the first 
and second parts of the first and second parents, respectively, while the 
second offspring is created from the second and first parts of the first and 
second parents, respectively. Offsprings therefore share similarities in 
cross-sectional shape with their parents. The crossover operator pro-
duces offsprings with the same number of flat elements Ne as their 
parents and maintains the elements used for connecting the 
cross-section to other components horizontal or vertical. Offsprings 
intersecting themselves are disregarded and new offsprings are then 
created until the population is replaced. 

A CO probability of 0.8 is used in this study. The roulette wheel se-
lection method is employed and only the 50% fittest individuals can 
enter the mating pool [19]. Elitism is applied and the best two 
cross-sections per generation are automatically copied to the next 
generation. 

2.4. Mutation 

The mutation operator allows the cross-sectional shapes to be 
altered, therefore creating new shapes, by changing the coordinates of 
one or more cross-sectional points following the rules in Ref. [20]. Only 

the starting point P0 cannot mutate and is fixed at (xmax/4,0). The 
probability of a cross-sectional point to mutate is taken as 0.01. 

Similarly to the cross-over operator, this function is programmed so 
connecting elements stay vertical or horizontal. Mutated cross-sections 
cannot intersect themselves. 

3. Optimisation problem 

3.1. General 

Eight optimisation scenarios are envisioned in this study. In all cases, 
the purlins are considered to be simply-supported, singly-symmetric, 
free to wrap and subjected to either a uniformly distributed inward or 
outward wind load. The purlins are assumed to have a sufficient number 
of bridges to provide full lateral and torsional restraint, so the bending 
stress distribution can be obtained from simple bending theory based on 
the section modulus about an axis perpendicular to the web [2]. More 
realistic restraints provided by the bridging system is computed in 
Section 5 when validating the optimised section with FE modelling. 

Two spans are considered, (i) a typical span of 8000 mm for which 
the capacity would principally governed by global buckling, and (ii) a 
shorter span of 3000 mm for which the capacity can be governed by 
either local, distortional or global buckling. The yield stress fy of the 
purlins is taken as 450 MPa, the Young’s modulus E as 200 GPa and the 
Poisson’s ratio ν as 0.3. 

Note, while in this paper, the purlins are considered to be singly- 
symmetric and to be connected to the main frame and roof similarly 
to commercialised Cee purlins (Section 3.3.2), the algorithm can be 
applied to optimise other purlin types, such as top hat and point- 
symmetric purlins, with minor modifications. The location of the re-
straints provided by the roof (Section 3.3.1) and the opening constraints 
for services (Section 3.3.3) would have to be changed for the former 
type, while the symmetric constraints imposed to the algorithm when 
drawing the cross-sections (Section 2.2) would need to be adapted for 
point-symmetric purlins. 

The roof is assumed to be screwed to the purlins and therefore pro-
vides restraints [2], as detailed in Section 3.2.1. The optimisation 
problem consists at minimising the cross-sectional area subjected to the 
following constraints: (1) having mechanical properties (inward ca-
pacity, outward capacity and bending stiffness) equal to or greater than 
a commercialised reference purlin enabling it to directly compete with 
existing products (see Section 3.2), (2) creating a section which could to 
be manufactured (see Section 3.3), (3) enabling connections to the main 
frame and roof (see Sections 3.3.1 and 3.3.2) and (4) having an opening 
wide enough to run utilities (see Section 3.3.3). To enable connections to 
the main frame and roof, segments are set vertical and horizontal, 
respectively. For each optimisation scenario, the best locations of these 
segments were found using the methodology detailed in Ref. [20]. As the 
methodology is already published, the calculations leading to these lo-
cations are not presented in this paper. 

The optimisations problems considered herein are as follow:  

• Case I: Shape optimisation of 8000 mm long and 1.5 mm thick purlin 
manufactured from four flat segments per half cross-section (Ne = 4). 
The first and third segments are set vertical and horizontal, respec-
tively, to connect the purlin. The C20015 purlin (i.e. a lipped Cee- 
section purlin with a nominal height of 200 mm and a wall thick-
ness of 1.5 mm) commercialised by Lysaght Australia [3] is used as 
the reference section.  

• Cases II and III: Same as Case I but with Ne = 6 for Case II and Ne = 8 
for Case III. In both cases, the first segment is kept vertical while the 
fourth and sixth segments are kept horizontal for Case II and Case III, 
respectively.  

• Case IV: Same as Case I but with a wall thickness of 1.9 mm and the 
C20019 purlin (i.e. a lipped Cee-section purlin with a nominal height 
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of 200 mm and a wall thickness of 1.9 mm) commercialised by 
Lysaght Australia [3] used as the reference section.  

• Cases V and VI: Same as Case IV but with Ne = 6 for Case V and Ne = 8 
for Case VI. In both cases, the first segment is kept vertical while the 

fourth and sixth segments are kept horizontal for Case V and Case VI, 
respectively.  

• Cases VII and VIII: Same as Cases I and IV, i.e. Ne = 4, but for 3000 
mm long purlins. 

Note that in a roll-forming manufacturing process, the cost associ-
ated with larger values of Ne is principally linked to the initial set-up of 
the roll-forming machine. This cost can be offset in mass productions, 
such as for purlins. 

For each optimisation case, the algorithm is run 10 times to verify its 
robustness. Per run, 400 individuals are created in the initial population 
and the algorithm is stopped at the 100th generation when convergence 
has occurred. 

3.2. Capacity 

3.2.1. Restraints provided by the sheeting 
Depending on the type of roof sheeting and the nature of its 

connection to the purlins, the sheeting can provide either translational 
restraint, rotational restraint (about an axis perpendicular to the plane 
of the roof through diaphragm shear action), or torsional restraint [2]. 
Equations have been developed for these restraints and their influence 
on the buckling of CFS beams studied [1,31–34]. In developing span 
tables for Australian purlins, the translational restraint was ignored as it 
could not be guaranteed that the sheeting would be tied back [35]. This 
approach is followed in this paper. The diaphragm shear action is also 
ignored and only the torsional restraint is considered assuming that the 
roof is screwed to the purlins. 

The analytical solution of the torsional restraint kr for Zeds and 
Sigmas purlins developed by Zhao et at [34]. is adopted in the optimi-
sation process. The solution showed a good agreement between the 
experimental and theoretical studies, with a 4% difference on average. 
The equation considers the rotation angle caused by both the localised 
deformation θL of the sheet at the self-drilling screw and the deformation 
θp of the purlin’s flange. Two solutions are given in Ref. [34] depending 
if the purlins rotates so that it contacts the roof at the flange-web 
intersection or at the flange-lip intersection. The latter equation is 
conservatively used in this study as it provides the lowest bound value of 
kr and is given as: 

kr =
E

(
βh2

T
nt3s a2 +

a
3Ip

+ b
Ip

)

L
(1)  

where Ip = Ltp3/12 (1 − ν2), E and ν are the Young’s modulus and Pois-
son’s ratio of steel, respectively, L is the purlin’s span, tp and ts are the 
purlin and roof sheeting thicknesses, respectively, a and b are the dis-
tances from the screws to the left and right ends of the horizontal flange 
to which the roof is connected, hT is the purlin flange width, n is the 
number of screws, β is a coefficient that depends on the bT/hT ratio and 
the screw location in which bT is the sheet trough width. In this paper, hT 
is taken as the width of the horizontal element to which the roof is 
connected to. The screws are assumed to be positioned in the middle of 
the horizontal element and a and b are therefore taken as half hT. β is 
calculated from Refs. [34] as 0.078 (ts/0.7)3. The roof chosen herein is 
the 0.48 mm thick Lysaght SPANDEK trapezoidal profile [36] with di-
mensions given in Fig. 3. The number of screws n considered was 
extracted from Ref. [36] as function of the purlin’s span L and is equal to 
15 and 36 for the 3000 mm and 8000 mm long purlins, respectively. 

For each cross-section investigated through the optimisation process, 
the torsional restraint kr is inputted as a distributed restraint along the 
length of the profile in the software CUFSM [29] at the location of the 
screwed connection to calculate the elastic buckling moments, as 
developed in the next section. 

Fig. 3. Dimensions of Lysaght SPANDEK trapezoidal profile [36] considered in 
this study. 

Fig. 4. Manufacturing and assembly constraints.  
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3.2.2. Design rules 
As mentioned in Section 2.1, the classical DSM [24], as published in 

Clause 7.2.2 of the Australian/New Zealand standard AS/NZS 4600 
[25], is used by the algorithm to calculate the nominal member moment 
capacity (Mb) of the purlins. The software CUFSM [29] is used to 
compute the signature elastic buckling curve from the FSM [26–29]. The 
rules published and verified in Refs. [9] to automatically obtain the 
elastic local (Mol) and distortional (Mod) buckling moments from the 
signature curve are used in this study. The elastic global buckling 
moment (Mo) is directly read from the signature curve at a 
half-wavelength of either 3000 mm or 8000 mm (i.e. conservatively 
ignoring the lateral and torsional restraint from the bridging system), 
and multiplied by a coefficient Cb = 1.14 in the AS/NZS 4600 [25] to 
consider the moment distribution of the simply-supported purlin loaded 
with a uniformly distrusted load (UDL). CUFSM is run twice per inves-
tigated cross-section to obtain the elastic buckling moments for both 
inward and outward wind loadings. 

3.3. Manufacturing constraints 

In consultation with industry, Wang et al. [21] defined three rules 
that the final cross-section must satisfy to be deemed manufacturable 
using roll-forming process. These rules are summarised below:  

• Rule 1: The minimum length Lmin of a single flat segment is 10 mm.  
• Rule 2: The number of segments Ne per half cross-section cannot 

exceed 10.  
• Rule 3: For the bend between flat segments, the minimum internal 

bending radius r to steel sheet thickness tp ratio is 1.0. 

Only Rule 1 is considered in this study and is summarised in Fig. 4. 
Rule 2 is automatically satisfied in each investigated case (see Section 
3.1). As the computational time is strongly correlated to the number of 
elements entered in CUFSM [29], the roll-forming bending radii are 
ignored (Rule 3) in the optimisation process and the cross-sections are 
drawn with sharp angles. Bending radii can be easily added prior to 
manufacture and was added to the validation of the optimised 
cross-sections through FE analysis (Section 5). The typical computa-
tional time per run using up to 8 cores in a 792-core HPC cluster con-
sisting of a mixture of SGI Altix XE and SGI® Rackable™ C2114-4TY14 
servers is 110 h, 140 h and 160 h for half cross-sections drawn with 4, 6 
and 8 elements, respectively. 

3.3.1. Horizontal elements 
The roof is assumed to be screwed to the horizontal element and a 

minimum length Lmin,h for this element is considered herein as 20 mm to 

allow for that connection. This constraint is illustrated in Fig. 4. 
Furthermore, to ensure connection to the roof sheeting, no other 

element can be positioned above the horizontal element. In the algo-
rithm, the y-axis coordinate of all nodes must be equal to or less than the 
y-coordinate of the horizontal element. 

3.3.2. Vertical elements 
Similar size to the currently used gusset plates to connect the purlins, 

through its vertical element, to the rafters are assumed in this study. 
Typically, two rows of two holes for M12 bolts are drilled in the gusset 
plates. The vertical distance db between bolts varies with the total depth 
H of the purlin. Performing a linear regression on current gusset plates in 
the Lysaght’s user guide [3], db (in mm) can be approximated to, 

db = 0.9H − 65 (2) 

Assuming a minimum distance of 1.5φ, where φ = 12 mm is the 
bolt’s diameter, between the centreline of the holes to the end of the 
vertical element, the minimum length Lmin,v of the vertical element of 
the analysed half cross-section is therefore considered in this study as, 

Lmin,v =
db

2
+ 1.5φ (3) 

This constraint is illustrated in Fig. 4. 

3.3.3. Opening 
To allow services to be installed, a minimum opening Dmin = 60 mm 

of the cross-section is assumed. In the algorithm, the y-axis coordinate of 
all nodes after the horizontal element must be greater than Dmin/2. This 
constraint is illustrated in Fig. 4. 

3.4. Fitness function and Augmented Lagrangian method 

The aim of the optimisation problem is to minimise the cross- 
sectional area As of the purlin subjected to the previously listed con-
straints. The unconstrained fitness function f suitable for GA is expressed 
in terms of inequality constraints as, 

f =
As

Aref
+αinmax

(

0,
Min

b,ref

Min
b

− 1

)

+αoutmax
(

0,
Mout

b,ref

Mout
b

− 1
)

+αImax
(

0,
Iref

Is
− 1
)

+
∑Ne

i=1
αL,imax

(

0,
Lmin,i

Ls,i
− 1
)

+
∑Ne+1

j=h
αD,jmax

(

0,
Dmin

2yj
− 1

)

+αhmax
(

0,
ymax

yh
− 1
)

(4)  

where Aref is the cross-sectional area of the reference purlin, Min
b and 

Mout
b are the inward and outward bending capacities, respectively, of 

Table 1 
Results for 8000 mm long and 1.5 mm thick purlins – Cases I to III – with reference section.    

Properties Dimensions 

Case Section As (mm2) Is (mm4) Min
b (kN.m) Mout

b (kN.m) Hc (mm) Wc (mm) Dc (mm) 2 × Lv
c (mm) Lh

c (mm) 

Reference C20015 579.0 3.80e6 6.02 5.85 203.0 76.0 172.0 203.0 76.0 
Case I (Ne = 4) Fittesta 550.4 3.80e6 6.04 5.84 218.8 83.6 191.9 170.0 37.1 

2nd fittesta 558.7 3.97e6 6.39 6.00 221.9 91.6 212.8 174.6 34.7 
Least fita 574.3 3.87e6 5.95 5.78 208.4 75.5 179.4 197.5 52.3 
Averageb (CoV) 562.6 (1.56) 3.86e6 (2.39) 6.18 (4.04) 5.96 (3.62) – – – – – 

Case II (Ne = 6) Fittesta 545.5 3.81e6 6.02 5.84 220.0 82.8 203.1 181.5 23.4 
2nd fittesta 545.4 3.80e6 6.19 5.85 221.1 87.0 212.4 172.6 28.3 
Least fita 548.0 3.94e6 5.85 5.68 223.9 76.0 197.8 174.3 30.9 
Averageb (CoV) 553.5 (2.35) 3.83e6 (1.49) 6.33 (8.36) 6.01 (7.29) – – – – – 

Case III (Ne = 8) Fittesta 540.6 3.80e6 6.09 5.84 223.1 84.6 213.1 173.9 20.6 
2nd fittesta 554.9 3.79e6 6.39 6.12 216.5 80.7 187.5 168.6 21.0 
Least fita 572.9 3.89e6 6.74 6.16 216.0 100.6 206.9 166.5 21.8 
Averageb (CoV) 566.7 (2.53) 3.83e6 (1.51) 6.82 (7.80) 6.37 (6.93) – – – – –  

a Based on fitness function Eq. (4) with penalty factors of 1.0. 
b Average of 10 runs, coefficient of variation in % given in brackets. 
c Dimension given between cross-sectional nodes, i.e. at centreline of wall elements. 
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the purlin, Min
b,ref and Mout

b,ref are the inward and outward bending 
capacities, respectively, of the reference purlin, Is and Iref are the second 
moments of area of the purlin and reference purlin, respectively, Lmin,i 
and Ls,i are the minimum required length and actual length, respectively, 
of segment number i, h is the index number of the last node of the 
horizontal element, yj is the y-coordinates of node number j and ymax is 
the maximum y-coordinate of all nodes. αin, αout, αI, αL,i, αD,j, and αh are 
penalty factors. In Eq. (4), (i) the first term represents the objective, (ii) 
the second and third terms correspond to the constraints on the inward 
and outward bending capacities relative to the reference section, (iii) the 
fourth term defines the constraint on the bending stiffness, also related 
to the reference section, (iv) the fifth term specifies the constraint on the 
minimum length on all elements (Sections 3.3, 3.3.1 and 3.3.2), (v) the 
sixth term stipulates the minimum opening of the cross-section (Section 
3.3.3) and (vi) the last term sets the location of the horizontal segment at 
the extreme fibre of the cross-section (Section 3.3.1). 

As stipulated in Section 3.1, the Augmented Lagrangian method [30] 
is used in the algorithm to express the fitness function and avoid 
ill-conditioned problems. AL has been successfully used in 
shape-optimisation of CFS beams and columns in Refs. [9,20,21]. More 
information on AL can be found in Ref. [30,37] and its specific appli-
cation to the current problem in Refs. [19]. The AL fitness function fAL is 
expressed as,  

where γin, γout, γI, γL,i, γD,i and γh are the penalty function coefficients, and 
μin, μout, μI, μL,i, μD,i and μh are the real parameters associated with the 
penalty function coefficients. The initial values of these parameters are 
chosen herein based convergence studies performed in Ref. [9,18,20] as 
2.0 for the penalty function coefficients and zero for the real parameters. 
The AL convergence rate is taken as 1.5 and the penalty increasing 
constant as 1.05 [18,19]. 

For consistency and sake of comparison, the inward Min
b,ref and 

outward Mout
b,ref bending capacities, the cross-sectional area Aref and the 

second moment of area Iref of the reference purlins are calculated using 
the same rules as the optimised sections and with sharp corners. The 
properties of these sections are given in Table 1 and Table 2 for 8000 mm 
long purlins and in Table 3 and Table 4 for 3000 mm long purlins. 

4. Results and discussion 

4.1. Convergence 

Fig. 5 plots the average fitness over 10 runs, calculated from Eq. (4) 
with penalty factors equal to 1.0, for all analysed cases in Section 3.1. 
Convergence is always achieved, generally before reaching 60 genera-
tions, outlining the robustness of the algorithm. The higher the number 
of flat elements, the slower the convergence rate as the algorithm needs 
to explore a larger design space. 

4.2. Constraints 

The algorithm always adequately satisfies all constraints and there-
fore produces solutions which can directly compete with existing 
products, be manufactured and assembled:  

• Constraints on properties: the algorithm satisfies the constraints on the 

inward capacity, the outward capacity and the second moment of 
area for 88.8%, 66.2% and 60% of the runs performed, respectively. 
When these constraints are not satisfied, the error is small and is on 
average equal to 1.0% for Min

b, 1.1% for Mout
b and 0.87% for Is.  

• Constraints on manufacturing: all elements of a cross-section fulfil the 
minimum length requirements for more than 61% of the runs. When 
this constraint is not satisfied, the average accumulated error over all 
elements is small and equal to 0.5%. This error is typically larger for 
Ne = 8 than for Ne = 4. 

Table 2 
Results for 8000 mm long and 1.9 mm thick purlins – Cases IV to VI – with reference section.    

Properties Dimensions 

Case Section As (mm2) Is (mm4) Min
b (kN.m) Mout

b (kN.m) Hc (mm) Wc (mm) Dc (mm) 2 × Lv
c (mm) Lh

c (mm) 

Reference C20019 746.7 4.91e6 8.77 8.57 203.0 76.0 165.0 203.0 76.0 
Case IV (Ne = 4) Fittesta 711.8 5.05e6 8.78 8.53 221.5 86.8 196.3 180.4 38.3 

2nd fittesta 711.9 4.89e6 9.06 8.75 213.2 90.8 194.2 164.9 56.8 
Least fita 738.0 5.17e6 10.51 9.98 217.4 100.9 196.2 165.4 40.0 
Averageb (CoV) 722.6 (1.55) 5.00e6 (3.10) 9.35 (7.45) 8.99 (6.52) – – – – – 

Case V (Ne = 6) Fittesta 710.0 4.92e6 8.87 8.58 218.5 80.7 192.3 175.2 33.5 
2nd fittesta 709.7 4.91e6 9.51 9.15 217.5 92.6 199.2 169.0 28.7 
Least fita 740.5 4.92e6 9.18 8.60 207.8 108.1 203.3 160.5 29.6 
Averageb (CoV) 719.4 (1.87) 4.92e6 (0.16) 9.17 (3.37) 8.79 (3.42) – – – – – 

Case VI (Ne = 8) Fittesta 706.1 4.91e6 8.98 8.59 217.6 89.7 205.2 169.1 21.9 
2nd fittesta 713.3 4.91e6 9.60 9.10 217.3 96.0 210.0 169.0 26.5 
Least fita 777.0 4.90e6 10.31 9.42 197.4 123.2 190.1 150.6 24.8 
Averageb (CoV) 747.1 (3.48) 4.91e6 (0.17) 10.19 (12.5) 9.47 (12.1) – – – – –  

a Based on fitness function Eq. (4) with penalty factors of 1.0. 
b Average of 10 runs, coefficient of variation in % given in brackets. 
c Dimension given between cross-sectional nodes, i.e. at centreline of wall elements. 

fAL =
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Aref
+

1
2

{
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[

max
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0,
Min
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b
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)]2

+ γout

[

max
(
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• Constraints on assembly: (i) the constraint on the minimum opening is 
always satisfied and (ii) the horizontal flat segment is located at the 
extreme fibre of the cross-section for 88.8% of the runs, with also a 
small average error of 0.4% when this constraint is not satisfied. 

4.3. Optimised purlins 

4.3.1. Cases I to III – 8000 mm long and 1.5 mm thick purlins 
Table 1 summarises the properties and dimensions of the fittest, 2nd 

fittest and least fit cross-sections over 10 runs for Cases I to III. Eq. (4), 
with penalty factors equal to 1.0, is used to determine the fitness of a 
cross-section. The average properties over 10 runs, with associated co-
efficients of variation (CoV), are also provided in the table for infor-
mation and to outline the consistency of the solutions. The cross-sections 
reported in Table 1 are also plotted in Fig. 6, Fig. 7 and Fig. 8 for Case I, 
Case II and Case III, respectively. 

Results show that increasing the number of flat segments leads to a 
reduction of the optimised cross-sectional area. Similarly to Ref. [9,18], 
the larger the number of elements, the more the algorithm smooths and 
rounds the cross-sections. When compared to the reference section 
C20015, the optimised (fittest) cross-sections drawn with 4, 6 and 8 flat 
elements per half cross-section result in saving 4.9%, 5.7% and 6.6% of 
steel, respectively. This cost saving in material is quite significant for a 
mass-produced product such as purlins. Therefore, the optimised purlins 
presented in the paper may benefit the industry as they are readily 
manufacturable with existing roll-forming process, can be connected to 
the rafters and roof using the fasteners currently used and they have 
properties matching existing purlins. Note that the optimised purlins are 
however between 6% and 10% deeper than the reference section and up 
to 31% wider. 

In reference to Figs. 7 and 8, the algorithm tends to nearly align some 
of the flat segments between the vertical and horizontal elements, and 

Table 4 
Results for 3000 mm long and 1.9 mm thick purlins – Cases VIII – with reference section.    

Properties Dimensions 

Case Section As (mm2) Is (mm4) Min
b (kN.m) Mout

b (kN.m) Hc (mm) Wc (mm) Dc (mm) 2 × Lv
c (mm) Lh

c (mm) 

Reference C20019 746.7 4.91e6 14.66 14.24 203.0 76.0 165.0 203.0 76.0 
Case VIII (Ne = 4) Fittesta 720.4 4.87e6 14.98 14.25 215.1 86.3 178.6 186.0 34.2 

2nd fittesta 729.6 5.19e6 15.32 14.70 218.6 86.1 186.5 193.4 45.5 
Least fita 729.1 4.63e6 15.05 13.90 204.9 98.7 176.9 169.8 38.8 
Averageb (CoV) 730.2 (0.87) 4.921e6 (3.58) 15.37 (3.26) 14.58 (2.82) – – – – –  

a Based on fitness function Eq. (4) with penalty factors of 1.0. 
b Average of 10 runs, coefficient of variation in % given in brackets. 
c Dimension given between cross-sectional nodes, i.e. at centreline of wall elements. 

Table 3 
Results for 3000 mm long and 1.5 mm thick purlins – Case VII – with reference section.    

Properties Dimensions 

Case Section As (mm2) Is (mm4) Min
b (kN.m) Mout

b (kN.m) Hc (mm) Wc (mm) Dc (mm) 2 × Lv
c (mm) Lh

c (mm) 

Reference C20015 579.0 3.80e6 9.41 9.03 203.0 76.0 172. 203. 76. 
Case VII (Ne = 4) Fittesta 547.0 3.82e6 9.93 9.03 220.0 75.5 193.9 179.0 46.1 

2nd fittesta 553.5 3.83e6 9.78 9.37 217.7 80.8 190.6 191.4 39.3 
Least fita 598.3 3.98e6 10.25 9.81 204.4 87.4 170.1 204.4 48.6 
Averageb (CoV) 565.6 (2.84) 3.85e6 (2.15) 10.03 (4.32) 9.42 (5.46) – – – – –  

a Based on fitness function Eq. (4) with penalty factors of 1.0. 
b Average of 10 runs, coefficient of variation in % given in brackets. 
c Dimension given between cross-sectional nodes, i.e. at centreline of wall elements. 

Fig. 5. Average fitness over 10 runs for (a) 1.5 mm thick purlins and (b) 1.9 mm thick purlins.  
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for practicality, a manufacturer may choose to reduce the number of 
cross-sectional elements by merging these nearly aligned flat segments, 
therefore favouring the optimised cross-sections in Case I. 

4.3.2. Cases IV to VI – 8000 mm long and 1.9 mm thick purlins 
Table 2 summarises the same results as Table 1, but for Cases IV to 

VI. The cross-sections reported in Table 2 are plotted in Fig. 9, Fig. 10 
and Fig. 11 for Case IV, Case V and Case VI, respectively. Similar con-
clusions to Section 4.3.1 can be drawn: (i) when compared to the 
reference section C20019, the optimised cross-sections drawn with 4, 6 
and 8 flat elements per half cross-section result in saving 4.7%, 4.9% and 
5.4% of steel, respectively, and (ii) the optimised cross-sections are 
typically deeper and wider than the reference section. The presented 
solutions therefore also represent more economical purlins. 

Similar to Cases II and III, in Cases V and VI, some flat segments are 
nearly aligned between the vertical and horizontal elements, and a 
manufacturer may choose to merge these segments for practicality. 

4.3.3. Cases VII and VIII – 3000 mm long purlins 
Tables 3 and 4 summarise the same results as Table 1, but for Cases 

VII and VIII, respectively. Figs. 11 and 12 plot the cross-sections re-
ported in Tables 3 and 4, respectively. The optimised cross-sectional 
shapes for the 3000 mm long purlins are very similar to the ones 
found for the 8000 mm long purlins. Similar savings in steel than for 
Cases I and IV can be achieved for Case VII (5.5% savings) and Case VIII 
(3.5% savings) (see Fig. 13). 

For the 1.5 mm thick optimised purlins, the local, distortional and 
global buckling modes govern the inwards and outwards capacities for 
55%, 25% and 20% of the cases, respectively. However, for the 1.9 mm 
thick optimised purlins, the same buckling modes govern for 10%, 30% 
and 60% of the cases, respectively. Still for the 1.9 mm thick optimised 
purlins, when global buckling governs, the distortional capacity is on 
average only 4% higher than the global capacity. Buckling mode inter-
action may therefore take place as noted in Ref. [18]. 

Fig. 7. Case II (8000 mm long, 1.5 mm thick and Ne = 6) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  

Fig. 6. Case I (8000 mm long, 1.5 mm thick and Ne = 4) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  
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5. Finite element analysis 

The efficiency of the optimised purlins relative to the reference 
sections are now validated with FE analysis. FE analysis is a well mature 
numerical method to model the structural response of cold-formed steel 
elements (see Refs. [38–40] for instance), with guidance provided in 
Ref. [41]. However, as computationally intensive, it is not always well 
suited for optimisation problems for which simplified design assump-
tions must often be made, as in the present paper (see Section 3). 
Nevertheless, by more accurately reproducing the loading, restraints 
and boundary conditions it represents a valuable tool to verify and 
confirm the optimisation results. 

In the section, the fittest cross-sections for Cases I and IV, and the 
C20015 and C20019 reference sections are modelled using the FE soft-
ware Abaqus [42]. The bending stiffness, inward and outward capacities 
of these sections are compared. 

5.1. Finite element model 

5.1.1. General 
The FE model is represented in Fig. 14. The bending radius was 

added to all cross-sections, with the internal bending radius r taken as 
1.0 times the wall thickness t. A positive or negative uniformly distrib-
uted pressure was applied to the top flange of the purlin, as shown in 
Fig. 14, to simulate the inward and outward wind loads, respectively. 
S4R shell elements were used with a mesh size of 3 mm × 3 mm, arising 
from the mesh sensitivity analyses in Ref. [38]. Non-linear geometric 
and material Riks analyses were run. 

5.1.2. Material properties 
In the flat parts of the cross-sections, the yield fy and ultimate fu 

stresses were taken as 450 MPa (Section 3.1) and 520 MPa [25], 
respectively. The strain-stress curve considered in these parts is shown in 
Fig. 15 and extracted from the coupon tests performed on cold-formed 
steel samples of similar yield stress in Ref. [38]. 

Fig. 9. Case IV (8000 mm long, 1.9 mm thick and Ne = 4) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  

Fig. 8. Case III (8000 mm long, 1.5 mm thick and Ne = 8) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  
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To account for the cold-forming process, the yield stress fy was 
enhanced by Δfy in the corners, and over a distance equal to 0.5πr on 
each side of a corner (Fig. 14), following the equations in Ref. [43]: 

Δfy = 0.6
(

Bc

(r/t)m − 1
)

fy (6)  

where, 

m= 0.192

(
fu

fy

)

− 0.068 (7)  

Bc = 3.69

(
fu

fy

)

− 0.819

(
fu

fy

)2

− 1.79 (8) 

An elastic-perfectly plastic strain-stress curve was considered in the 
corners. For both flat parts and corner, true stress-strain curves were 
inputted into the software [44]. 

5.1.3. Boundary conditions and restraints 
Similar to the optimisation process, the purlins were considered to be 

simply supported. To simulate the connections to the rafters, at each end 
of the purlin, the nodes of the web over a 36 mm wide (3 × bolt 
diameter) × twice Lmin,v high (gusset plate height in Eq. (3)) area were 
constrained as shown in Fig. 14. 

Three rows of bridging were considered, with the first and last rows 
positioned at 0.28 times the purlin span [3]. At each row of bridging, the 
lateral displacement of the nodes of the web over a 36 mm wide × 150 
mm high area were restrained, as shown in Fig. 14. 

The torsional restraints kr provided by the roof and considered in the 
optimisation algorithm (Eq. (1)), was simulated at the location of the 36 
screws for the 8000 mm long purlin, as shown in Fig. 14. 

5.1.4. Imperfections 
The strength and post-buckling behaviour of cold-formed steel 

members are sensitive to geometric imperfections. Imperfections were 
considered in this study by scaling the first buckling mode, obtained 
from a linear buckling analysis, so that the maximum imperfection was 

Fig. 11. Case VI (8000 mm long, 1.9 mm thick and Ne = 8) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  

Fig. 10. Case V (8000 mm long, 1.9 mm thick and Ne = 6) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  
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either equal to the span/1000, if the first buckling mode was global, or 
0.1t, otherwise [41]. 

5.2. Finite element results 

Table 5 summarises the cross-sectional area, the bending stiffness (in 
kN/mm) and the maximum inward and outward applied loads (in kN) of 
the analysed cross-sections. In the table, the bending stiffnesses were 
calculated by performing a linear regression on the applied load versus 
deflection at mid-span and middle of the web relationships. Note that 
the cross-sectional areas in Table 5 differ from Tables 1 and 2 due to the 
bending radius being considered in the FE models and not in the opti-
misation algorithm. 

The inward and outward failure modes for C20015 and Case I are 
plotted in Fig. 16. Failure occurred by local buckling of the flange in 
compression. 

For all scenarios, the bending stiffness of the optimised purlin is 

always higher than or equal to the associated reference purlin. For the 
1.5 mm thick purlins, the capacity of the optimised purlin is between 
11% (outward) and 16.9% (inward) greater than the reference C20015 
purlin. This leads to the capacity to cross-sectional area ratio of the 
optimised purlin being between 15.7% and 21.9% greater than the 
reference purlin. This confirms and outperforms the prediction of the 
optimisation algorithm. For the 1.9 mm thick purlins, the inward ca-
pacities of the optimised and reference purlins are equal, confirming the 
prediction of the algorithm. However, the outward capacity of the 
reference purlin is 5% greater than the optimised purlin. In term of ca-
pacity to cross-section area ratios, for inward loading the optimised 
purlin outperforms the C20019 by 3.9%, however, the reference purlin 
outperforms the optimised section by 1.6% for outward loading. 

While the FE models confirm the potential of the 1.5 mm thick 
optimised purlins, the optimised 1.9 mm thick purlins may not have the 
expected performance. Experimental tested are still needed to confirm 
these results. 

Fig. 13. Case VIII (3000 mm long, 1.9 mm thick and Ne = 4) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  

Fig. 12. Case VII (3000 mm long, 1.5 mm thick and Ne = 4) results (a) fittest cross-section, (b) 2nd fittest cross-section and (c) least fit cross-section.  
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6. Conclusions 

This paper shape optimised manufacturable and useable singly- 
symmetric purlins which can directly compete with existing products. 
The algorithm was presented along with the design methodology and 
the constraints considered. Eight optimisation cases were considered by 
optimising 1.5 mm and 1.9 mm thick purlins spanning either 3000 mm 
or 8000 mm. The cross-sections were drawn with either 4, 6 or 8 ele-
ments per half cross-section. Results showed that the algorithm 
converged to consistent solutions and satisfactory satisfied all con-
straints, resulting in optimised purlins which (i) can be manufactured 
with existing roll-forming process, (ii) be connected to the rafters and 
roof using the fasteners currently used and (iii) have properties match-
ing commercial purlins used as references. When compared to these 
reference purlins, the optimised purlins would save up to 6.6% of steel 
and therefore represent a potential solution to produce more economical 
products without compromising on their performance. The efficiency of 
the optimised purlins relative to the reference sections were further 
validated with FE analysis. The FE model more accurately reproduced 
the loading, restraints and boundary conditions when compared to the 
design assumptions made in the optimisation process. The FE analyses 
confirm that the optimised 1.5 mm purlins are superior to the reference 

Table 5 
Finite element results.    

Inward Outward 

Case/section As (mm2) Stiffness (kN/mm) Capacity (kN) Capacity to area ratio (N/mm) Stiffness (kN/mm) Capacity (kN) Capacity to area ratio (N/mm) 

C20015 573.2 0.108 10.4 18.2 0.111 10.2 17.8 
Case I 549.7 0.109 12.2 22.2 0.113 11.3 20.6 
C20019 737.4 0.141 17.9 24.2 0.143 17.1 23.2 
Case IV 710.2 0.147 17.9 25.2 0.150 16.2 22.8  

Fig. 14. Overview of the FE model.  

Fig. 15. Stress-strain curve used for flat part of the cross-section.  
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section, however, the 1.9 mm thick purlins may not have the expected 
performance. The next step to this research would be to experimentally 
verify the new and optimised purlins to fully investigate their potential 
and consider possible buckling mode interactions. 
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