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a b s t r a c t

This study aims to optimise the cross-sectional shape of singly-symmetric, open-section and simply-
supported cold-formed steel (CFS) beams and beam-columns. No manufacturing or assembly constraints
are considered. The previously developed augmented Lagrangian Genetic Algorithm (GA), referred to as
the “self-shape” optimisation algorithm, is used herein. Fully restrained and unrestrained beams against
lateral deflection and twist, as well as unrestrained beam-columns are optimised. Various combinations
of axial compressive load and bending moment are analysed for the beam-columns. The Direct Strength
Method (DSM) is used to evaluate the nominal member compressive and bending capacities. The ac-
curacy of the automated rules, developed in the literature to determine the elastic local and distortional
axial buckling stresses from Finite Strip signature curves, is verified herein to estimate the elastic bending
buckling stresses. The optimised cross-sectional shapes are presented for all cases and the evolution of
the unrestrained shapes from pure axial compression to pure bending is discussed.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Cold-formed steel (CFS) members are intensively used in the
construction industry due to their ease of erection and low
weight-to-capacity ratio [1]. Their structural efficiency lies in the
versatility of the cross-sectional shapes that enhances the strength
by controlling the three fundamental buckling modes, i.e. local,
distortional and global. Local buckling is enhanced in practice by
adding wall stiffeners, while lip stiffeners and rear flanges greatly
influence distortional buckling [2].

Improving the overall cross-sectional shape of CFS members
through shape optimisation algorithms is currently gaining sig-
nificant interest. The ultimate objective is to discover new and
innovative optimum cross-sections that can be manufactured and
practicably used onsite.

Nevertheless, research on shape optimisation of CFS members
has been solely restricted to columns with unconstrained (where
the algorithm is free to converge to any cross-sectional shapes) [3–
7] and constrained (where sections are able to be manufactured
and/or practicably assembled onsite) [8–12] problems. Shape op-
timisation of CFS beams has been seldom investigated and the
optimisation of CFS beams has been primarily performed so far by
algorithms that aimed at optimising the dimensions of a given
.

cross-section rather than optimising the cross-sectional shape it-
self, see [13–17] for instance. Shape optimisation of thin-walled
beams has been performed to a certain extent [18,19], but only to
maximise the second moments of area and minimise the cross-
sectional area.

This paper aims at shape optimising the cross-sections of un-
constrained (no manufacturing and assembly constraints) CFS
beams and beam-columns by minimising their cross-sectional
area for various combinations of axial compressive load and
bending moment. Unconstrained optimisation problems allow the
“absolute” optimised cross-sectional shape to be discovered. This
outcome provides a reference shape to be compared to when
manufacturing and assembly constraints are later introduced into
the algorithm. The present work is therefore an important step in
shape optimisation of practical CFS sections. An existing shape
optimisation algorithm [4,18] is used for this purpose.

The Direct Strength Method (DSM) [20] is used to calculate the
nominal axial compressive and bending capacities of the cross-
sections. Rules to automatically estimate the elastic bending local
and distortional buckling stresses to be used in the DSM are given
and verified against 64 cross-sections. The algorithm is applied to
beams that are either restrained (braced) or not against lateral
deflection and twist, and unrestrained (unbraced) beam-columns.
The optimised cross-sectional shapes are presented and the evo-
lution of the unrestrained shapes from pure axial compression to
pure bending is discussed.
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Fig. 1. Optimisation problem.
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2. The shape-optimisation algorithm

In this study, the “self-shape” optimisation algorithm for CFS
members, for which the principles are published in [18] and its
applications to singly-symmetric cross-sections are presented in
[4], is used. Genetic Algorithm (GA) [21] is used as the search al-
gorithm. The GA is combined with the Augmented Lagrangian (AL)
method [22] to avoid ill-conditioned processes by ensuring finite
values of the penalty factors.

Initial cross-sections are drawn using self-avoiding random
walks. Cross-over and mutation operators are performed on a
design space [4,18]. The algorithm has the advantages of (i) being
verified against a known optimisation problem for which an
analytical solution exists [18] and (ii) allowing arbitrary cross-
sections to be initially created with no presumption of the opti-
mised shape. Examples of arbitrary drawn singly-symmetric and
open cross-sections in the initial population can be found in [4].

More information and full details of the algorithm are available
elsewhere [4, 18]. The calibration of the factors used in the AL
method is given in [18].
3. The optimisation problem

The “self-shape” optimisation algorithm is used herein to op-
timise simply-supported, free-to-warp, singly-symmetric and
open-section beams and beam-columns. The three fundamental
buckling modes, i.e. local, distortional and global, are incorporated
through the use of the DSM, as described in Section 4. The yield
stress fy of the steel is 450 MPa, the Young's modulus E is 200 GPa
and the shear modulus G is 80 GPa. The wall thickness t is taken as
1.2 mm. The member is subjected to a uniform bending moment
M* about its axis of symmetry (x-axis) and a compressive axial load
N*. The optimisation problem is illustrated in Fig. 1.

In reference to Fig. 1, the member length L is fixed throughout
this paper at 1.5 m. Five load cases (LC) are considered to in-
vestigate the optimum cross-sectional shapes of simply supported
beams, columns and beam-columns:

� LC1: Pure bending (N*¼0 and M*¼2.5 kN m) for a fully re-
strained beam, (i.e. Ley¼Lez¼0 m, where Ley and Lez are the ef-
fective buckling lengths for bending about the y-axis and for
twisting about the longitudinal z-axis, respectively).

� LC2: Same moment as LC1 but for an unrestrained beam (i.e. Ley
¼Lez¼L¼1.5 m).

� LC3: Pure axial compression (N*¼75 kN and M*¼0) for an un-
restrained column (i.e. Lex¼Ley¼Lez¼L¼1.5 m, where Lex is the
effective buckling length for bending about the axis of sym-
metry). This case has already been investigated in [12] and the
previously obtained results are used in this study.

� LC4: Combined actions for an unrestrained beam-column with
dominant bending. N* is taken as 1/3 of the axial compressive
load in LC3 and M* as 2/3 of the bending moment in LC2 (N*

¼25 kN and M*¼1.67 kN m).
� LC5: Combined actions for an unrestrained beam-column with

dominant axial compression. N* is taken as 2/3 of the axial
compressive load in LC3 andM* as 1/3 of the bending moment in
LC2 (N*¼50 kN and M*¼0.83 kN m).

As cold-rolled steel coil can usually be ordered in any width,
the approach is to mimic a CFS manufacturer who wants to opti-
mise the cross-sectional shape against a given design loading
combination. The unconstrained problem in the GA consists of
minimising the cross-sectional area As subject to an inequality
penalty function on N* and M*. The interaction equation described
in Clause 3.5 of the Australian cold-formed steel design
specification AS/NZS 4600 [23] is used as the penalty function,
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where ϕc and ϕb are capacity reduction factors, taken as 1.0 in this
study. Nc and Mb are the nominal member compressive and
bending capacities of the cross-section, respectively. The general
form of the fitness function f suitable for GA is then expressed as,
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where Aref is the reference area of similar value to the optimised
cross-sectional area. Aref is estimated herein with preliminary runs
and is taken as 190 mm2 for LC1, 292 mm2 for LC3 [12], and
260 mm2 for other cases. α is a penalty factor [21].

To avoid ill-conditioning problem, the AL constraint-handling
method developed in [22] for the GA is used. The actual form of
the fitness function f used in the algorithm then becomes,
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where γ is the penalty function coefficient, and m is the real
parameter associated with the penalty function. Initial values of
γ¼2.0 and μ¼0 found in [18] are used. Similar to [18], the AL
penalty increasing constant β and convergence rate ρ are set to
1.05 and 1.5, respectively.

Detailed parameters of the GA used in this paper are given in
[4,18]. In this study, 500 cross-sections are analysed per generation
and the algorithm converges in less than 60 generations (see
Section 5.1). Therefore, a maximum of 30,000 solutions in total are
analysed per run, this is similar to the 40,000 solutions analysed
per run in [7]. 10 runs are performed for each load case to verify
the robustness of the algorithm. The design space is set to
100 mm�100 mm. The cross-sections are composed of con-
secutive elements having nominal length of 4 mm. The prob-
abilities of cross-over and mutation operators are equal to 80% and
1%, respectively.
4. Nominal member compressive and moment capacities

4.1. The Direct Strength Method (DSM)

The DSM [20] allows designing CFS members for local, distor-
tional and global buckling simultaneously. The method presents
the same degree of complexity for any cross-sectional shapes and
therefore is well suited for shape optimisation problems. The DSM
as published in Clauses 7.2.1 and 7.2.2 of the AS/NZS 4600 [23] is
used in this study to calculate the nominal member compressive
and moment capacities Nc and Mb, respectively. Nc is expressed as,

( )= ( )N N N Nmin , , 4c ce cl cd

where Nce, Ncl and Ncd are the nominal member capacities in
compression for global, local and distortional buckling, respec-
tively. Similarly, Mb is expressed as,



Fig. 2. Cross-sections, (a) “Cee” and (b) “Zed”, storage rack uprights (c) with web and lip stiffeners, (d) with web stiffener only, (e) with lip stiffener only, and (f) without web
and lip stiffeners.
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where Mbe, Mbl and Mbd are the nominal member moment capa-
cities for global, local and distortional buckling, respectively. The
DSM is well developed in the literature and the references to
[20,23] are made for instance.

4.2. Elastic buckling stresses

4.2.1. Determining elastic buckling stresses
The local and distortional elastic buckling stresses fol and fod in

pure compression and bending, respectively, needed in the DSM to
determine the local and distortional nominal member capacities
are estimated herein by performing Finite Strip analyses [24] using
the open source software CUFSM [25]. CUFSM was incorporated
into the algorithm in [4]. The global elastic member buckling load
Noc and buckling moment Mo needed to determine the global
nominal capacities (Nce and Mbe) are calculated in accordance with
the Equations given in Clauses 3.4.3 and 3.3.3.2.1 (a) of the AS/NZS
4600 [23], respectively. In the best case scenario, the signature
curves produced by the Finite Strip Method (FSM) [24] have two
distinct local minima representing the elastic local buckling stress
fol (first minimum) and the elastic distortional buckling stress fod
(second minimum). Nevertheless, the FSM often generates indis-
tinct buckling modes with none, one or more than two local
minima. In such cases, the elastic buckling stresses need to be
“manually” identified using engineering judgement [26]. As
manual methods are not compatible with optimisation algorithms,
rules to automatically detect the elastic local and distortional
buckling stresses from the signature curves have been developed
in [4]. However, these rules have only been verified so far for
elastic axial buckling stresses and need to be further verified for
elastic bending buckling stresses. The rules are as follows (see [4]
for more details and the underlining philosophy):

� For the elastic local buckling stress fol:
Step 1: Calculate the signature curve in CUFSM using the FSM in
the half-wavelength interval [r0, d] where r0 is the least radius
of gyration and d is the largest overall dimension of the cross-
section.
Step 2: a) If at least one local minimum exists in the interval,
then fol is taken as the smallest local minimum;
b) Else, fol is taken as the minimum gradient of the signature
curve in the interval.

� For the elastic distortional buckling stress fod:

Step 1: a) Calculate the pure distortional signature curve using
the constrained Finite Strip Method (cFSM) [27] in CUFSM in the
half-wavelength interval [min (20r0, 3d), 10d];

b) If at least one local minimum exists in the interval, then
record the critical half-wavelength Lcrd corresponding to the
minimum value on the curve between the smallest local minimum
and the values at the bounds of the interval, and go to Step 3;

c) Else, go to Step 2.
Step 2: Expand the upper limit of the interval by 3d and run the

pure distortional signature curve in the new interval using the
cFSM module and go to Step 1 b).

Step 3: Calculate fod from the signature curve using the FSM at
the half-wavelength Lcrd.

4.2.2. Rules validation for elastic bending buckling stresses
The automated rules in Section 4.2.1 are validated herein for

elastic bending buckling stresses against the manual method de-
scribed in Clause 3.3 of the Direct Strength Method Design Guide
[26]. Specifically, to handle an indistinct local mode, the basic
options include: (i) refining the half-wavelength steps, (ii) basing
judgement on the local buckling mode definition, (iii) pining in-
ternal fold lines to force local buckling if possible, or (iv) con-
servatively choosing the lowest elastic buckling stress at a half-
wavelength less than d. Similarly, the options to handle an indis-
tinct distortional mode involve: (i) refining the half-wavelength
steps, (ii) basing judgement on the distortional buckling mode
definition, (iii) pining internal fold lines to isolate local buckling
from distortional buckling if possible, (iv) slightly altering the di-
mensions of the cross-section to detect a trend in the distortional
buckling minima, or (v) conservatively selecting the lowest buck-
ling mode which exhibits the distortional buckling features at a
half-wavelength greater than the local buckling half-wavelength.

The same forty-eight conventional cross-sections (sixteen
“Cee” and sixteen “Zed” sections from BlueScope Lysaght [28] and
sixteen storage rack uprights) used to validate the automated rules
for elastic axial buckling stresses in [4] and sixteen optimised
beam and beam-column sections obtained in the next section are
used herein to validate the automated rules for elastic bending
buckling stresses. The conventional sections are shown in Fig. 2
and the exact dimensions are given in [29]. Table 1 lists the dif-
ferences between the automated rules and the manual method for
both local and distortional buckling stresses. The automated rules
are accurate with an average error of 0.01% and 0.33% for local and
distortional buckling, respectively. The automated rules usually
provide lower elastic buckling stresses (conservative) than the
manual method. The maximum difference between the two
methods is found for a 110 mm deep and 1.2 mm thick rack up-
right section with lip stiffeners, being 6.59%.

The signature curves, together with the deformed buckling
shapes, of the fittest optimised section for LC1 are shown in Fig. 3.
The cross-section is an “I” type (see Section 5 for more details) and
distortional buckling does not occur. The manual method would
therefore not consider distortional buckling in the DSM while the
automated rules predict distortional buckling at a half-wavelength
of 58 mm in Fig. 3. Therefore, by calculating the distortional



Table 1
Comparison of elastic buckling stresses between automatic rules and manual method.

Section types No. of sections
analysed

Depth to thickness ratio Difference in elastic buckling stresses between automatic rules and manual method (%)a

Local Distortional

Min Max Average Min Max Average Min Max

“Cee” 16 52.6 133.3 0.02 0.00 0.21 0.00 0.00 0.00
“Zed” 16 52.6 133.3 0.02 0.00 0.18 1.89 0.00 6.58
Upright (lips) 9 22.9 60.0 0.01 0.00 0.04 �1.02 �3.63 6.59
Upright (no lips) 7 22.9 60.0 0.00 0.00 0.00 0.00 0.00 0.00
Optimum (LC1) 4 100.3 103.1 0.00 0.00 0.00 – – –

Optimum (LC2) 4 79.5 82.5 0.00 0.00 0.00 0.00 0.00 0.00
Optimum (LC4) 4 88.4 98.5 0.00 0.00 0.00 0.00 0.00 0.00
Optimum (LC5) 4 75.8 88.8 0.00 0.00 0.00 0.00 0.00 0.00
All sections 64 22.9 133.3 0.01 – – 0.33 – –

a A negative percentage value means that the elastic buckling stress from the automated rules is higher than that from the manual method.

Fig. 3. Buckling curves for the fittest cross-section in LC1.
Fig. 4. Buckling curves for the fittest cross-section in LC2.
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nominal member moment capacity Mbd, the automated rules lead
to conservative results. It is worth mentioning that the calculated
Mbd is always equal to the moment causing initial yield at the
extreme compression fibre My for all optimised sections for LC1.
Local buckling is captured by the two methods at a half-wave-
length of 33 mm.

The signature curves of the fittest optimised section for LC2 are
shown in Fig. 4. The signature curves of the optimised sections for
LC3 and LC5 present similarity to Fig. 4. One local minimum gra-
dient is found at 60 mm on the FSM curve and is selected by both
methods to predict the local elastic buckling stress. A local mini-
mum at 338 mm is observed for the distortional buckling mode
and is therefore selected by the manual method. The pure dis-
tortional buckling cFSM signature also presents a local minimum
at 338 mm leading to the manual and automated rules selecting
the same elastic distortional buckling stress.
Fig. 5. Average fitness f times Aref/As over 10 runs.
5. Results and discussion

5.1. Convergence

Fig. 5 shows the average general fitness functions f in Eq. (2),
with α¼10, times Aref /As over 10 runs and for all load cases. The
coefficient α¼10 is used to better visualise the convergence by
increasing the weight of the constraint. The ratio Aref/As, where As

is the optimised cross-sectional area reported in Section 5.2, en-
ables comparisons of the convergence performance among the five
load cases. The algorithm always converges to an optimised so-
lution for all load cases in about 50 generations. The convergence
rates of beams and beam-columns are similar to each other.

The computation time is highly related to the number of cross-
sectional elements in CUFSM [25], written in MATLAB, to perform
the Finite Strip analyses. The more the number of elements, the



Table 2
Average results over 10 runs for all load cases.

Load cases Cross-sectional area Nominal member capacity in compression Nominal member moment capacity Combined Capacity ratio

As (mm2) CoV (%) Nc (kN) N*/Nc CoV (%) Mb (kN m) M*/Mb CoV (%) N*/Nc þM*/Mb CoV (%)

LC1 189.2 0.19 – – – 2.50 1.00 0.39 – –

LC2 235.2 0.18 – – – 2.50 1.00 0.42 – –

LC3 [12] 289.1 0.31 75.01 1.00 0.05 – – – – –

LC4 264.4 0.34 55.40 0.45 2.94 3.04 0.55 2.47 1.00 0.38
LC5 281.8 0.33 68.77 0.73 2.20 3.10 0.27 6.49 1.00 0.36
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longer the computation time is. Up to 8 computer cores are se-
lected per MATLAB analysis in a 792 core HPC cluster consisting of
a mixture of SGI Altix XE and SGIs Rackable™ C2114-4TY14 ser-
vers for this purpose. The Finite Strip analyses took about 80% of
the total optimisation time. The main algorithm is written in Py-
thon and does not use parallel processing.

The average computation time per generation is 40 min for
fully restrained beams (LC1), 45 minutes for unrestrained beams
(LC2) and 50 minutes for columns (LC3). For the beam-columns,
the elastic buckling analyses in CUFSM are run for both the axial
compression and bending moment. This considerably slows down
the algorithm, and the average computation time per generation
reaches 130 minutes for LC4 and 140 minutes for LC5.
5.2. Average results

Table 2 summarises the average results over 10 runs for all load
cases. The algorithm always satisfies the strength ratio criteria and
converges to consistent solutions with small CoVs on the cross-
sectional area (maximum of 0.34% for LC4). This outlines the ro-
bustness of the algorithm. For LC1 and LC2 (pure bending), the
average nominal member moment capacity Mb is always equal to
the target bending moment M*¼2.5 kN mwith a maximum CoV of
0.42% for LC2. The average optimised cross-sectional area (As

¼189.2 mm2) of the fully restrained beams for LC1 is about 20%
smaller than the same of the unrestrained beams for LC2 (As

¼235.2 mm2). For the beam-columns (LC4 and LC5), the interac-
tion equation in Eq. (1) provides an average action-to-capacity
ratio of 1.00 with a maximum CoV of 0.38% for LC4.
(a) As = 188.55 mm 2 (b) As = 188.84 mm2

Ms = 2.49 kN· m Ms = 2.50 kN·m
M*/Ms = 1.01 M*/Ms = 1.00

Fig. 6. Optimised cross-sections for LC1, (a, b
5.3. Cross-sectional shapes

5.3.1. Fully restrained beams
Fig. 6 illustrates the two fittest (Fig. 6(a) and (b)) and two least

fit (Fig. 6(c) and (d)) optimised cross-sectional shapes for the fully
restrained beams (LC1). The optimised cross-sectional area As is
used to determine how fit a cross-section is. As seen in Fig. 6, the
fully restrained beams converge to a slender “I” section type with a
curved web. The parallel flanges are short and without lip stif-
feners. The curved web enhances the local buckling capacity of the
web and allows maximising the second moment of area by moving
the material away from the neutral axis. “I” sections were already
found to be the optimised cross-sectional shape for beams by
Griffiths and Miles [30] where only maximising the second mo-
ment of area was considered. The slender web may fail under
shear and the DSM for shear buckling [31,32] will need to be in-
troduced into the algorithm. The fittest solution in Fig. 6(a) is
120.3 mm deep, 17.1 mm wide and therefore has a depth-to-width
ratio of 7.0.

5.3.2. Unrestrained beams
Fig. 7(a)–(d) shows the two fittest and two least fit cross-sec-

tions for the unrestrained beams (LC2). Compared to the fully re-
strained beams with the slender cross-sectional shapes in Fig. 6,
the unrestrained beams converge to a largely open and stocky
“Cee” section type in Fig. 7. When compared to the restrained
beam, this shape allows significantly larger (i) second moment of
area about the y-axis that therefore enhances the flexural buckling
load about this axis and (ii) warping constant that therefore en-
hances the torsional buckling load. The difference in torsional
constant between the two sections is about 20%. The web is more
(c) As = 189.41 mm2 (d) As = 189.99 mm2

Ms = 2.49 kN·m Ms = 2.52 kN·m
M*/Ms = 1 .01 M*/Ms = 0.99

) fittest and (c, d) least fit cross-sections.



(a) As = 234.62 mm2 (b) As = 234.86 mm2 (c) As = 235.22 mm2 (d) As = 236.22 mm2

Mb = 2.50 kN·m Mb = 2.50 kN·m Mb = 2.50 kN·m Mb = 2.52 kN·m
M*/Mb = 1.00 M*/Mb = 1.00 M*/Mb = 1.00 M*/Mb = 0.99

Fig. 7. Optimised cross-sections for LC2, (a, b) fittest and (c, d) least fit cross-sections.
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rounded for the two fittest cross-sections in Fig. 7(a) and (b) than
the two least fit ones in Fig. 7(c) and (d). All cross-sections in Fig. 7
have short lip stiffeners of about 18 mm, approximately orientated
at 45° to the horizontal flange. The depth of the fittest section in
Fig. 7(a) is 95.9 mm, the width is 59.6 mm, and therefore the
depth-to-width ratio is 1.6. This corresponds to a depth-to-width
ratio 77% less than the fittest cross-section in Fig. 6(a).

5.3.3. Unrestrained columns
Fig. 8 presents for reference the two fittest and two least fit

cross-sections for the 1.5 m long columns in [12]. These cross-
sections are typically rounded and close, especially for the fittest
ones. The fittest cross-section in Fig. 8(a) has a depth of 93.3 mm, a
width of 50.6 mm and therefore a depth-to-width ratio of 1.8, si-
milar to the fittest one of the unrestrained beams in Fig. 7(a).

5.3.4. Unrestrained beam-columns
Fig. 9 and Fig. 10 show the two fittest and two least fit cross-

sections for LC4 and LC5, respectively. In Fig. 9(a)–(c), an open
“Cee” section type with curved lip stiffeners, approximately or-
ientated at 45° to the flange, is found, whereas in Fig. 9(d) a largely
open “Sigma” type cross-sectional shape with short curved lip
stiffeners is found. The lip stiffeners in Fig. 9(a)–(c) are about
(a) As = 286.68 mm2 (b) As = 287.57 mm2

Nc = 74.63 kN Nc = 75.00 kN 
N*/Nc = 1.01 N*/Nc = 1.00

Fig. 8. Optimised cross-sections for LC3 (from [12])
25 mm longer than the ones of the unrestrained beams in Fig. 7
and the cross-sectional shapes are less open.

When the design axial load N* increases and the design bend-
ing moment M* decreases in LC5, the cross-sections in Fig. 10 tend
to close up more than the ones in Fig. 9 (LC4). The cross-sections
also tend to resemble those of the columns in Fig. 8. The cross-
sectional shapes in Fig. 10 (LC5) are therefore stockier than the
ones in Fig. 9 (LC4). The fittest solution in Fig. 10 (a) has a depth of
101.1 mm, a width of 49.4 mm and thus a depth-to-width ratio of
2.1, i.e. about the same width as the fittest cross-section for LC4
but 8.6% shorter. The fittest cross-sectional area As¼280.75 mm2

in Fig. 10 (a) is 6.3% larger than the one in Fig. 9(a).
While Fig. 10 (c) and (d) have similar cross-sectional areas

(within 0.1%) and interaction ratios (Eq. (1)), they adopt different
strategies to satisfy the strength requirement. The cross-section in
Fig. 10 (c) has a depth-to-width ratio of 1.9 and is nearly closed,
while the cross-section in Fig. 10 (d) is 14.6% deeper and 11.5%
wider, with a depth-to-width ratio of 2.0, but open. This derives
from the cross-section in Fig. 10 (c) favouring its nominal axial
capacity Nc instead of its nominal bending capacity Mb (Nc

¼71.50 kN and Mb¼2.77 kN m) to decrease the action-to-capacity
ratio in Eq. (1) and the cross-section in Fig. 10 (d) (Nc¼68.86
and Mb¼3.13 kN m) favouring the opposite. The cross-section in
(c) As = 288.98 mm2 (d) As = 289.32 mm2

Nc = 75.00 kN Nc = 75.00 kN
N*/Nc = 1.00 N*/Nc = 1.00

, (a, b) fittest and (c, d) least fit cross-sections.



(a) As = 263.10 mm2 (b) As = 263.33 mm2 (c) As = 265.18 mm2 (d) As = 266.06 mm2

Nc = 54.88 kN Nc = 53.71 kN Nc = 56.32 kN Nc = 53.67 kN
Mb = 3.03 kN·m Mb = 3.09 kN·m Mb = 3.01 kN·m Mb = 3.13 kN·m
N*/Nc+M*/Mb = 1.01 N*/Nc+M*/Mb = 1.01 N*/Nc+M*/Mb = 1.00 N*/Nc+M*/Mb = 1.00

Fig. 9. Optimised cross-sections for LC4, (a, b) fittest and (c, d) least fit cross-sections.
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Fig. 10 (c) therefore resembles more to the optimised columns in
Fig. 8 (LC3) while the one in Fig. 10 (d) resembles more to the
optimised beam-columns in Fig. 9 (LC4).

5.4. Evolution of the optimised cross-section from column to beam

The evolution of the average results (see Section 5.2) and the
fittest shape (see Section 5.3) for the unrestrained cases is sum-
marised in Fig. 11. As the design bending moment M* increases
from zero to 2.5 kN m and the design axial compression N* de-
creases from 75 kN to zero, the average cross-sectional area As

decreases by 18.6% from 289.1 to 235.2 mm2 and the fittest cross-
sectional shape gradually opens up as described in Section 5.3.
Specifically, the cross-sectional area only decreases by 2.5% be-
tween LC3 and LC5 where the design axial load N* decreases by
33%. This result implies that the value of the design moment (M*

¼0.83 kN m) in LC5 is not large enough to significantly influence
the cross-sectional shape. However, the reduction in the cross-
(a) As = 280.75 mm2 (b) As = 280.79 mm2

Nc = 70.03 kN Nc = 70.07 kN 
Mb = 2.91 kN·m Mb = 2.92 kN·m 
N*/Nc+M*/Mb = 1.00 N*/Nc+M*/Mb = 1.00

Fig. 10. Optimised cross-sections for LC5, (a, b
sectional area increases to 6.3% when the design axial load N* is
further reduced from 50 kN to 25 kN between LC5 and LC4, and to
10.8% between LC4 and LC2 when N* is reduced from 25 kN to
zero.
6. Conclusions

This paper aims to optimise the cross-sectional shapes of CFS
beams and beam-columns. Manufacturing and assembly con-
straints were not included in this study. Various load combinations
of axial compressive load and bending moment were used to
perform shape optimisations of simply-supported 1.5 m long sin-
gly-symmetric sections. Fully restrained beams and unrestrained
beams and beam-columns against lateral deflection and twist
were considered. The rules to automatically determine the elastic
local and distortional buckling stresses from the Finite Strip
Method signature curve developed in [4] were verified for elastic
(c) As = 282.82 mm2 (d) As = 283.82 mm2

Nc = 71.50 kN Nc = 68.86 kN
Mb = 2.77 kN·m Mb = 3.13 kN·m
N*/Nc+M*/Mb = 1.00 N*/Nc+M*/Mb = 0.99

) fittest and (c, d) least fit cross-sections.



Fig. 11. Evolution of average cross-sectional areas and shapes for the unrestrained
load cases.
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bending buckling stresses. The main conclusions can be sum-
marised as follows:

� The robustness of the algorithm is demonstrated by consistent
optimised solutions over 10 runs.

� The automated rules were found to accurately determine the
elastic local and distortional bending buckling stresses.

� The algorithmwas able to converge to optimised cross-sectional
shapes of CFS members subject to pure bending and combined
axial compression and bending.

� An optimised slim “I” type cross-sectional shape with a curved
web was typically found for the fully restrained beams, and a
stocky and largely open “Cee” like cross-sectional shape with lip
stiffeners for the unrestrained beams. For the unrestrained
beam-columns, “Cee” type cross-sectional shapes were also
found, with the cross-section tending to close up when the axial
compressive load was increased and to open up when the
bending moment was increased.

� The unconstrained algorithm for shape optimisation of CFS
beams or beam-columns allows the cross-section able to freely
converge to any cross-sectional shape. This gives a reference
cross-sectional shape for the constrained one with manu-
facturing and assembly constraints found in the future.
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