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A B S T R A C T

This study investigates how backgrounded membrane imaging (BMI) can be used in combination with con-
volutional neural networks (CNNs) in order to quantitatively and qualitatively study subvisible particles in
both protein biopharmaceuticals and samples containing synthetic model particles. BMI requires low sample
volumes and avoids many technical complications associated with imaging particles in solution, e.g., air bub-
ble interference, low refractive index contrast between solution and particles of interest, etc. Hence, BMI is
an attractive technique for characterizing particles at various stages of drug product development. However,
to date, the morphological information encoded in brightfield BMI images has scarcely been utilized. Here
we show that CNN based methods can be useful in extracting morphological information from (label-free)
brightfield BMI particle images. Images of particles from biopharmaceutical products and from laboratory
prepared samples were analyzed with two types of CNN based approaches: traditional supervised classifiers
and a recently proposed fingerprinting analysis method. We demonstrate that the CNN based methods are
able to efficiently leverage BMI data to distinguish between particles comprised of different proteins, various
fatty acids (representing polysorbate degradation related particles), and protein surrogates (NIST ETFE refer-
ence material) only based on BMI images. The utility of using the fingerprinting method for comparing mor-
phological differences and similarities of particles formed in distinct drug products and/or laboratory
prepared samples is further demonstrated and discussed through three case studies.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American Pharmacists Association. This is an open

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Keywords:

Biopharmaceutical characterization
Image analysis
Imaging methods
Morphology
Protein aggregation
Monoclonal antibody(s)
Surfactant(s)
Protein formulation
Microparticle(s)
earning related).
lated).
om (C.P. Calderon), tim.

NIH Award # R41GM130513

c. on behalf of American Pharmacists Association. This is an open access article under the CC BY license
Introduction

Particulate matter is considered a critical quality attribute in the
development and manufacturing of biopharmaceutical drug prod-
ucts. Particles found in drug products can originate from environ-
mental contamination (unexpected foreign particles), manufacturing
process (e.g., filter material, stainless steel), excipients (e.g., free fatty
acid particles), active pharmaceutical ingredients (API) like
therapeutic proteins (e.g., protein particles), or can be container
related (e.g., silicone oil).1

The occurrence of proteinaceous particles and aggregates in bio-
pharmaceuticals may result in unintended immunological effects,1,2

and thus may pose a safety concern.3−5 Protein particle formation
can be induced by different chemical6 or physical degradation7 mech-
anisms induced by numerous stress factors (e.g., temperature excur-
sions, interfacial or mechanical stress).8−10

The non-ionic surfactants polysorbates 20 and 80 (PS20, PS80) are
the most commonly used stabilizers in biopharmaceuticals and are
contained in >70% of marketed parenteral biological drug products.11

Polysorbates improve product shelf life by their ability to protect pro-
tein against interfacial stress, to prevent protein adsorption to con-
tainer surfaces, and to stabilize protein against stresses during
common manufacturing processes (e.g., fill/finish, lyophilization).2,12
−14 Polysorbates exhibit great structural heterogeneity, which is
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caused by the diversity in fatty acid ester distribution, polyoxyethy-
lene chain length, and core sugar structure.13,15 During storage of liq-
uid drug product, enzymatic hydrolysis or oxidation of polysorbate
can occur, which can result in the release of degradation products
such as free fatty acids (FAs). FAs are poorly soluble in aqueous solu-
tions and can form visible and/or subvisible particles.2,4,5,13,14,16−18

Both proteinaceous and non-proteinaceous particles in the visible
and subvisible size range need to be analyzed to monitor the stability
of therapeutic protein formulations. One potential particle characteri-
zation technique is backgrounded membrane imaging (BMI), an auto-
mated, 96-well plate based approach for the quantification and
characterization of subvisible particles >2 mm. BMI offers high
throughput analysis as well as low sample consumption.19 Since
analysis of isolated particles on the membrane surface occurs in air,
BMI does not suffer from interferences by air bubbles and is insensi-
tive to the formulation’s refractive index.

Discrimination and classification of particles in a protein drug product
or distinguishing particles from various distinct formulations are
demanding because particles exhibit a high degree of heterogeneity in
origin, size and morphology.1 For example, characterization and quantifi-
cation of FA particles resulting from degradation of polysorbate are chal-
lenging due to the fact that, by human eye, FA particles often exhibit
similar morphology as other particle types (e.g., protein aggregates).
Unfortunately, most of the morphological information contained in parti-
cle images is usually not exploited during data analysis, e.g., only a small
number of simple morphological features related to size and shape is uti-
lized in standard BMI analysis. A deeper qualitative insight into collected
(BMI) particle images should be possible when data analysis is comple-
mented by artificial intelligence (AI) methods.

In recent years, AI has demonstrated substantial progress in the analy-
sis of particle images. Through its ability to extract data features from
imaged particles, AI can leverage subtle morphology differences to dis-
criminate particle populations and enables new particle classification and
characterization approaches. Such classification methods have already
been demonstrated on images from flow imaging microscopy.20−22 In
particular, it has already been observed, by convolutional neural network
(CNN) based methods, that signatures of various stresses (e.g., mechanical
agitation or temperature shocks) can manifest as distinct morphologies in
protein aggregates imaged by flow imaging microscopy.20,21,23−25 Accord-
ingly, AI based approaches such as CNNs have great potential to support
and supplement the analysis of collected (BMI) particle images. However,
it was unknown to the authors prior to this study, if the isolation of par-
ticles on a membrane surface including vacuum application necessary in
BMI would compromise the morphological information of various particle
Table 1
Overview of Samples and Properties. Additional Abbreviations Used here but not Explained
mitic Acid, C16), SteA (Stearic Acid, C18) and OleA (Oleic Acid, C18:1).

Sample Designation Sample Solvent Concentrat

DP A (DP A*: second
analytical run)

histidine buffer with 0.04% (w/v) PS80 �50 mg/mL

DP B sodium phosphate buffer with 0.01% (w/v)
PS80

�20 mg/mL

DP C histidine buffer with 0.04% (w/v) PS20 >100 mg/m

FA Mix I DP C formulation buffer 22mg/mL (M
(Mix II) of
(»55%), M
(»5%), an
capric aci

FA Mix II DP C formulation buffer
FA Mix III DP C formulation buffer + 77 mM sodium

chloride and 6 ppb aluminum (III) chloride,
pH 5.0

Single FA samples DP C formulation buffer 10mg/mL o
40mg/mL

ETFE > 99% water + 0.02% sodium azide + 0.02% 4
(1, 1, 3, 3 tetramethyl butyl) phenyl poly-
ethylene glycol

< 0.01%
types encoded in digital images that has been successfully used in previ-
ous flow imaging based approaches.

Although CNN based classification can be extremely accurate in
identifying particles, these classifiers exhibit a major inherent limitation
in their inability to identify particles formed under stress conditions not
covered by the underlying CNN training data (the potential aggrega-
tion-inducing stresses must be known a priori). In contrast to traditional
supervised CNN based classifiers, the fingerprinting approach can iden-
tify when new “classes” are encountered (i.e., the method can detect
novel particle populations not contained in the training data). With the
fingerprinting approach, a high dimensional image is compressed to a
two-dimensional (2D) image representation we refer to as an
“embedding”.26,27 The fingerprinting approach was originally motivated
as a dimension reduction technique aimed at quality control applica-
tions (where extreme dimension reduction is necessary for nonpara-
metric density estimation and formal goodness-of-fit testing).20 In our
present study, we focus on showing how the fingerprinting method
can be used to compare heterogeneous particle populations.

Specifically, in this study, we used BMI, to generate images of sub-
visible particles from three different groups of samples containing a
variety of particles including: protein based drug products (DP A, DP B,
and DP C), synthetic model FA particles (from a single FA or from a mix-
ture of FAs) and ethylene tetraflouroethylene (ETFE) particles, a NIST
protein particle surrogate. Our main purpose was to develop and
evaluate automated image analysis methods based on CNNs for the
comparison and classification of images from different types of pharma-
ceutically relevant particles. In addition, the potential impact of BMI-
specific sample preparation (vacuum application, drying on a mem-
brane surface) on the particle morphology information and conse-
quently on the possibility of distinguishing different types of particles
was evaluated. Going beyond typical CNN based classification, the
recent fingerprinting approach20 was evaluated to not only compare
particle classes/types but also improve studies on subvisible particle for-
mation mechanisms in drug products. We also explore how the finger-
printing approach can allow for a more quantitative comparison of
similarities and differences between different particle types.
Materials and Methods

Materials

Drug products (DPs) contained 20 to >100 mg/mL IgG1-type
monoclonal antibodies (mAbs) formulated at a pH between 5-6 in
in the Previous Text are: LauA (Lauric Acid, C12), MyrA (Myristic Acid, C14), PalA (Pal-

ion of Relevant Component Particle Type

mAb 1 protein particles with no meaningful levels of
other constituents

mAb 2

L mAb 3 FAs or salts of FAs with no significant amount
of protein

ix I and Mix III) or 11mg/mL
total FA: composed of LauA
yrA (»18%), PalA (»11%), SteA
d <5% each of OleA, caprylic, and
d (percentages as w/w of total FA)

mixed FA particles (artificially generated)

f one FA (PalA or SteA or MyrA) or
of LauA

single FA particles (artificially generated)

ETFE
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different buffers (Table 1). The DPs were selected due to the presence
of well characterized product related particles. DP A was stored at
-80°C, DP B and DP C were stored at 2-8°C until the day of BMI
analysis.

FAs used to prepare synthetic model FA particles (Table 1) were of
analytical standard grade and obtained from Merck (Darmstadt, Ger-
many). Excipients used for the preparation of formulation buffers
were of “Ph. Eur.” or better grade. Highly purified water was used
throughout the study (Milli-Q� IQ 7000 purification system; Merck).

ETFE particles (Reference Material 8634) were obtained from the
National Institute of Standards and Technology (Gaithersburg, MD,
United States).

Generation of FA Particles as Model for Particles Originating from
Polysorbate Degradation

Details on FA sample composition are summarized in Table 1. For
particle samples containing a single FA species, the respective FA was
dissolved at a 1,000-fold of the target concentration in 2-propanol. 2-
Propanol was filtered with a 0.22-mm hydrophilic polyvinylidene
fluoride (PVDF) syringe filter (Merck) prior to sample preparation.
Dissolved FA was then spiked into a formulation buffer of same com-
position as for DP C in a 6R glass vial. Particle samples were homoge-
nized by inversion and incubated for 6 to 7 days at 2-8°C. For particle
samples containing multiple FA species, stock solutions each contain-
ing a single FA were prepared in filtered 2-propanol at a 7,000-fold of
the target concentration of the respective FA. A stock of the FA mix-
ture in 2-propanol was then obtained by mixing the single FA stocks
at equal volumes. The mixed FA stock was then spiked into formula-
tion buffer as described above. Samples Mix I and Mix II were incu-
bated at 2-8°C up to 5.5 months. Sample Mix III, containing
additional salts, was incubated at 2-8°C and after incubation times of
36 hours and 1, 4, and 5.5 months sample volumes for BMI analysis
were withdrawn from the same vial after homogenization.

Particle Analysis by Backgrounded Membrane Imaging (BMI)

BMI analysis was performed with a HORIZON instrument (Halo
Labs, Philadelphia, PA, USA). Application of samples to 96-well mem-
brane plates (Halo Labs) was carried out in a laminar air flow cabinet.
A volume of 30 - 420mL of sample was pipetted per well and vacuum
was applied at 350 mbar below ambient pressure to remove liquid
from the membrane plate. In the case of samples where more than
60 mL of sample per well was required, the sample was pipetted in
successive steps of 60 mL with vacuum suction after each step. After
sample application and vacuum suction, each well was washed with
at least the 1.5-fold volume of water.

Characterization of Nature of Particles in Protein Based Drug Products

Particles present in DP A to C were characterized after isolation on
gold-coated membrane filters by micro-spectroscopic techniques.
Scanning electron microscopy coupled to an energy dispersive X-ray
detector (SEM-EDX) allowed a semi-quantitative analysis of the ele-
mental composition of particles. FTIR measurements in attenuated
total reflection mode (ATR-FTIR) in a spectral range of 4000-600 cm-1

were performed on isolated particles to determine their organic
nature. In addition, isolated DP C particles were further characterized
by liquid chromatography mass spectrometry (LC-MS) to determine
in greater depth their organic nature qualitatively and quantitatively.

Computational Details for Analyzing BMI Images via CNNs

The classification and embedding analyses were performed on
BMI particle image sets without any detailed information on the type
or composition of particles, or on applied experimental protocols
(the samples were blinded and denominated as sequentially num-
bered particle images).

The approach outlined in Daniels et al. (2020)25 was followed for
CNN model construction. The specific CNN network architecture used
for training the classification algorithm is provided in Fig. S1; a minor
variant of this network architecture was used for the CNN based
embedding used in fingerprinting (see Fig. S1 caption for details).
Below, we outline the main steps of the CNN-based analysis.

BMI Image Pre-Processing
Images of individual particles, denoted as collected BMI particle

images, were extracted from the HORIZON instrument’s background-
corrected well-images using proprietary software. The neural net-
work was configured to process grayscale images that were 32 £ 32
pixels; the results in this work were found to be insensitive to the
precise pixel size (a comparison of output obtained using 24 £ 24
images is reported in the supporting information). In order to achieve
this size and keep the spatial image resolution fixed throughout (i.e.,
no image rescaling applied), the following pre-processing steps were
implemented before inputting the images to the neural network: for
individual particle images smaller than 32 pixels in either dimension,
image borders were extended with a constant intensity (the
extended pixels took on the average pixel intensity of the training
set) with the original image centered within this padded border to
achieve the target image size (black borders and other image padding
strategies were also tested and generated nearly identical results); for
individual particle images larger than 32 pixels in either dimension,
the particle images were centered and cropped to the target size
used in the CNN network. A total of N � 140,000 collected (BMI) par-
ticle images was available to be analyzed by two primary types of
CNN models considered in this work: CNN classification networks
and closely related CNN embedding networks. The various CNNs
used in different sections differ primarily in the training data used to
calibrate the models and/or the loss objective function used to esti-
mate CNN models; all images were subsequently normalized by sub-
tracting the empirical training set pixel intensity mean and
subsequently dividing by the training set pixel intensity standard
deviation.

Classification Networks
For CNN based classification models, the extracted individual

images with a label, i.e., particle type information, used explicitly in
the model were shuffled and randomly assigned to the train or test
set (80/20% train/test split, where 80% were used for training and 20%
were used as test data). Test data were not used in training the CNN
model. Image sample sizes used for each CNN are reported in the
Results and Discussion. The classification network (see Fig. S1 for
details) was trained for 15 epochs (an epoch is one complete pass
through the training data) using an Adam optimizer with the AMS-
grad option set to true with a minibatch size of 256 (all other parame-
ters were default) optimizing a weighted cross entropy loss objective
function. In all classification models studies, weights were selected to
be inversely proportional to the number of samples of each category.

Embedding Networks
The embedding network architecture differs from the classifica-

tion network only in the last layer (see Fig. S1). However, a different
objective loss function is used to estimate the CNN parameters from
the training data. The “Batch All non-zero” triplet loss objective func-
tion26 (using 32 images of each class to construct triplet mini-
batches) with squared Euclidean distances (and margin hyper-
parameter = 1.0) was used as the loss function for obtaining the CNN
parameters of the embedding network. The CNN embedding network
was trained with the same optimizer using an 80/20% train/validation
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set split. The validation set was used to monitor the loss function
with a “patience” of 5 (i.e., the parameter optimization was ceased if
the validation loss function did not decrease beyond the empirically
observed minimum loss function value for 5 epochs). The CNN
parameters yielding the minimum triplet loss on the validation set
were selected in an effort to avoid over-fitting.

Probability Density Function (pdf) or Fingerprint Estimation and
Goodness-of-fit Statistic Computation

The scatterplot of CNN embeddings for a given class of interest
was used to derive the corresponding probability density function
(pdf); this is what we refer to as a fingerprint. To compute the pdf or
fingerprint, the CRAN package ks28 was leveraged to obtain the opti-
mal general bandwidth matrix (with off-diagonal terms) using the
plug-in matrix bandwidth selector associated with a Gaussian kernel
density estimate (the data and optimal bandwidth then permit evalu-
ation of the pdf at any point of interest). Due to (relatively) low parti-
cle numbers in the studied cases, the entire dataset was used to
construct the fingerprints (in contrast to the approach taken in Cal-
deron et al.25).

For goodness-of-fit hypothesis testing, a reference fingerprint of
interest was selected as the null pdf; the null hypothesis is that the
observed data represents random samples drawn from the null pdf
and the alternative hypothesis is that the observed data are random
samples drawn from any other pdf. Since real world FA particles due
to polysorbate degradation were one of our primary interests, in this
work, we used collected (BMI) particle images of DP C as the null ref-
erence pdf and tested images from all other samples (e.g., synthetic
model FA particles). Using the null pdf and scatterplot data from a
class of interest, the Rosenblatt transform29 was computed using cus-
tom Python functions. The Kolmogorov-Smirnov goodness-of-fit test
statistic30 was then computed using the function kstest in the stat
package of scipy (version 1.4.1). To address over-rejection (i.e., the
practical vs. statistical significance problem31), we divided each test
scatterplot data set into Ntest = 100 subsets and applied the goodness-
of-fit test on samples of size Ntest (the net data was randomly shuffled
without replacement and grouped into subsets of size Ntest) and the
percent of subsets rejected was recorded. For example, if a given class
had a total of 30,000 images, 300 = 30,000/Ntest subsets would be
formed and the fraction of rejected goodness-of-fit tests in that col-
lection of tests is used to quantify the proximity of the consistency/
inconsistency of the embedding scatterplot data with the selected
null pdf. A low fraction rejection indicates statistical consistency and
a high fraction rejection indicates an inconsistency with the null pdf.

Computational Environment Details
All computations (CNN and goodness-of-fit analyses) were carried

out in Python 3.7.1 using Pytorch 1.7.0 in a Docker container running
Ubuntu 18.04.5 LTS connected to two Nvidia GeForce 1080s.

Results and Discussion

Classification of Collected BMI Particle Images into Different Classes (FA,
Protein, or ETFE Particles)

For the proof-of-concept study, we analyzed particle images from
(i) the palmitic acid (PalA) particle sample, (ii) two drug product sam-
ples (DP A, DP B) containing protein particles, and (iii) ETFE particles
in order to create four classes of particles from fundamentally differ-
ent sources (Table 1). Particles in DP A and DP B were identified as
proteinaceous particles with no meaningful levels of other constitu-
ents via ATR-FTIR and SEM-EDX (using an experimental approach
similar to Cao et al. (2015)4). Besides being related to different pro-
teins and protein concentrations, formation mechanism and age of
particles in DP A and B are also different: protein particles in DP A
were generated on a short time scale due to fill-finish stress, whereas
DP B protein particles were slowly formed over years (>5 years) dur-
ing long-term storage at 2-8°C. Hence, we aimed to see if BMI images
of proteinaceous particles in DP A and DP B could be distinguished in
the first classifier considered. ETFE particles are abraded polymer
particles which are time-stable and have similar optical properties
relative to protein aggregates in solution. The abraded ETFE studied
in this work was developed by NIST as a protein surrogate originally
for size and count applications in flow imaging microscopy.32 We
wanted to study if the morphology of this surrogate protein-particle
standard exhibits morphologies of protein particles when imaged by
BMI.

Figure 1 shows randomly selected particle images from the four
classes in the first CNN based classification model considered; images
of PalA particles, protein particles in DP A or DP B, or ETFE particles
are displayed in each panel. In addition, Table 2 displays the test clas-
sification accuracy achieved by this traditional supervised CNNmodel
(see Fig. S1 for neural network details) for the four classes considered
explicitly in training the CNN model of this section. The numbers
reported in the table correspond to the fraction of correctly labeled
images for the test data. The neural network was trained with a total
of � 75,000 images of the four classes split into an 80/20% train/test
set. Note that the sum of the rows always equals one in the classifiers
studied.

Table 3 focuses on test results obtained via a different CNN model;
this neural network was trained only with BMI images of different FA
particle samples (trained with �75,000 images split evenly into an
80/20% train/test set). The confusion matrix summarizes the classifi-
cation results obtained with the 20% test data comprising of particles
generated with single FAs (C12 to C18) or with a mixture of FAs at
two different concentrations (see Table 1).

Finally, in Table 4 we show classification results for BMI particle
images from DP C with the neural network applied in Table 3.
Roughly 20,000 BMI images of this out-of-sample particle type (i.e.,
no images of the DP C class were used in training or testing) were
classified into the predefined FA particle classes of the CNN. The par-
ticles in DP C were characterized by LC-MS as FAs or salts of FAs with
no significant amount of protein (see section 2.4) and originated
from enzymatic degradation of polysorbate.

Discussion
The randomly selected particle images in Fig. 1 display that both

dramatic and subtle morphological differences exist in BMI particle
images sampled from the four classes summarized in Table 2. Table 2
demonstrates that BMI images contain enough morphological infor-
mation about the underlying particles to accurately distinguish
between particles from the FAs, two proteins, and protein surrogates.
BMI particle images originating from a given sample were classified
as distinct population and being different to particles from other
samples/types. ETFE particle images were different from protein par-
ticle images in two included DPs (differing in protein, protein concen-
tration, formulation, particle formation mechanism, particle age), and
particle images of synthetic model FA particles generated by spiking
palmitic acid into a placebo formulation. The accuracy achievable by
a standard CNN classifier using BMI data is encouraging. For example,
77% of the PalA particle images and 81% of the proteinaceous particle
images in DP A as well as 82% of the proteinaceous particle images
from DP B were correctly classified. Similarly, ETFE could be differen-
tiated in 95% of the test images.

The classification accuracy achievable is notable since the imaged
particles are not in their native solution environment when analyzed
by BMI. Prior to this study, it was unknown to the authors if the isola-
tion of particles on a membrane surface with applying vacuum and
drying steps inherent in the BMI method would sufficiently preserve
the morphology of different particle types or origins.



Figure 1. Randomly selected particle BMI images of ETFE, PalA (C16), and DP A and DP B.

ARTICLE IN PRESS

C.P. Calderon et al. / Journal of Pharmaceutical Sciences 00 (2022) 1−13 5
The previous result encouraged us to evaluate if BMI images of
particles of various FAs (placebo spiked with FA of a chain length
from C12 to C18) and FA mixtures at two different concentrations
were similar or resulted in distinct morphologies. As can be observed
in Table 3, the BMI FA particle images were distinguished by the tra-
ditional classification network. Note that in this case there are six
classes in the CNN model, so a random classifier would predict the
correct answer 1/6 of the time. The diagonal entries are the largest in
each test case and greatly exceed the random guess fraction (i.e., 1/
6 = 0.17), showing that even BMI particle images from a large collec-
tion of FAs exhibit distinct morphology detectable by a CNN. These
results indicate that FAs of variable carbon chain lengths form par-
ticles with distinct image signatures detectable by CNNs under our
experimental conditions. When generated from a mixture of FAs,
subtle systematic differences in particle morphology (that can be
seen by careful eye inspection) are detected for samples Mix I and
Mix II by CNNs, despite the two mixtures differing only in FA concen-
tration. This could be partly explained by solubility limits of the
applied FA species in aqueous solutions. The solubility limits of the
three major FAs (out of the seven FAs contained in Mix I and Mix II,
see Table 1) at 2-8°C were determined by Doshi et al. (2015)2 in a for-
mulation containing 0.04% (w/v) PS20 at pH 5.7. The solubility limits
of lauric, myristic, and palmitic acid are 19 § 1 mg/mL, 3 § 1 mg/mL,
and 1.5 § 0.5 mg/mL, respectively. In FA Mix II (11 mg/mL) the con-
centrations of palmitic (1.3mg/mL) and myristic acid (2.0 mg/mL)
were below their solubility limits and the particles appeared slightly
brighter and less dense compared to FA Mix I (22 mg/mL) (see Fig.
S3). In FA Mix I with high FA concentration, the concentrations of pal-
mitic (2.5 mg/mL) and myristic acid (4.0 mg/mL) exceeded the solu-
bility limits and the particles appeared slightly darker. Accordingly,
understanding the solubility limits of FAs in pharmaceutically rele-
vant solutions is crucial not only for understanding the reasons for
nucleation and precipitation resulting in particle formation (see Sec-
tion 3.2.2 for additional discussion), but also for understanding the
morphological differences of the formed particles. It would certainly
be useful to know the solubility limits of all seven FAs contained in
the mixed FA samples to further understand the results obtained.
Nevertheless, these results suggest that the CNN was able to detect
subtle differences in morphology of FA particles originating from
changes only in the total concentration of FAs.



Table 2
Confusion Matrix Showing Ground-truth (rows) vs. Predicted Label (columns)
for Four Different Classes of Particles: the Protein Surrogate ETFE, PalA (C16),
and DP A and DP B. In Each Row, the Numbers Listed Correspond to the Fraction
of Individual BMI Test Images Classified into the Category Labels Shown in the
Columns). Green Color Highlights Classification Results for the True Class (a
Perfect Classifier would Exhibit Ones Along the Diagonal). Pink Color Indicates
Fraction of Misclassification.

Table 3
Confusion Matrix of FA Particle Classes. The CNN was Trained with Images of a Large
Collection of Particles from Pure FAs and FA Mixtures of Known Composition. See
Table 1 for a Detailed Description of the Samples Analyzed. The Ground-truth Row
Labels have been Omitted for Clarity (Top to Bottom Ground-truth Labels Correspond
to Left to Right Column Labels). Color Code: Green Indicates Fraction of Correct Classifi-
cation, Pink Marks Fraction of Misclassification.

Table 4
Classification of Particle Images from DP C Using the CNN from Table 3, in which DP C
was not Used as a Training Class. Notably, Orthogonal LC-MS Analysis (See Methods
Section) Indicated that Particles in DP C were Primarily Composed of FAs or Salts of FAs
with no Significant Amount of Protein. Using BMI Images, the CNN Predicts PalA (C16,
no Color) as the Most Likely Label when Analyzing � 20k DP C BMI Particle Images.
Pink Cells Indicate Particle Classes DP C Particles were less Frequently Assigned to.
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Table 4 shows that PalA (C16) particles are the closest match
when the CNN model, trained on the synthetic model FA particles
shown in Table 3, is forced to classify DP C particles into one of the
six classes used in CNN training. In particular, for the FA related par-
ticles in DP C, which formed due to enzymatic degradation of poly-
sorbate, more than half of the images were classified by the neural
network as being most similar to PalA followed by SteA particles and
particles in FA Mix I (see Table 4). Interestingly, LC-MS analysis indi-
cates that particles in DP C contain 10% stearic acid, 33% palmitic
acid, and 45% myristic acid (see Section 3.2.2 for further discussion
and analysis). However, a classifier match on an out-of-sample test
case (recall the CNN classifier was only trained on synthetic model FA
particle classes and not DP C) does not indicate identical particle
types. In the next section, we explore how the fingerprinting method
can be used to more quantitatively explore the similarities and differ-
ences of various particle types with particles of DP C.
Qualitative and Quantitative Comparison of BMI Particle Images by
Fingerprint Analysis

In this subsection, we evaluate the fingerprinting approach as an
alternative to supervised CNN classification for the qualitative and
quantitative comparison of particle types coming from a variety of
conditions in three exemplary case studies. The case studies aim at
gaining insights about protein particles formed by different mecha-
nisms in different DPs (case study 1); studying particles from differ-
ent FAs in laboratory samples and formed in DP due to PS20
degradation (case study 2); characterizing morphological changes of
synthetic model FA particles over time (case study 3). All samples
studied throughout are presented in Table 1.
The embeddings, i.e., the scatterplot of dimension reduced repre-
sentations of BMI particle images, used in the fingerprint method
based on six samples containing FA particles (including DP C) and
two protein particle samples (DP A and DP B) are shown in Fig. 2.
Since many of the embeddings overlap, the embeddings are split into
two separate plots in Fig. 2 to improve clarity (however all 8 classes
were simultaneously used in training the CNN embedding network).
Despite the substantial dimensional reduction of the BMI particle
images into a 2D embedding space, the fingerprinting approach still
reveals differences in particle morphologies.

Recall that the CNN embeddings used in our fingerprint analysis
utilize a nonlinear CNN whose parameters were obtained by maxi-
mizing an objective function that explicitly leverages user-supplied
training image label information (here "labels” correspond to the
Sample Designations shown in Table 1) in order to create a low-
dimensional embedding with nonlinear function approximation.
Principal components analysis (PCA) is a linear unsupervised dimen-
sion reduction technique; traditional PCA aims at using unlabeled
data in order to construct an orthonormal basis capable of approxi-
mately reconstructing the entire image with a subset of the obtained
basis vectors. In Fig. S2, we show PCA embeddings obtained by ana-
lyzing the same data shown in Fig. 2a. In contrast to the CNN embed-
dings, the embeddings of DP A to C obtained using PCA overlap
heavily for a majority of the drug product samples (although each
PCA embedding point cloud exhibits a slightly different shape). Com-
paring Fig. 2a and Fig. S2, one can observe a benefit of a CNN dimen-
sion reduction technique utilizing labels.
Case Study 1: Comparison of BMI Particle Images for Protein Particles
Formed by Different Mechanisms in Different DPs

In Fig. 3, fingerprints, i.e., estimated nonparametric pdfs, approxi-
mating the distribution of embeddings of selected representative
cases from Fig. 2 are shown. In particular, Fig. 3 compares the finger-
prints for DP A and DP B (the two drug products with proteinaceous
particles) against DP C, MyrA and FA Mix I in order to illustrate two
items: (i) embedding points corresponding to distant regions exhibit
distinct morphologies as judged by a human observer; and (ii) images
belonging to different classes and exhibiting similar fingerprints (e.g.,
FA Mix I and DP A) also tend to have very similar particle morpholo-
gies.

To illustrate both of these points, the � 50 closest (in terms of
Euclidean distance) embedding points of DP B, DP C, MyrA and FA
Mix I to their corresponding global pdf modes (i.e., the global maxi-
mum of the pdf denoted by circled x’s in Fig. 3) were computed and
corresponding images are presented in Fig. 4.

Discussion. Four cases with distinct pdf modes exhibit distinct mor-
phologies as can be observed by inspecting Fig. 4. It is worth explicitly
noting that the particle populations in the two different DPs with
proteinaceous particles (DP A, DP B) exhibited readily distinguishable
fingerprints with well separated modes (Fig. 3) indicating that the



Figure 2. Embeddings of DPs and FAs. A neural network was trained to create an embedding which maps the grayscale pixel intensities from a labeled BMI image collection into a
2D scatterplot representation (i.e., we perform dimension reduction). Shown are the embedding data used to create probability density function (pdfs), referred to as fingerprints.
Embeddings of some samples overlap substantially in embedding space due to similar particle morphologies, hence we have separated the embeddings into two groups of plots. In
addition, fingerprint contour plots of selected samples shown in Fig. 3 further aid in illustrating the similarities and differences in overlapping fingerprints.

Figure 3. Probability density functions (pdfs) or fingerprints of embeddings coming
from five selected particle types. The fingerprints were estimated from the embed-
dings shown in Fig. 2. The contour levels displayed correspond to the probability mass
covered by the enclosed area; the mode of the distribution (indicated by circles with
x’s for each case) is in the middle of the lowest level set shown and each of the other
levels displayed is the area associated with the %-value of the probability mass (e.g.,
80% indicates the region containing 80% of the probability mass centered at the mode).
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BMI images of the protein particles generated by different mecha-
nisms can be separated using the fingerprinting approach.

Whereas the CNN classifier in the previous section was comprised
of 32 dimensions, the features from the BMI images are compressed
into a 2D embedding in the fingerprint. This strong dimension reduc-
tion might reduce separability compared to a CNN classifier, but the
embedding representation often appears to “curate” a highly hetero-
geneous particle collection into representative particle images. Con-
sequently, the curation enables the observation of common texture
and structure compared to randomly selected images. For instance,
particles in images in the pdf mode of DP B, DP C, and MyrA look dif-
ferently in terms of shape and brightness (Fig. 4) and the modes are
also well separated in the embedding space (Fig. 3). Nevertheless, the
fingerprinting approach was unable to create a 2D representation
that could separate DP A particle images from FA Mix I images (while
simultaneously encoding information from the six other particle
types shown in Fig. 2). This is likely due to the high degree of similar-
ity of FA Mix I (see Fig. 4) and DP A particle images (see Fig. 1) which
indicates that different particle types might not always exhibit suffi-
ciently different morphologies for discrimination by the fingerprint-
ing approach. As mentioned, the algorithm is aiming to compress the
BMI particle image data down to just two numbers, and if finger-
prints are close in shape, the underlying particle morphologies are
likely similar. Furthermore, when comparing Fig. 3 and 4, the results
of this case study illustrate that embeddings derived from BMI
images (which avoid solution based refractive index contrast issues)
can also correlate with human interpretable morphologies. However,
there is no guarantee that embeddings computed by CNN loss func-
tions correlate with human interpretable features or “morphologies”
such as shape and brightness. In contrast, CNN computed features
can encode information at diverse length scales,33 which may not be
obvious to human interpretation. In line with our present findings
made for BMI images, we have empirically observed embeddings
from CNN and human interpretable features correlate in flow imag-
ing microscopy in previous studies.20,24,25 That is, the CNN based
embedding scheme is not likely leveraging subtle run specific image
differences induced by, e.g., variations in illumination or drifting
optics. However, we would like to explicitly note that the fingerprint-
ing algorithm can be used to embed samples not considered in the
training scheme. If the resulting fingerprints are similar (or different)
one can have confidence that the underlying particle morphologies
are similar (or different) in the corresponding BMI images. In previ-
ous work25, we demonstrated how the fingerprinting approach can
detect novel particle populations. In this work, we focus on using the
fingerprinting approach to compare particle morphologies from dif-
ferent drug products and synthetic model FA particle samples.

Case Study 2: Comparison of BMI Particle Images of FA Particles in a DP
with Laboratory Prepared FA Model Particle Samples

In this case study, the same CNN embedding (fingerprinting) net-
work shown in the previous section is utilized to qualitatively and
quantitatively compare similarity of embeddings corresponding to
BMI images of FA particles originating from polysorbate degradation
in DP C and of synthetic model FA particles (see Table 1). The compar-
ison aims to determine the suitability of using different synthetic
model FA particles, which can be generated in the time scale of hours
to days, to mimic FA particles formed as a consequence of polysorbate
degradation within a time frame of several months.



Figure 4. Source BMI images nearest four of the modes shown in Fig. 3. Note how the spatially distant regions of Fig. 3 correspond to distinct particle morphologies. Fingerprints of
FA Mix I and DP A overlap globally to a high-degree and particle images from FA Mix I and DP A appear to show similar particle morphologies (randomly sampled DP A particles are
shown in Fig. 1 and exhibit similarity to typical FA Mix I particles shown here).
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Similarity of BMI images of the synthetic model FA particles to the
BMI particle images from DP C was quantitatively determined by the
goodness-of-fit hypothesis testing described in the Methods. For this
purpose, the DP C pdf was used as the null density and the various
laboratory prepared FA particle samples as well as DP A and DP B
(both representative for pharmaceutically relevant protein particles)
were tested to see how similar these cases are to DP C. The class with
the lowest rejection rate was deemed the closest match to the FA par-
ticles in DP C. When subjected to the stringent goodness-of-fit test
obtained using DP C as the null pdf, with N=100 particle image sub-
sets, DP A, DP B and all FA samples were rejected at 100% except PalA
and SteA. SteA particle images exhibited the second fewest hypothe-
sis testing rejections (78%), whereas PalA particles exhibited the few-
est rejections (44%). Note, the goodness-of-fit test was merely used
to quantify similarity to DP C’s pdf; less stringent tests or metrics can
be considered. This and other issues, such as practical vs. statistical
significance, are discussed elsewhere.25
Figure 5 displays the fingerprints of the synthetic model particles
of the two FAs most similar to the FA particles in DP C. Note that the
BMI images exhibit slightly off-set modes of fingerprints for the par-
ticles in sample DP C (c) and for synthetic SteA particles (a). Sample
images from two tail regions of DP C (d) and SteA (b) particles
highlighted in Fig. 5 are shown in Fig. 6.

Discussion. The fingerprint analysis showed that the BMI images of
synthetic model FA particles from longer chain FAs, SteA (C18) and
PalA (C16), were most similar to images of the FA particles in DP C
(the pdfs of SteA and PalA particle images overlapped heavily with
the DP C pdf, see Fig. 5). Thus, the pure PalA and SteA particle samples
were closer, in terms of the morphology imaged by BMI, to DP C par-
ticles than the particle sample containing a mixture of FA species (FA
Mix I, see Fig. 3 and 4). Although the fingerprint analysis was consis-
tent with the CNN classification results (Table 4), the latter was sur-
prising as the FA Mix I sample was intended to mimic FA particles in



Figure 5. Comparison of fingerprints of particle images from PalA (left) and SteA (right) with DP C. Circles labeled “a” and “c” indicate the modes of the embeddings of SteA and
DP C, respectively. The points labeled “b” and “d”mark two tail regions of SteA’s and DP C’s fingerprints.

ARTICLE IN PRESS

C.P. Calderon et al. / Journal of Pharmaceutical Sciences 00 (2022) 1−13 9
DP C with regard to the total FA concentration and the FA composi-
tion as discussed below.

Fingerprints for PalA particles and for the particles in DP C
spanned similar regions of embedding space, however, there was a
subtle difference in their fingerprints that was detectable by the
goodness-of-fit testing method employed. SteA particle images and
the images of DP C particles exhibited not only similar particle mor-
phologies in their overlapping regions, but also some distinct mor-
phologies which were identified by the fingerprint analysis (as
shown in Fig. 6). Furthermore, the fingerprint analysis comparing
BMI images of FA particles in DP C and of synthetic model FA particles
was not consistent with the results of the LC-MS characterization of
the FA particles in DP C. LC-MS revealed that myristic acid was the
most abundant FA (�46% of total FA mass) in particles isolated from
DP C, followed by palmitic acid (�33%). Lauric acid was present at
�11% followed by stearic acid at about 10%.

One possible explanation for the apparent differences between
the results from the fingerprint analysis and LC-MS could be that the
morphology of FA particles might be impacted by the particle forma-
tion process. FA particles in DP C formed in a continuous process over
several months with the availability of different FA species changing
over time with the progressing PS20 degradation process. For example,
the enzymatic hydrolysis rate was reported to depend on the hydro-
philicity of the carboxyester species and the specific enzyme.34−36 In
contrast, during the generation of the synthetic model FA particles
(obtained by spiking into aqueous buffer) the entire mass of FA is
instantly released into the formulation resulting in a fast precipita-
tion (hours to days) of poorly soluble FAs. Furthermore, studies by
Cao et al. (2015)4 and Almendinger et al. (2021)37 illustrate the
potential impact of additional factors like presence of protein or glass
leachables (e.g., aluminum ions) on the FA particle formation process.
Accordingly, a better adjustment of the composition of synthetic
model FA particle samples with respect to, e.g., protein or metal ion
content, might improve the morphological resemblance between
model and real-life FA particles.

Additionally, it remains to be clarified how well the ratios of the
differing FA species in the particles formed in the Mix I sample agree
with the actual FA species distribution in particles in DP C determined
by LC-MS. In the applied protocol for synthetic model particle genera-
tion, the concentration and composition of the 2-propanol-dissolved
FA mixture was consistent with the total FA mass and the FA species
distribution in the particles in DP C. Nevertheless, according to Doshi
et al. (2015)2, longer chain FAs (e.g., C18, C16) exhibit lower solubil-
ities than short chain FAs like lauric acid (C12). Thus, different FA spe-
cies in Mix I might have exhibited a differing extent of precipitation
leading to differences between targeted and actual FA composition of
the synthetic model FA particles. Moreover, the polysorbate raw
material itself used in the preparation of the Mix I sample needs to be
considered as important source of additional free FAs.16

Nevertheless, it should also be considered that differences
between fingerprint and LC-MS analyses may be expected because
the image based fingerprint approach performs data analysis on a
distribution of particles (each imaged individually) while LC-MS
results represent an averaged FA composition obtained from a total
mass of particles retained on a filter surface.

Overall, the fingerprinting results provide a hint that the present
protocol for the generation of synthetic model FA particles by spiking
of organic-solvent-dissolved FA into formulation buffer can serve as a
simplified but not fully representative model particle system to study
the formation of particles related to the degradation of polysorbate in
DPs.

Case Study 3: Comparison of BMI FA Particle Images Acquired Over Time
in Laboratory Prepared Samples

In our third case study, BMI particle images acquired over
6 months from another synthetic model mixed FA particle sample
(FA Mix III) were evaluated for relevant changes in particle concen-
tration and morphological properties. The total number of particles
continuously increased from � 2,000 particles/mL ≥2mm at 36 hours,
to � 10,000 particles/mL ≥2 mm at 1 month and reached �
16,000 particles/mL ≥2 mm at 6 months. For the particle morphology
assessment, the same CNN embedding network architecture as stated
above was used, but this time the network was trained with data
from model particles in the FA Mix III sample mimicking FA particle
formation in presence of salts (aluminum (III) chloride, NaCl; see
Table 1). The network was trained using FA Mix III particle images
from the same sample imaged at 36 hours, 1 month, and 4 months.
The 6-months images were evaluated out-of-sample (i.e., they are
not contained in the training class). Figure 7 displays the fingerprints
obtained at the four different time points. In Fig. 8, we display images
for the � 50 closest (in terms of Euclidean distance) embedding
points to the pdf modes shown in Fig. 7 for the 36-hours, 1-, 4-, and
6-months time points.

Discussion. Fingerprint analysis of the BMI images from FA Mix III
particles revealed a meaningful change over time in particle mor-
phology, i.e., a different fingerprint distribution and location for BMI
particle images at 36 hours compared to all later time points (Fig. 7).
In contrast, time points at 1, 4 and 6 months exhibit a common mode
and shape in terms of the fingerprint distribution indicating no



Figure 6. Source BMI images nearest the points shown in Fig. 5.
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further meaningful morphological changes in imaged particles. Rep-
resentative particle images in Fig. 8 confirm that there are subtle
(although not easily detectable by human eye) morphological differ-
ences in the particles rapidly formed within 36 hours, i.e., the bound-
aries and interior of the particles are lighter, compared to those
particles present in the same sample after longer storage times (≥1
month) where the particles appear more compact and darker. The
change in morphology between particles imaged at 36 hours and
≥1 month might be explained by different phases during particle for-
mation. The fact that after 1 month the particle morphologies remain
similar suggests that the mechanism of particle formation remains
the same and only more particles of the same morphology are formed
after that time point.

Interestingly, Almendinger et al. 37 propose a two-stage model for
the formation of FA particles in the presence of aluminum ions: in
the initial phase, nucleation seeds are formed by complexation of alu-
minum ions and FA, in the second phase, additional FA molecules
accumulate at the seeds, which finally results in precipitation of par-
ticles. Despite the fact that the authors suggest a change in growth
mechanisms before the actual presence of subvisible particles, their
hypothesis reinforces that FA particle formation might proceed in
successive mechanistic steps. Although our results appear to be con-
sistent with this hypothesis, additional work is needed to fully under-
stand the particle formation mechanism.

Classification and Comparison of BMI Particle Images in Comparable
Samples

In previous data analysis the usefulness of fingerprinting to differen-
tiate between particles of different origin or formed by different mecha-
nisms was demonstrated. We also wanted to evaluate if BMI particle
images of the same origin in comparable samples would be classified as
similar by the fingerprinting approach. To this purpose, several vials of
the same batch of DP C, each containing FA particles, were analyzed on
the same day. In addition, frozen (-80°C) aliquots of the same DP A
sample with protein particles were analyzed 2 months apart.

Fingerprints of BMI FA particle images (Fig. 9) from three separate
vials of DP C analyzed on the same day demonstrate qualitatively
that there is little variation between the embedding distributions.
The fingerprint of the pooled data (blue dashed line) from the
entirety of all imaged DP C particles is representative of each vial
(plotted in black). Furthermore, using the entire DP C distribution



Figure 7. Fingerprints of the FA Mix III sample analyzed at four different time points (36 hours, 1, 4, and 6 months: from top to bottom).
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(combining the particle images from all vials) as the null density, the
quantitative goodness-of-fit rejection rates were 5%, 1%, and 7% for
vials 1-3, respectively, showing that the distribution of embedding
points was not inconsistent with the null density in the repeat vials.1

The standard CNN classifier did show comparable classification
results for images of protein particles from frozen DP A analyzed 2
months apart (we refer to the later analysis run as DP A*), i.e., 84% of
the BMI particle images from DP A* were correctly classified com-
pared to 81% in the case of the initial DP A run. The fingerprinting
approach also provides comparable BMI particle image classification
results between both runs (data not shown).
Discussion
BMI particle image analysis by CNN classification or by the finger-

printing approach provides consistent results for comparable sam-
ples with respect to particle origin or age. This was demonstrated by
1 The reported quantitative goodness-of-fit rejection rates used an a = 0.05 and sub-
sampled the data (using batch size of N = 100 particle image embedding subsets) to
check for consistency with the null density.
highly comparable embedding distributions (Fig. 9) for FA particles
from different DP C vials of the same batch, which were analyzed
side-by-side. Formal hypothesis testing failed to detect significant
differences in these BMI imaged particles sampled from different
vials. In addition, classification results for BMI images of (preserved)
protein particles from two separate analytical runs of -80°C frozen
DP A support that morphological similarities in BMI images are cor-
rectly and reproducibly assessed and differences meaningful when
found between BMI images by both approaches.
Conclusions

In conclusion, both traditional supervised CNN classifiers, as well
as the recent fingerprinting approach20 demonstrated that images
from BMI contain representative morphological features capable of
distinguishing various particle types studied (e.g., images of different
FA and protein particles can readily be distinguished from one
another). Furthermore, we showed how the CNN based fingerprint-
ing approach can be used to both qualitatively and quantitatively
characterize morphological differences in particle populations (if



Figure 8. Source BMI images nearest the mode of the fingerprints shown in Fig. 7. The images represent FA particles in Mix III (at 36-hours, 1-, 4-, and 6-month time points).

Figure 9. Fingerprints for FA particles from three separate vials of DP C. The different vials were from the same batch and of the same age. Fingerprints of the single vials are plotted
in black along with the fingerprint of the entire DP C sample (consisting of data from all 3 vials) indicated as blue dashed line.
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particle classes exhibit resolvable morphological differences). The fin-
gerprinting approach also enables the characterization of the mor-
phological similarity of BMI particle image distributions of different
particle types (e.g., DP A and FAMix I particle images exhibited highly
similar morphologies when analyzed as a population).

Previously, the fingerprinting approach was demonstrated as a
promising tool in the field of particle analysis when combined with
flow imaging microscopy.20,24,25 In this work, we demonstrated that
extracted BMI particle images using proprietary software comple-
mented by the fingerprinting approach can be a valuable label-free
method for high-throughput particle classification and characteriza-
tion. Particle classification and characterization based on morpholog-
ical features, in addition to particle count and size, can be utilized for
the monitoring of particle formation over the different stages of prod-
uct development. Furthermore, our findings illustrate that the finger-
printing approach can help to gain new insights in studies aiming to
mimic and understand particle formation mechanisms related to
polysorbate degradation in drug products.

Future research and case studies will assist in elucidating the
capability of particle classification using BMI complemented by data
analysis based on CNNs or other AI. Finally, while today’s routine par-
ticle analysis instruments are optimized for sizing and counting of
particles, it would be interesting to explore how fingerprinting and
other CNN based AI perform when combined with imaging techni-
ques optimized for image resolution (hence recording higher fidelity
digital information about particle morphology).
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