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Flow-imaging microscopy (FIM) is commonly used to characterize subvisible particles in therapeutic
protein formulations. Although pharmaceutical companies often collect large repositories of FIM images
of protein therapeutic products, current state-of-the-art methods for analyzing these images rely on low-
dimensional lists of “morphological features” to characterize particles that ignore much of the infor-
mation encoded in the existing image databases. Deep convolutional neural networks (sometimes
referred to as “CNNs or ConvNets”) have demonstrated the ability to extract predictive information from
raw macroscopic image data without requiring the selection or specification of “morphological features”
in a variety of tasks. However, the inherent heterogeneity of protein therapeutics and optical phenomena
associated with subvisible FIM particle measurements introduces new challenges regarding the appli-
cation of ConvNets to FIM image analysis. We demonstrate a supervised learning technique leveraging
ConvNets to extract information from raw images in order to predict the process conditions or stress
states (freeze-thawing, mechanical shaking, etc.) that produced a variety of different protein particles.
We demonstrate that our new classifier, in combination with a “data pooling” strategy, can nearly
perfectly differentiate between protein formulations in a variety of scenarios of relevance to protein
therapeutics quality control and process monitoring using as few as 20 particles imaged via FIM.

© 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Introduction

Particulate matter in therapeutic protein products is the focus of
increased attention due both to industrial quality control and patient
safety concerns.1-5 “Subvisible” particles (defined here as objects�25
mm in size) are contained in all commercial therapeutic prote in
formulations.3,6,7 Subvisibleparticlesmaybecomposedofaggregated
proteins or nonbiological materials (e.g., silicone oil).3,8-11 Particles of
size less than 10 mmare not (currently) explicitly regulated by theU.S.
Food and Drug Administration,12 but they can account for asmuch as
90% of the particulate matter in a therapeutic protein product1 and
have been associated with a variety of immune responses.4,6,13,14

However, not all particles are immunogenic or harmful15; the pre-
cise structure-immunogenicity relationships associated with
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particles that induce immunogenic responses are currently un-
known.16,17 Determination of the particle characteristics that are
associatedwith risk to patients is complicated by the fact that protein
aggregates and other particles exhibit a high degree of heterogeneity
in size, shape, and composition.18-20

Flow-imaging microscopy (FIM) is a powerful tool that is
capable of recording complex images of single subvisible parti-
cles.4,8,21 In FIM experiments, a small liquid sample is pumped
through a microfluidic flow cell, and a digital microscope is used to
record 103-106 images of individual particles in a single experi-
ment. The images of subvisible particles returned by FIM are
believed to contain a significant amount of structural information
about the particles in a given sample.5 Characterization techniques
capable of leveraging the structural information embedded in FIM
images show promise as tools for evaluating therapeutic protein
drugs at different stages of their life spans (from the manufacturing
plant to delivery to patients) and early steps in this direction have
been recently proposed.5

Historically in FIM analysis, accurate characterization of sub-
visible particles from FIM images has required explicit identifica-
tion of the relevant morphological features of the particles from the
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raw FIM images. However, manual identification of the relevant
features of particles for characterization tasks from the raw FIM
images is challenging. Although human subject-matter experts can
often observemorphological features of the particles that vary from
image to image and data set to data set, it is difficult and time-
consuming to express these observations in terms of changes in
structural features that can be used for characterization. This
inability to identify the relevant features of these subvisible parti-
cles has hindered previous efforts to characterize these particles.

Most FIM image analysis methods developed to date only use
the small number of morphological features reported by FIM
instruments such as aspect ratio, compactness, and particle in-
tensity to build a “representation” of the imageda numerical
description of the features of the image that can be used for char-
acterization and classification tasks.3,5,21,22 However, this short list
of features neglects a significant amount of potentially relevant
structural information contained in the full RGB (or grayscale) FIM
images. Furthermore, the short list of morphologic features
contains features that are highly correlated, further reducing their
information content.3 It would be desirable to harness the large
amount of complex digital information encoded in images and to
automatically extract the relevant features for a given classification
task without requiring the selection or manual specification of
“morphologic features.”

One candidate solution to the shortcomings of current FIM im-
age analysis methods is the application of deep convolutional
neural networks (CNNs or “ConvNets”) along with supervised
classification.23 The use of ConvNets for analyzing macroscopic
images has exploded in the recent years.23 ConvNets are now
capable of matching or exceeding expert human performance in a
variety of supervised learning applications.23 By exploiting the
power of supervised learning and large image data repositories,
ConvNets are already revolutionizing many real-world applications
that rely on accurate image analysis.23-26 Recent improvements in
algorithms, advances in graphical processor unit computing tech-
nology, and (perhaps most importantly) a deluge of digital data in
almost every application domain23,27-33 have improved our ability
to automatically classify images using ConvNets, and in many cases
perform such classification with human-level precision.23 These
advances enable “deep” ConvNets consisting of multiple hidden
layers to be efficiently and robustly estimated. Deep ConvNets are
attractive as they leverage large volumes of data to learn the best
representation of images for a given classification task,23 circum-
venting the need to specify lists of “morphologic properties” that
best represent the particle as is done in current approaches.
Data-driven representation learning is the key to match or exceed
human performance,23 but carefully designing deep ConvNets to
reliably accommodate the statistical nuances of a given application
benefits from the close interaction between computational scien-
tists, statisticians, and subject-matter experts.25

Supervised learning methods using deep ConvNets rely on
labeled data sets for training. For instance, a ConvNet model
designed to classify pictures of animals might be trained with sets
of pictures labeled according to their respective classes, for
example, sets of animal pictures that have been labeled as depicting
elephants, cats, or dogs. In recent years, ConvNets have been the
most successful in supervised classification, that is, classification
tasks where accurately labeled image sets are available onwhich to
train the network. For example, a recently developed model that
allows automated diagnoses of skin cancer based on digital images
was trained using a collection of 129,450 clinical images (repre-
senting more than 2000 skin diseases) that had been labeled by
dermatogists.25 However, one key challenge in training deep Con-
vNet models to classify FIM images of particles within therapeutic
protein formulations is the lack of appropriately labeled data sets
wherein each particle image can be assigned a class (e.g., the ag-
gregation mechanism that generated a given particle) that wewant
to train a ConvNet to identify. Although it would be useful if FIM
images of subvisible particles in protein formulations could be
labeled at the “particle level of detail” (e.g., proteinaceous vs.
nonproteinaceous particles, or even finer levels of detail such as
“this is a protein aggregate induced by freeze-thawing stress” or
“this is a particle associated with increased risk of adverse immune
response”), unfortunately such labeled data sets are difficult to
obtain. Human subject-matter experts presented with images of
single particles from an FIM analysis of particles within a thera-
peutic protein formulation would have trouble assigning the cor-
rect label to single FIM images, even in situations where a small
fixed number of descriptive class labels are provided a priori, for
example, see Figure 1. In other words, the error rate of the “optimal”
classifier34 based on a single FIM image is far from 0 (and also
unknown) in almost all FIM image classification tasks. This is in
contrast to problems of macroscopic image classification, where
one is given a simple list such as “dog, cat, or elephant,” and the
goal is to determine which of the given preset labels applies to an
image, a task for which both most humans and modern deep
ConvNets (trained via supervised learning) exhibit almost a 0 clas-
sification error rate.23 In addition, the high degree of heterogeneity
inherent to subvisible particles and optical phenomena at small
length scales further complicate the use of ConvNets to analyze FIM
images. FIM images themselves can be highly variable due to flow-
induced artifacts, focusing challenges, and resolution limitations.

In this work, we demonstrate a new strategy for using ConvNets
for classification tasks. A simple “data pooling” strategy is com-
bined with deep ConvNets to obtain a classifier obtaining nearly
perfect performance in distinguishing various protein solutions
subjected to different stresses or processing conditions using as few
as 20 images to predict a class. We revisit some of the more chal-
lenging data sets explored in the study by Maddux et al.5 to
quantitatively and qualitatively demonstrate various advantages of
our new ConvNet-based approach. Specifically, we reanalyze FIM
images of aggregates of a mAb that were created as a result of
freeze-thawing and mechanical agitation, 2 stresses that are rele-
vant in therapeutic protein manufacturing, transportation, and
drug administration.5 In addition, we explore the use of deep
ConvNet analysis of FIM images to detect differences in subvisible
particles produced during simulated fill-finish operations using a
fixed protein therapeutic formulation but 2 slightly different
operating conditions. To do this, we created protein aggregates by
pumping a single solution of intravenous immunoglobulin (IVIG)
antibodies through 1 of 2 nominally identical reciprocating piston-
type fill-finish pumps. We show that FIM image information alone
can be used to accurately (with 0 observed error when “pooling” as
few as 20 images) determine both the type of material (i.e.,
distinguish mAb from IVIG) and the pump used to generate
aggregates within the protein solution. We additionally assessed
the performance of ConvNet classifiers when relevant class labels
are not present in the data used to fit the model. To perform this
analysis, we trained a ConvNet to differentiate between aggregates
of recombinant human interleukin-1 receptor antagonist (rhIL-1ra)
and silicone oil microdroplets using FIM data taken from samples
containingmixtures of the 2 components where the composition of
each particle is unknown. The relevance of our new deep ConvNet
approach combined with “data pooling” to protein therapeutics
process monitoring and quality control is discussed. We also briefly
discuss how output of this FIM image analysis approach can be
combined with information from “orthogonal” measurement
techniques.3,22 In the Materials and Methods, we provide a high-
level description of our ConvNet approach; detailed algorithmic
details are deferred to the Supporting Information.



Figure 1. Sample FIM image collages from 4 FIM protein data sets. Clock-wise from top left: freeze-thawed mAb images; mAb experiencing mechanical agitation (shaking) plus pH
shock; IVIG processed with a “pump A”; and IVIG processed with “pump B” (see Materials and Methods for additional sample preparation details). A ConvNet classifier was used to
distinguish these 4 different conditions with high accuracy (quantitative results shown in Fig. 3). Note the heterogeneity and polydispersity of these data sets (expert humans
encounter difficulty in classifying the data based on visual inspection of single images).
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Materials and Methods

Materials

Lyophilized mAb was donated by Medimmune, Inc. (Gaithers-
burg, MD). IVIG (GAMMAGARD LIQUID) was obtained from Baxter
International (Deerfield, IL). rhIL-1ra was donated by Amgen
(Thousand Oaks, CA). 1 � phosphate buffered saline containing 144
mg/mL potassium phosphate monobasic, 795 mg/mL potassium
phosphate dibasic, and 9000 mg/mL sodium chloride was obtained
from Gibco (Waltham, MA). Dow Corning 360 medical fluid 1000
CST (Midland, MI) was used to generate silicone oil microdroplets.
Hellmanex III was obtained from Hellma Analytics (Mullheim,
Germany). All salts andmaterials used in buffer preparationwere of
reagent grade or higher.

Sample Preparation

A lyophilized mAb was reconstituted with water and dialyzed
into 230-mM KCl at pH 6.0. The resulting mAb solution was filtered
with a 0.1-mm filter and diluted to 1 mg/mL with additional KCl
solution. These solutions were then exposed to freeze-thaw and
shaking aggregation-inducing stresses (described below).

Freeze-Thaw Stress
Three 2-mLmicrocentrifuge tubeswerefilledwith 1-mL aliquots

of the mAb solution. Samples were then exposed to 10 freeze-thaw
cycles. Each cycle consisted of placing the microcentrifuge tubes in
a �80�C freezer for 20 min and then thawing the tubes in a water
bath at room temperature for 20 min.
Agitation Stress
Three milliliters of 1 mg/mL mAb solution were dialyzed into a

20-mM citrate, 230-mM KCl solution at pH 3.0 and then immedi-
ately dialyzed again into a 230 mM KCl solution at pH 6.0. Three
1-mL aliquots were then placed into 2-mL microcentrifuge tubes
and shaken horizontally at 400 rpm overnight.

Pump “A” and “B” Recirculation
IVIG of 0.5 mg/mL in phosphate buffered saline was centrifuged

at 20,000 � g and 20�C for 20 min to remove aggregates. Forty-five
milliliters of this sample was stored in 50 mL centrifuge tubes
(Falcon, Corning, NY) until use. These samples were then recircu-
lated through 1 of 2 nominally identical Filamatic FUS-10 pumps
(Filamatic, Inc., Baltimore, MD), one denoted “pump A” and one
denoted “pump B”. The pumps were set to operate at 25 strokes per
min, corresponding to a flow rate of 200 mL/min. Then, 2 mL of the
sample were removed for particle analysis by FIM every minute.
The samples included in this analysis were taken after 9 min of
recirculation.

Protein and Silicone Oil Mixtures
rhIL-1ra was dialyzed into 100-mM phosphate buffer at pH 7.0

and diluted to 1 mg/mL using additional buffer. Three 2-mL
microcentrifuge tubes were filled with 1 mL aliquots of the
rhIL-1ra solution and subjected to the previously-described freeze-
thaw procedure. The subvisible particle concentration of these
suspensions was measured using FlowCam®. Silicone oil emulsions
were generated by shearing a 8% (v/v) silicone oil in deionized
water mixture at 30,000 rpm for 15 min and passing the mixture
through an Emulsiflex C5 high pressure homogenizer (Avestin;
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Ottawa, ON, Canada) operating at 20 MPa 7 times.35 A The subvis-
ible particle concentration of this emulsion was also measured
using FlowCam®. Using the particle concentrations obtained for
both the pure protein solution and silicone oil emulsion, aliquots of
the suspensions of protein aggregates, and the suspensions of sil-
icone oil droplets were mixed together with buffer in 2 mL
microcentrifuge tubes to make 1 mL suspensions that contained
approximately 50,000 particles/mL. The ratios of protein aggre-
gates to silicone oil droplets were varied to result in a series of
suspensions containing different number concentrations of protein
aggregates and silicone oil droplets: 25% protein aggregates and
75% silicone oil droplets, 50% protein aggregates and 50% silicone
oil droplets, and 75% protein aggregates and 25% silicone oil
droplets. Three samples of each mixture were generated. Immedi-
ately after the suspensions were prepared, three 300 mL aliquots
from each sample were analyzed by FIM.

Flow-Imaging Microscopy

FIM was performed with a FlowCam® VS (Fluid Imaging Tech-
nologies, Inc., Scarborough, ME) instrument equipped with a
100-mm flow cell and a 10� objective. Before use, the flow cell was
cleaned with 1% Hellmanex III solution and ultrapure water. The
instrument was focused using the default autofocus procedure on
20-mm calibration beads. Two hundred fifty microliters of sample
mixed with 200 mL of ultrapure water were measured for each of
the freeze-thaw and shaking þ pH samples. Three hundred fifty
microliters were measured per pump recirculation sample. The
flow cell was flushed with ultrapure water betweenmeasurements.

ConvNet Structure

We trained convolutional neural networks to perform super-
vised classification tasks such as identifying the aggregation-
inducing stress (mAb exposed to freeze-thaw, mAb exposed to
agitation, IVIG circulated through pump A, or IVIG circulated
through pump B) that created a given particle. Here, we provide a
quick overview of the structure of these neural networks and
process by which the network classifies image data. For a more in-
depth review, refer study by LeCun et al.,23 or for a textbook length
treatment relevant to recent developments in ConvNets, we refer
the reader to see the study by Goodfellow et al.33

A ConvNet sequentially pass an input image through several
convolutional layers,23 processing units designed to represent two-
dimensional (2D) input such as images as a combination of several
small, simple 2D patterns referred to as “filters” in the ConvNet
literature. These filters are pixel patterns (estimated in a data-driven
fashion) that correspond to simple features of the input. For instance,
the first convolutional layer in a deep ConvNet will likely have filters
that correspond to edges (e.g., the boundaries of an object like a
subvisible particle) and color blobs (e.g., regions of an image that are
a single color). Each of these filters in the first convolutional layer
will be used to transform the raw image into a feature image, images
that quantitatively encode how well different regions of the raw
images match the pattern of a specific filter. For instance, the feature
image generated by a filter designed to detect horizontal edges will
highlight the regions of the image where horizontal object edges are
present. The output of this first layer is a collection of these feature
images generated from the raw image with one feature image per
each filter in the convolutional layer. This collection of feature
images can then be passed to the deeper layers of the network.

Modern deep convolutional neural networks architectures
contain many convolutional layers (interweaved with other layer
types23) as shown by the sample CNN in Figure 2. Each of the 3
convolutional layers in this sample network uses a unique set of
filters to identify 2D patterns in the input to that layer (either the
raw image or a collection of feature images obtained from the
previous layer) and outputs feature images that show how well
specific regions of the input match the pattern embedded in a filter.
Since each convolutional layer operates on the feature images ob-
tained in the previous layer, filters in deeper layers of the network
identify increasingly sophisticated morphologic features in the
initial raw image that are often difficult for a human observer to
interpret. As shown in Figure 2, these convolutional layers trans-
form a single large input image into many small feature images in
the final convolutional layer of the network.23,27 In supervised
classification tasks, the feature images obtained from the final
convolutional layer of the network are transformed into a large, flat
vector and subsequently passed to a traditional fully connected (FC)
neural network to predict the class to which the input image be-
longs.33,36 It is stressed that in supervised ConvNet training, the
parameters of each layer of the model are empirically learned via
training, an iterative process through which images labeled with
the class they belong to are used to optimize a selected cost func-
tion such as categorical cross entropy.36 Through training, the CNN
learns the filters to use in each layer to identify relevant morpho-
logic features of the input images, which would be difficult to
identify manually. These “learned” (or data-driven) morphologic
features can then be used to differentiate between different image
classes. By expressing the input image in terms of combinations of
these filters, the CNN is able to construct a representation (i.e., a
numerical expression of the features of the input) of the input
image in the convolutional layers of the network that can be used to
perform effective classification of the input image in the FC layer of
the network. After learning the parameters of the network via
training, the network can then be used to classify new images that
were not used to train the network (these data are often referred to
as “test data”).

ConvNet Computations

FIM images were cropped to be centered around the particle of
interest and reduced to 20 � 20 RGB images in the preprocessing
step (images were resized and rescaled to maintain aspect ratio).
The ConvNet contained a cascade of 3 modules consisting of 2D
convolutional, max pooling,27 and dropout layers28 connected to a
FC layer. The first module consists of a convolutional layer and
amax pooling layer that transforms the raw 20� 20 RGB image to a
collection of 32 9 � 9 feature images. The second module contains
convolutional, max pooling, and dropout layers that transform the
collection of 32 9 � 9 feature images into a collection of 32 3 � 3
features. The final module consists of a convolutional layer and a
dropout layer that transforms the 32 3 � 3 feature images into 64
1� 1 feature “images”. The FC layer changed depending on the task
at hand. However, the core ConvNet module used for all compu-
tations was the same and contained a total of 28,640 trainable
parameters. The full ConvNet architecture and additional imple-
mentation details are provided in Supporting Information. All
ConvNet layers were implemented in Keras 2.0.637 (using a Ten-
sorFlow 1.2.1 backend38). Computations reported were carried out
in an Ubuntu 16.04 Docker container environment on a machine
that used 2 Nvidia GeForce GTX 1080s.

Classifying FIM Images Using ConvNets

We report results on 2 different classification problems in this
section; classifying protein aggregates by the stress that was used
to induce their formation, and identifying compositions of mixtures
of protein aggregates and silicone oil microdroplets from mixtures
of data. Both classification problems used the same ConvNet



Figure 2. Illustration of ConvNet workflow. The first step preprocesses and normalizes the image (cropping, resizing, scaling, and so forth) and then passes the information to a
ConvNet module. Using a large collection of “training images” processed in this fashion, the ConvNet module empirically determines a representation (or “features”23), which can
accurately distinguish the labeled examples. After the network parameters are determined (or the ConvNet is “trained”), the network can be used to predict the labels of new
samples. The FC layer above is a classic neural network.36 In this work, we used a common ConvNet module and switched the FC layer for specific classification tasks (leveraging
transfer-learning and parameter-fine tuning25,46,47). Figure generated with Matplotlib48 and TikZ.49
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module but differed in the details of their FC layers (see Supporting
Information).

In both classification tasks, classificationwas performed both on
individual images and “pools” of Npool images. In pooled classifi-
cation tasks, the classification prediction from a single image of our
ConvNet was combinedwith ConvNet predictions of Npool� 1 other
single images. The median value of the pooled predictions (where
predictions correspond to the output of the FC layer) served as the
refined prediction result for a “block” estimate. We report results
on Npool ranging from 1 (single image predictions) to 100 in this
work. The methodology for predicting the error in Npool > 1 given
raw test and training ConvNet data is outlined in the Supporting
Information.

Classifying Aggregates by Aggregation-Inducing Stress

In the first classification problem considered, we trained our
ConvNet to identify whether particles in FIM images had been
generated by exposingmAb to freeze-thaw stress, by exposingmAb
to agitation stress, by recirculating IVIG through filling pump A, or
by recirculating IVIG through pump B. To train the model, 5 � 104

images were taken from each condition and labeled with integers
0-3 (inclusive) to indicate the experimental conditions used to
generate each particle (0 indicating particles produced from IVIG in
pump A, 1 indicating particles produced from IVIG in pump B, 2
indicating particles generated by agitating mAb samples, and 3
indicating particles generated by freeze-thawing mAb samples).
The resulting 2� 105 total training samples were then used to train
a ConvNet model where the FC layer returned integers 0-3, which
indicate the predicted class of the image (i.e., the model's predic-
tion as to which experimental conditions were used to generate the
particle). We evaluated the predictive ability of the model using 104

test images from each class. These imageswere not used to train the
ConvNet, and the class label (0-3) was not presented to the model
during model evaluation. We assessed the accuracy of the ConvNet
classifier both on single images (Npool ¼ 1) as well as pools of im-
ages (Npool ¼ 20, 50, or 100) randomly selected from sets of images
of particles all generated using the same aggregation-inducing
stress. The pH and shaking data images came from multiple vials,
whereas the training data for the other cases came from a single
vial of solution. In the results, we present our ConvNet classifier
with test images taken fromnew vials to demonstrate robustness of
the approach.

The accuracy of the classifier using each value of Npool was re-
ported as a confusion matrix showing the computed probability
that a set of test images taken from a data set associated with a
given stress condition (the actual conditions are indicated by the
rows of the matrix) was identified as each of the possible classes
that the classifier could return (possible classes are indicated by the
columns of the confusion matrix). If the classifier perfectly identi-
fied the actual class associated with all the sets of images, the di-
agonal values of the matrix (i.e., entries corresponding to cases
where the predicted class is the same as the actual class) would be
1, and all other values would be 0.

As an additional assessment of the classifier, we studied how
different values of Npool affected the worst performing result from
the single image ConvNet classifier (i.e., the stress that resulted in
particles that were the most frequently misidentified by the clas-
sifier when Npool ¼ 1). To assess the improvement in accuracy
caused by increasing Npool, a finer grid of Npool values was consid-
ered, and the classification error of the worst performing stress
condition was empirically determined for the test data. These re-
sults were compared with the accuracy predicted by the uncer-
tainty quantification approach outlined in the Supporting
Information.

Characterizing Compositions of Protein Aggregate and Silicone Oil
Microdroplet Mixtures

As discussed previously, the lack of “finely” labeled FIM image
data sets (e.g., at the particle type level) can limit the ability to train
ConvNets or other supervised machine learning techniques to
perform a given classification task. Previous efforts to perform
single-image classification on FIM images predominantly have
been restricted to differentiating protein aggregates from silicone
oil droplets, a task motivated not only by the pharmaceutical
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relevance of the classification39-41 but also by the ease of generating
data sets for classifier training with FIM images of only protein
aggregates or silicone oil microdroplets. However, for many other
relevant particle classification tasks, it is difficult to obtain data sets
where each image is labeled as a member of a particle class that we
would wish to differentiate from other particle classes. In this
article, we address the following question: Can we perform clas-
sification tasks such as differentiating protein aggregates and sili-
cone oil microdroplets without access to training data sets where
each image is labeled “at the particle level”?

We trained our ConvNet to differentiate between populations of
particles from 2 mixtures of aggregated protein and silicone oil
microdroplets. One mixture population contained 75% (by number)
protein aggregates and 25% silicone oil microdroplets (“mixture 1”),
and the othermixture population contained 25% protein aggregates
and 75% silicone oil microdroplets (“mixture 2”), as described in the
Materials and Methods section. These images were labeled ac-
cording to the mixture fromwhich they were taken (i.e., mixture 1
or mixture 2) but were not labeled as to whether each individual
FIM image within the data sets was of a protein aggregate or a
silicone oil microdroplet. A standard “logistical regression”
approach42 was used in this binary classification problem involving
mixtures. In logistical regression, the probability that a given image
belongs to a class was returned by the FC layer of the classifier
instead of an integer indicating the predicted class of the input
image. In this case, the classifier returns the probability that the
particle in a given FIM image was taken from mixture 1 (predom-
inantly protein aggregates). The binary category prediction can
readily be determined by inspecting the probability returned by the
classifier; if the predicted probability by our ConvNet was greater
than 0.5, the image was assigned “class 1” (mixture 1, predomi-
nantly protein aggregates) and was otherwise assigned “class 2”
(mixture 2, predominantly silicone oil microdroplets). By training
the model to predict if a given image was taken from a mixed data
set which predominantly contained protein aggregates, we initially
hoped that the network would learn a representation of the images
that could also be used to differentiate between the protein ag-
gregates predominantly contained in mixture 1 and the silicone oil
microdroplets predominantly contained in mixture 2. Although we
did not expect this classifier to accurately classify single images due
to the mixtures of protein and silicone oil in the training data sets,
we anticipated that aggregating the classification results over
several pooled images (Npool > 1) would result in a reasonable
prediction of the percentage of protein aggregates in a given pool of
images.

5 � 104 images of each labeled mixture class were used to train
the network to predict the mixture from which the particle was
taken.We again used 1� 104 labeled test images from eachmixture
that were not used inmodel training to evaluate the accuracy of our
ConvNet classifier at identifying the mixture pools of Npool ¼ 100
imageswere drawn from aswell as estimating the composition (i.e.,
the percent protein aggregate) of each mixture. To further test the
ability of the classifier to differentiate between protein aggregate
and silicone oil microdroplet, we applied our trained ConvNet to
data coming from a new 50% protein and 50% silicone oil (“mixture
3”) class that was not shown to the model during training. We
hypothesized that due to the intermediate composition of mixture
3, the model would return an approximate 50% probability of
belonging to mixture 1, corresponding to 50% protein aggregate
content in the FIM images.

Results and Discussion

A ConvNet was trained to differentiate between FIM images of
particles generated via 4 stress conditions. Sample FIM images of
particles generated by these 4 conditions are shown in Figure 1. The
performance of this ConvNet classifier for various values of Npool
are shown by the confusion matrices in Figure 3. The cells are “heat
colored” classification probabilities (with yellow/beige indicating
0 and dark green indicating 1). A perfect classifier would have dark
green along with diagonal and yellow/beige everywhere else.
Although the classifier has limited accuracy when classifying an
isolated image of a single particle, aggregating the predictions from
several images generated under the same conditions (i.e., setting
Npool ¼ 20) resulted in better than 95% correct classification for
each class. Increasing to Npool ¼ 100 resulted in perfect classifica-
tion in a problemwhere humans would have a hard time providing
the correct class labels to test images like the ones shown in
Figure 1. By using a simple data pooling strategy with a trained
ConvNet, we were able to obtain essentially perfect classification of
FIM images using a relatively small number of particle images.
These results demonstrate that ConvNets can be used to success-
fully differentiate FIM images of aggregates on the basis of their
protein composition (mAb or polyclonal IVIG) and the stress con-
ditions used to generate the particles (freeze-thaw or agitation for
mAb,1 of 2 nominally identical pumps for IVIG). Furthermore, these
results indicate that both the identity of the protein that may
comprise an aggregate and the type of stress used to create the
aggregate leave “morphologic fingerprints” to which FIM is sensi-
tive and that can be identified using the ConvNet approach.

Classification tasks such as identifying the specific pump that
generated a given subvisible particle are industrially relevant. For
instance, many manufacturers use banks of “identical” pumps to
perform fill-finish operations. If particles are found in products
after fill-finish operations, it would be of general interest in a root-
cause analysis investigation to determine whether the aggregates
arose due to wear or malfunction in a specific fill-finish pump.
Remarkably, we found that aggregates of the same protein created
by passing the protein through 1 of 2 nominally identical filling
pumps have morphologic fingerprints in FIM images that are suf-
ficiently different that we can use the ConvNet analysis of only
approximately 100 images to identify with essentially 100% cer-
tainty which pump created the aggregates. Thus, in this hypo-
thetical example, it should be possible to determine exactly which
pump generated the aggregates by tracking their morphologic
fingerprints.

ConvNets were able to differentiate between all 4 classes of
particles with over 95% classification accuracy using 20 pooled
sample images and perfect accuracy using 100 pooled sample im-
ages. Although a variety of techniques have been proposed to
perform similar analysis of FIM data,5 the performance of ConvNets
for this analysis is notable for 2 primary reasons. Firstly, the Con-
vNet classifier extracted the relevant features needed to separate
these 4 classes in a purely data-driven fashion. Despite the fact that
the particles were diverse and exhibited a variety of different fea-
tures (see Fig. 1), the ConvNet was able to extract a representation
of each image that could be used to accurately distinguish the
particles. This approach uses all the information contained in
the RGB images to perform classification as opposed to use only the
information contained in a list of morphologic features for each
particle.3,5 Second, the deep ConvNet architecture was trained to
make reasonable predictions of particle identity using only a single
image. Although critical decisions would never be made on a single
image in typical process monitoring and regulatory applications,
the ability to obtain reasonable results on single images allows for
highly accurate classifications of particle origin by pooling the re-
sults of a small number of images. Current state-of-the-art methods
for distinguishing stressed mAb states require upward of 2000
“pooled images” in combination with subject-matter expert
selected features to construct a highly accurate mAb aggregate



Figure 3. Confusion matrices of our ConvNet classifier tested on 10K test images from each class (“test images” are not presented to tune the ConvNet in any way) for various values
of Npool. The truth labels are indicated by the vertical column; the ConvNet predictions for each test image (known labels not presented to classifier) are denoted by the horizontal
row (fraction of test sample with given label reported). The cells are classification probabilities (with yellow/beige indicating 0 and dark green being 1). A perfect classifier would
have dark green along with diagonal. Even with Npool ¼ 1, the classifier performs reasonably given the heterogeneity and polydispersity of the data. With Npool as small as 20, over
95% classification accuracy can be obtained for the diverse image populations tested (sample images can be observed in Fig. 1). When Npool ¼ 100, perfect classification for all 4
classes was obtained. Note that the same ConvNet classifier predictions reported for Npool ¼ 1 were “reused”with the data pooling approach discussed in the Materials and Methods.
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classifier.5 The ConvNet approach shown here only required 20
images to obtain nearly perfect mAb classification. Particle con-
centrations are therefore a minor concern with this approach as
most FIM data sets obtained in standard protein manufacturing
applications will have over 20 FIM images.

As shown in Figure 3, particles generated by pump A were the
most difficult particles for the classifier to identify when Npool ¼ 1.
Figure 4 shows both the empirically observed accuracy for
differently-sized pools of images of particles generated under
pump A conditions (labeled “observed”) and the accuracy predicted
by the uncertainty quantification approach outlined in the
Supporting Information (labeled “predicted”). Note the excellent
agreement in how the classifier performs when observed data is
compared to the prediction. This process illustrates how a simple
uncertainty quantification approach could be used to extrapolate
results from a “single image” (i.e., Npool ¼ 1) ConvNet classification
study to predict how different “pooled” results would be expected
to performda problem of practical relevance when considering
sample-size selection (in more complex problems, other more
advanced statistical techniques for quantifying uncertainty could
be considered42,43).

We emphasize that in all results reported, all “test” images were
of particles not used in training the ConvNet. However, in FIM
Figure 4. Predicted and observed misclassification error43 as a function of Npool. In this
plot, we explored a finer grained set of Npool values relative to those explored in
Figure 3. The goal was to predict the misclassification error of “Pump A” as a function
of Npool using simple central limit theorem approximations (see Supporting
Information). This type of information can be used to inform either quality control
or process-monitoring applications what sample sizes are required to achieve a target
false alarm or correct identification rate.
applications, protein properties can vary from vial-to-vial due to
various factors including, systematic differences in protocol or the
batch process generating the sample, time dependence in protein
sample stability, and so forth. In our next 2 figures, we demonstrate
test results from different vials to demonstrate that the CNN clas-
sifier can be extrapolated to classify protein images from different
vials. Specifically, we demonstrate the accuracy of the 4-way clas-
sifier shown previously applied to test data coming from a new set
of vials.

In Figure 5, we demonstrate that the results intended to mimic
2 different plants generating data, the CNN classifier is robust to
both processing time and vial-to-vial variability (the vials shown
were drawn from the circulation loop every minute). Empirically,
we observed that the freeze-thaw protocol exhibited the highest
vial-to-vial variance; these results are quantified in Figure 6.
Interestingly, the replicates (i.e., analyzing new protein images
from the same vial) exhibit small changes in accuracy, but vial-to-
vial variance is nonnegligible. Fortunately, using Npool greater
than 20 (see details Supporting Information) would still produce
classification results with nearly zero error. The shaking and pH
studies presented earlier contained proteins from multiple vials.
Figure 5. Results from different vials of pump A and pump B test data (i.e., images not
used in training). Each marker symbol corresponds to a fresh vial and the percent of
correctly labeled images in a 10K test image sample using Npool ¼ 1 (increasing Npool

improves accuracy). The vials correspond to taking different vials from the pump A and
pump B data at different times. Separate images from “Vial 1” were used for training
our CNN classifier (note: it is possible to draw “train” and “test” images from a single
vial since each vial yielded multiple protein images). This plot demonstrates the CNN
classifier is robust to vial-to-vial variability in the pump A and pump B data.



Figure 6. Analysis of different vials and replicates of freeze-thaw protein data. Each
marker symbol corresponds to a fresh vial and the percent of correctly labeled images
in a 10K test image sample using Npool ¼ 1 (increasing Npool improves accuracy).
Separate images from “vial 1, replicate 1” were used for training our CNN classifier
(note that it is possible to draw “train” and “test” images from a single vial since each
vial yielded multiple protein images). Note that using Npool ¼ 20 would still result in
nearly error-free classification results in these test cases.

Figure 8. Error-free classification of 2 different formulations of silicone oil and protein
mixtures. One formulation (mixture 1) was designed to contain 75% protein and 25%
silicone oil and the other contained 25% protein and 75% silicone oil (mixture 2). 20K
test samples (images not in the training set) were predicted by our ConvNet; the
resulting predictions pooled into blocks of 100 resulting in 100 blocks of each sample
type. The first 100 blocks of test data were mixture 2 and the last 100 blocks were
mixture 1. The deep ConvNet (trained on labeled single images from these 2 mixture
distributions) not only achieved perfect classification between these mixture classes
with this approach but the fraction of protein (denoted by labeled horizontal lines) was
almost perfectly estimated using our new deep ConvNet approach.
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A separate ConvNet was trained to differentiate between 2
different mixtures of protein aggregates and silicone oil micro-
droplets. Sample images from these 2 mixtures are shown in
Figure 7. The resulting classifier was used to estimate the proba-
bility that pools of 100 images from the 104 test images were taken
from mixture 1. Figure 8 shows the probability returned by the
network for image pools taken from both mixture 1 and mixture 2.
As we suspected, the pooled output of the ConvNet classifier not
only classified the 2 mixture classes perfectly but also was able to
Figure 7. Sample FIM image collages from 2 of the protein/silicone oil mixture data
sets.
accurately predict the fraction of protein in the mixture. The results
suggested that the trained ConvNet learned representations of
“pure” silicone oil microdroplets and protein aggregates despite not
being given these explicit labels. To confirm that the ConvNet had
learned representations of both components in the mixture, we
applied the ConvNet to pools of 100 images taken from mixture 3
containing an equal mixture of protein aggregates and silicone oil
microdroplets. This mixture 3 should be considered a “new class”
not within the training set, but if the ConvNet is approximating
“pure” silicone oil and aggregates, we expect that our predictions
should fall between those of mixture 1 and 2. Figure 9 shows the
probabilities returned by the model when analyzing image pools
taken frommixture 3. The predicted fraction of protein fell right in-
between the 2 extremes with an average value of protein fraction
near 50%dconsistent with our hypothesis that the network had
learned to differentiate between the 2 pure components. Sharper
convergence to the 50%was not observed due in part to the fact that
silicone oil and protein mixtures do not mix in an ideal additive
fashion. Although our approach assumes that all mixtures only
contain preformed protein aggregates and silicone oil droplets,
proteins adsorb to the surface of silicone oil droplets, which pro-
motes further protein aggregation. Mixing these 2 components
therefore influences the particle morphology in each mixture,
potentially introducing errors both in the representations learned
by the network during training and the classifications given by the
networkwhen analyzing particles frommixture 3. Nonetheless, our
simple ConvNet predictor performed adequately when applied to
this new “mixture 3” class not represented in the training set.

We emphasize that our approach to this popular problem in FIM
analysis3,8 was performed on images that were not labeled as either
“protein aggregate” or “silicone oil microdroplet”. Instead, we
trained our ConvNet on 2 mixture classes (1 mixture class was
predominantly silicone oil with 25% protein “contaminant” and the
other was mainly protein with 25% silicone oil “contaminant”).
Although individual particle images from the labeled class could be
images of a silicone oil microdroplet, a protein aggregate or some
hybrid particle containing each component, our classifier was only
tasked with picking the correct mixture label for each image. We
demonstrated that not only could pools of 100 images be correctly
classified as deriving from 1 of the 2 mixtures but also that the



Figure 9. Two-class network trained with data shown in from Figure 5 applied to
predict 10K test samples from a 50% protein and 50% silicone oil mixture. Note that the
“50% protein/50% silicone oil” (“mixture 3”) class was not in the training set. Extrap-
olating the 2-class predictor to this new mixture case consistently falls in-between the
2 training data extreme suggesting that the ConvNet has learned approximate repre-
sentations of “pure protein” and “pure silicone oil” features despite these 2 cases not
being explicitly labeled in individual images (the training phase only provided generic
labels to the mixture type the image came from).
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relative concentrations of protein aggregates and silicone oil
microdroplets in both of the 2 mixtures used in training as well as
in a 50/50 mixture of protein aggregates and silicone oil micro-
droplets could be estimated using this classifier. These results
suggest that our ConvNet was able to construct approximate rep-
resentations of both pure silicone oil and pure protein aggregate
even in the absence of these labels in the training set. Our formu-
lation of the protein-silicone oil classification problem is more
representative of other subvisible particle characterization prob-
lems than previous formulations of this problem for the following
reason: due to the inherent heterogeneity and polydispersity in
subvisible particle populations it is difficult to obtain data sets
where each particle is labeled by classes of interest such as particles
with high immunogenic risk. These results suggest that ConvNets
may be able to construct representations of protein aggregates
representing risks of causing patient harm without the need to
finely label every single FIM image in a given formulation.

The technology presented has potential for use in both real-time
process monitoring as well as off-line analysis. Even without opti-
mizations for speed, the Python 2.7-based code run on a single
Nvidia GeForce GTX 1080 graphical processor unit could process
100 single particle images and predict the class in under 0.01 sec-
onds in the applications presented. Advances in hardware com-
bined with algorithms optimized for ConvNet prediction speed
could reduce that time even further (hence near real-time process
monitoring is feasible). We would like to note that generic neural
networks are often criticized as being too “black-box” in nature (i.e.,
the representations these approaches use for classification are not
readily human interpretable). However, ConvNets trained on image
data can sometimes be human interpretable using novel visuali-
zation techniques44; this is an open research area in CNN research
and worth intensively exploring in future FIM applications
leveraging ConvNets but is beyond the scope of this work.

Finally, it should be mentioned that the ConvNets derived for a
given classification problem fueled by FIM data can readily be
combined with additional morphologic information about the
particles such as the standard morphologic properties returned by
FIM instruments. If additional morphologic parameters such as
particle diameter, aspect ratio, and circularity are known to be
relevant to a given classification task, they can be combined with
the evaluated ConvNet features before being fed into the FC layer of
the model. Combining learned features of the image with
morphologic properties obtained from the instrument allow for
refined classification of the particle in the final layer of the ConvNet
using expert knowledge of the relevant features of the particles. In
addition, ConvNet features evaluated from FIM images along with
other features can be passed to another classifier capable of pro-
cessing multiple types of “features” in supervised learning appli-
cations, for example, random forests.3,45
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