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Abstract

Therapeutic proteins are exposed to numerous stresses during their manufacture,

shipping, storage and administration to patients, causing them to aggregate and form

particles through a variety of different mechanisms. These varied mechanisms

generate particle populations with characteristic morphologies, creating “finger-

prints” that are reflected in images recorded using flow imaging microscopy. Particle

population fingerprints in test samples can be extracted and compared against those

of particles produced under baseline conditions using an algorithm that combines

machine learning tools such as convolutional neural networks with statistical tools

such as nonparametric density estimation and Rosenblatt transform‐based
goodness‐of‐fit hypothesis testing. This analysis provides a quantitative method

with user‐specified type 1 error rates to determine whether the mechanisms that

produce particles in test samples differ from particle formation mechanisms op-

erative under baseline conditions. As a demonstration, this algorithm was used to

compare particles within intravenous immunoglobulin formulations that were ex-

posed to freeze‐thawing and shaking stresses within a variety of different contain-

ers. This analysis revealed that seemingly subtle differences in containers (e.g., glass

vials from different manufacturers) generated distinguishable particle populations

after the stresses were applied. This algorithm can be used to assess the impact of

process and formulation changes on aggregation‐related product instabilities.
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1 | INTRODUCTION

Aggregation is a major challenge in the manufacturing of therapeutic

proteins (Randolph & Carpenter, 2007; Roberts, 2014; Wang, 1999).

Numerous stresses encountered during protein production cause

aggregation. These different stresses (e.g., freeze‐thawing; Arsiccio &

Pisano, 2017; Barnard, Singh, Randolph, & Carpenter, 2011; Twomey,

Less, Kurata, Takamatsu, & Aksan, 2013, interactions at air‐water

and container‐water interfaces; Cordes, Carpenter, & Randolph,

2012; Ludwig, Carpenter, Hamel, & Randolph, 2010; Sethuraman,

Morcone, & Belfort, 2004; Sluzky, Klibanov, & Langer, 1992; Webb,

Cleland, Carpenter, & Randolph, 2002, exposure to excipient de-

gradation products such as those from polysorbates; Ha, Wang, &

Wang, 2002; Kerwin, 2008; Wasylaschuk et al., 2007, pH extremes;

Chi, 2004; Thirumangalathu, Krishnan, Brems, Randolph, &

Carpenter, 2006, and elevated temperatures) produce polydisperse

distributions of aggregates (Joubert, Luo, Nashed‐Samuel, Wypych, &

Narhi, 2011). As a result, aggregates may be observed in protein

formulations following purification (Arakawa, Ejima, & Akuta, 2017),

filtration (Barnard, Kahn, Cetlin, Randolph, & Carpenter, 2014;
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Liu, Randolph, & Carpenter, 2012; A. Sharma, Anderson, & Rathore,

2008), pumping (Saller et al., 2016; Tyagi et al., 2009; Tzannis,

Hrushesky, Wood, & Przybycien, 1996), freezing (Barnard et al.,

2011; Kolhe, Amend, & Singh, 2010; Kueltzo, Wang, Randolph, &

Carpenter, 2008; Vlieland et al., 2018), vial filling (Nayak, Colandene,

Bradford, & Perkins, 2011), viral clearance steps and shipping (Siska,

Harber, & Kerwin, 2020). The potential role of these aggregates in

provoking unwanted immune responses (Chisholm et al., 2017;

Fradkin, Carpenter, & Randolph, 2009; Freitag et al., 2015; Jiskoot

et al., 2016; Rosenberg, 2006) has generated interest in developing

techniques to identify their root causes.

The root cause of protein aggregation is often elusive. However,

the various stresses that promote protein aggregation each induce

aggregation by somewhat different molecular mechanisms (Roberts,

2007; Wang & Roberts, 2018). These distinct mechanisms lead to

particle populations whose size and morphology distributions

comprise particle “fingerprints” that reflect the root cause of their

formation. Better techniques for characterizing these particle

fingerprints would provide methods to rapidly determine the root

causes of particle formation in a sample.

Flow imaging microscopy (FIM) is a commonly used technique for

analyzing size distributions of protein aggregates (Narhi et al., 2015;

D. K. Sharma, King, Oma, & Merchant, 2010; D. K. Sharma, Oma,

Pollo, & Sukumar, 2010; Zölls et al., 2013) and other particles. FIM

uses light microscopy combined with microfluidics to capture digital

images of particles larger than 1 µm in size contained within a sample.

The output from this instrument is a set of digital images of individual

particles in a small liquid sample (usually about 103–105 images per

200 µl sample). The images contain a large amount of morphological

information. However, in common practice, most of the morphology

information potentially available from FIM measurements is not

utilized.

Convolutional neural networks (ConvNets) can be used to ex-

tract and analyze morphological information embedded in FIM ima-

ges (Calderon, Daniels, & Randolph, 2018; Gambe‐Gilbuena, Shibano,
Krayukhina, Torisu, & Uchiyama, 2020). ConvNets are a family of

neural networks capable of learning relevant features from a col-

lection of images that are useful when performing tasks such

as classification and dimension reduction (Calderon et al., 2018;

Esteva et al., 2017; Krizhevsky, Sutskever, & Hinton, 2012; Schroff,

Kalenichenko, & Philbin, 2015). ConvNets trained on FIM data sets

can accurately classify protein aggregates produced by different

stresses. In Calderon et al. (2018) and Gambe‐Gilbuena et al. (2020),

a set of single, well‐defined stresses (e.g., freeze‐thawing and heating)

was applied to protein solutions, causing aggregates to form.

ConvNets were then trained on FIM images of the resulting particles

to train classifiers to recognize particle morphologies generated by

one of these stresses. The resulting classifiers were then used to

classify FIM images of particles from new samples that had been

subjected the same set of stresses.

Although these previous approaches are useful for analyzing

protein aggregates within formulations exposed to single stresses,

protein aggregates encountered in practice are likely the result of a

superposition of a variety of stresses, yielding more varied finger-

prints. The potentially large number of different aggregate sources

may mask subtle but relevant changes in particle populations due to

minor changes in process conditions such as changes in container‐
closure systems. This issue is compounded by the inherent variability

in particle morphology even under tightly controlled conditions

(Gambe‐Gilbuena et al., 2020). Thus, it can be difficult to determine if

morphology differences within a particle population reflect different

root causes of aggregation or merely sample‐to‐sample variability.

In the present study, we demonstrate a ConvNet algorithm that

can be used to quantitatively determine if particle morphologies re-

corded in a small collection of FIM images are statistically different

from those generated under a user‐defined baseline condition. This

analysis uses a combination of dimension reduction and hypothesis

testing. Facial recognition strategies (Sun, Chen, Wang, & Tang, 2014;

Taigman, Yang, Ranzato, & Wolf, 2014) such as triplet loss ap-

proaches (Schroff et al., 2015) can reduce the dimensionality of FIM

image data sets, compressing the information contained in color FIM

images to two‐dimensional (2D) feature vectors (i.e., the fingerprints).

The extreme information compression enables the use of nonpara-

metric techniques such as kernel density estimates of the probability

density of these low‐dimensional representations for particles made

under a single baseline condition. Goodness‐of‐fit hypothesis test

with user‐tunable false‐positive rates can then be used to compare

collections of particle images from other samples to this density.

One potential application of this approach is testing whether

formulation design decisions (e.g., pH, excipient concentrations,

container‐closure types) affect protein aggregate populations. In this

study, we focus on the impact of container‐closure systems on pro-

tein aggregate morphology. The geometry and chemistry of the

container can affect protein aggregation (Kiese, PappenBerger,

Friess, & Mahler, 2008). Container‐induced particles may come di-

rectly from the container (e.g., glass flakes from delamination in glass

vials; Ennis et al., 2001) as well as from protein aggregates triggered

by the container itself (Bee, Randolph, Carpenter, Bishop, & Dimitrova,

2011; Gerhardt et al., 2014). Aggregation may depend not only on

the type of container (Krayukhina, Tsumoto, Uchiyama, & Fukui, 2015;

Kumru et al., 2012; Teska, Brake, Tronto, & Carpenter, 2016) but also

may vary between different lots of the same container from a given

manufacturer.

2 | MATERIALS AND METHODS

2.1 | Materials

Intravenous immunoglobulin (IVIg, Gammagard Liquid) was obtained

from Takeda International (Lexington, MA). Phosphate‐buffered sal-

ine (PBS) containing 144mg/L potassium phosphate monobasic,

795mg/L potassium phosphate dibasic, and 9,000mg/L sodium

chloride at pH 7.4 was obtained from Gibco (Waltham, MA). Poly-

propylene, 2 ml microcentrifuge tubes (“Plastic”) were from Fisher

Scientific (Waltham, MA). FIOLAX Clear 3 ml type 1 borosilicate glass
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vials (“Glass 1”) were obtained from Schott (Elmsford, NY). A second

3ml type 1 borosilicate glass vial (“Glass 2”) was obtained from

Duran Wheaton Kimble (Mainz, Germany). Micro‐90 was obtained

from International Products Corp. (Burlington, NJ). Polystyrene

20‐µm calibration beads were from Thermo Fisher Scientific

(Waltham, MA).

2.2 | Generation of protein aggregates

IVIg aggregates were made using combinations of two aggregation‐
inducing stresses in three container types. Five experimental re-

plicates were made per combination of container and stress. In each

replicate, two containers were cleaned by filling the container with

ultrapure water generated using a PURELAB flex 1 water deioniza-

tion system from ELGA Labwater (Wycombe, UK), shaking the filled

container, then emptying the container and allowing the container to

air dry for 1 hr. IVIg stock solution was made by centrifuging the as‐
received drug product containing 100mg/ml IVIg at 15,000g for

20min at 4°C. in. The supernatant was then diluted to 0.5mg/ml

using filtered PBS, and 1.5 ml of this solution was filled into each

container. Samples were then exposed to either freeze‐thawing or

shaking stresses as described below.

2.3 | Freeze‐thaw stress

Samples stressed by freeze‐thawing underwent four freeze‐thaw
cycles. During each cycle, the samples were suspended in a fixed

orientation in liquid nitrogen for 4min and then suspended in a 30°C

water bath for 10min. FIM analysis was performed immediately after

the final freeze‐thaw cycle was completed.

2.4 | Shaking stress

Samples were taped in a horizontal orientation onto an orbital plate

shaker and shaken at 800 rpm for 4 hr. FIM analysis was performed

immediately after the shaking was completed.

2.5 | FIM

FlM images were recorded with a FlowCam® VS instrument (Fluid

Imaging Technologies, Inc., Scarborough, ME) with a ×10 objective, a

field‐of‐view flow cell with a depth of 80 μm and width of 700 μm,

and color imaging. The instrument was focused using the built in

autofocus protocol for optimal image quality using 20‐μm calibration

beads. 1% Micro‐90 solution followed by filtered ultrapure water

were flushed through the instrument before and between measure-

ments. The flash duration of the instrument was adjusted between

replicates to achieve a constant background intensity of 150. Three

0.2 ml aliquots were analyzed from each replicate vial. Images were

collected at a flow rate of 0.05ml/min using 15 light and 17 dark

pixel thresholds for particle segmentation.

2.6 | Image postprocessing

FIM images of particles were imported into Python 2.7. Before

further analysis, the size of each image was adjusted to 24 × 24

pixels. Smaller images were padded with pixels sampled from a

normal distribution with the same mean and variance as the border

of the image and smoothed using Gaussian smoothing. For larger

images a centered 24 × 24 crop of the image was used. Three ex-

perimental replicates for each combination of container and stress

were used to train the algorithm, while the remaining two in-

dependent replicates were retained for use in subsequent testing.

Fourteen thousand images were randomly selected from each of

the three training replicates to be used as training data for the

algorithm described in the next section. The remaining two re-

plicates for each condition were not shown to the algorithm at all

during training. Two thousand images from each replicate, includ-

ing those not included in algorithm training, were set aside during

algorithm training and used to test the performance of the trained

algorithm.

2.7 | Algorithm overview

An algorithm was developed to determine if FIM images from a test

sample were statistically consistent with those in a baseline sam-

ple. Hereafter, we refer to these FIM images as “particles” since

each FIM image is recorded on a single particle. Figure 1 shows the

process of training the algorithm to identify particles in a baseline

sample. First, a ConvNet is trained on the collection of FIM images

(Figure 1, first row, first column) to compress information within

these images into a low‐dimensional (2D here) point cloud of em-

beddings (Figure 1, second row, first column). A nonparametric

kernel density estimate is then constructed from this low‐
dimensional point cloud to estimate the probability density of

embeddings in the baseline sample (Figure 1, second row, second

column). The estimated probability density is subsequently used to

define a Rosenblatt transform which maps an embedding to a new

random vector having the same dimensions of the embedding point

(Rosenblatt, 1952; Figure 1, second row, third column). Goodness‐
of‐fit hypothesis tests can be applied in conjunction with this Ro-

senblatt transform to determine if sets of FIM image embedding

points are consistent with the estimated baseline density. The hy-

pothesis test exploits the following mathematical fact: if a collec-

tion of embedding points are distributed according to the

probability density associated with the baseline sample, the Ro-

senblatt transform yields multivariate random vectors whose

components are independent and identically distributed with each

component being a uniformly distributed random variable between

0 and 1. Goodness‐of‐fit hypothesis testing can formally check sets

DANIELS ET AL. | 3



of transformed embeddings for this property. Critical values for

this hypothesis test are set by repeatedly subsampling Rosenblatt‐
transformed embedding points from the baseline sample, calcu-

lating test statistics for each subsample, selecting a value based on

the resulting test statistic distribution to obtain a user‐specified
type I error (i.e., false‐positive) rate (Figure 1, first row, third

column).

Once trained, the algorithm can be used to quantify how sta-

tistically similar particle populations in test samples are to that in the

baseline sample. Figure 2 shows the application of the trained algo-

rithm to test samples containing either similar or different particle

populations. To analyze a test sample, a small number of FIM images

(e.g., 5–200) are subsampled from the test sample, converted to 2D

embeddings with the trained ConvNet, and transformed using the

Rosenblatt Transform defined by the baseline density. Goodness‐of‐
fit hypothesis tests using the critical values from the baseline sample

are then used to test if the transformed embeddings are consistent

with a uniform distribution. Applying this algorithm to particles that

resemble those in the baseline sample (Figure 2, top row) results in

embeddings that are both visually and statistically consistent with

those in the baseline sample. Conversely, particles that do not re-

semble the baseline sample (Figure 2, bottom row) yield embeddings

less consistent with the baseline sample and are thus identified

through goodness‐of‐fit hypothesis testing as a different particle

population from the baseline sample.

2.8 | ConvNets

ConvNets are used in this analysis to extract and compress in-

formation in FIM images into a set of image features. While pre-

viously these image features were used as the input to a classifier

that predicted the stress to which a sample had been exposed

(Calderon et al., 2018), in the current analysis nonparametric

techniques were used to estimate the distribution of these features. To

apply these techniques, the ConvNet needed to be trained to learn

extremely low‐dimensional (i.e., 2–3 image features) representations of

FIM images to avoid the exponential decrease in accuracy of these

techniques with each additional dimension in the data (Scott, 2015).

The ConvNet used in this analysis was trained using a triplet loss

algorithm, an approach that was developed for facial recognition to

learn highly compressed image representations (Schroff et al., 2015).

In this algorithm, a ConvNet is trained to learn a low‐dimensional

representation or embedding of images that acts to cluster together

images from similar sources (e.g., faces of the same person, or protein

aggregates made by the same stress and in the same container).

During training, triplets (i.e., sets of three images) are assembled from

the training data consisting of an image of one particle type (the

anchor image), another image of the same particle type (a positive image),

and a third image of a different particle type (the negative image).

These triplets are fed through the neural network to calculate

embeddings for each of the three images. The network's parameters

F IGURE 1 Flowchart showing how the algorithm is trained to detect particle populations similar to those made under some baseline

condition. FIM images of particles made under the baseline condition (first figure) are used to train a ConvNet capable of compressing the image
into a two‐dimensional (2D) embedding (second figure). The probability density of these embeddings is then estimated using a kernel density
estimate (third figure). A Rosenblatt transform defined using this distribution can then be used to map embeddings from the baseline sample

onto a uniform distribution (fourth figure). The transformed embeddings can then be used to set up goodness‐of‐fit hypothesis tests by
estimating the distribution of a test statistic for the baseline sample (fifth figure, curve) and using the distribution to determine an appropriate
critical value for the test (fifth figure, dashed line). ConvNet, convolutional neural networks; FIM, flow imaging microscopy [Color figure can be

viewed at wileyonlinelibrary.com]
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are then adjusted to minimize a modified triplet loss function

(Hermans, Beyer, & Leibe, 2017):

α= ( + )−( − + )l eln 1 ,d dap an (1)

where l is the triplet loss, dap is the Euclidian distance between the

representations of the anchor and positive images returned by the

ConvNet, dan the distance between the representations of the anchor

and negative image, and α is the margin, a small number used to scale

the distances between dissimilar particle types in the embedding.

This loss function is minimized when particles from a common source

are close to each other in the embedding space and far apart from

particles from other sources. In addition to allowing nonparametric

density estimation techniques to be used, the resulting ConvNet can

also be used to effectively analyze FIM image types not shown to the

network during training. The algorithm is trained on a modest num-

ber (e.g., >10,000) of particles made under a small set conditions, but

once trained, the network can then be used to analyze conditions not

shown to the network during training using a smaller number of

particles.

A ConvNet was trained to compress the particle information in

24 × 24 × 3 preprocessed FIM images into a 2D representation of the

image. The network structure used in this study is shown in Table 1 .

The Visual Geometry Group (VGG)‐inspired network (Simonyan &

Zisserman, 2015) uses convolutional layers with rectified linear unit

(ReLU) activations in conjunction with max‐pooling and dropout

layers. Unlike the VGG structure, the first dense layer of the network

used softplus activations (Dugas, Bengio, Bélisle, Nadeau, & Garcia,

2001) as the sparsity introduced by ReLU activations was found to

cause nonsmooth features in embedding point clouds which subse-

quently complicated obtaining accurate kernel density estimates of

the probability density of the points.

The ConvNet was trained on FIM images of particles produced

in Plastic and Glass 1 vials after applying either freeze‐thaw or

shaking stresses. Particles generated within Glass 2 vials were not

used to train the ConvNet, but instead were used to test the

network's generalization to unseen particle types. The network

was trained with a margin of 0.5 using minibatches of 64 triplets

using an Adam optimizer (Kingma & Ba, 2015) with a 0.001

learning rate. Triplet minibatches were generated by assembling

minibatches of 64 anchor images from the training images and

calculating image embeddings for each training image at the start

of each epoch. Positive and negative images for each anchor image

were then randomly selected from all training images until a triplet

was found that met semihard triplet mining criteria (Schroff

et al., 2015) based on the most recentlycalculated embeddings.

This approach filters out triplets that have low and high values of

the loss function which can prevent the network from learning

effective image representations. The current value of the triplet

loss function, as well as the variance in embeddings from each

condition, was monitored during training at the end of each epoch.

The network was trained for 100 epochs and the network para-

meters that minimized the triplet loss was used in subsequent

steps of the analysis.

F IGURE 2 Flow chart showing the application of the algorithm to test samples that either resemble the baseline sample (top row) or do not

resemble the baseline sample (bottom row). To perform the analysis small sets of images are selected from each sample (first column) and
analyzed with the ConvNet to obtain two‐dimensional embeddings for the images (second column, points). These embeddings are then
compared against the distribution of embeddings for the baseline sample (second column, contour) using a combination of Rosenblatt

transforms and hypothesis testing (third column). If the test statistic for the test sample (third column, solid line) is less than critical value for the
baseline sample (third column, dashed line), the algorithm identifies that the particles in the test sample are consistent with the baseline sample.
ConvNet, convolutional neural networks; FIM, flow imaging microscopy [Color figure can be viewed at wileyonlinelibrary.com]
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2.9 | Kernel density estimation

Kernel density estimation is a nonparametric technique for estimat-

ing the probability density function (PDF) of a data set using data

sampled from this distribution (Scott, 2015). This technique was used

to estimate the distribution of the low‐dimensional FIM image em-

beddings for the baseline sample directly from the embeddings.

Embedding sets from test samples were then compared against this

distribution to decide if the particles in the test sample were con-

sistent with those in the baseline sample.

Kernel density estimates of the distribution of embeddings for the

baseline sample were constructed using a product kernel and using

normal distributions as the kernel in each dimension. This kernel function

was chosen so that the estimated PDF has an infinite support, which was

helpful in obtaining meaningful evaluations of the Rosenblatt transform

on particles that embedded far away from the mode of the PDF. The

bandwidth of the kernel in each dimension was calculated using a normal

reference rule (Scott, 2015):

σ= ⎛
⎝ +

⎞
⎠

/ +
− / +h

d
n

4

2
,i

d

i
d

1 4
1 4 (2)

where hi is the bandwidth in dimension i, d is the number of di-

mensions of the embeddings (2 in this study), n is the number of

datapoints used to construct the density estimate, and σi is the

standard deviation of the embeddings in dimension i.

2.10 | Rosenblatt transform

The Rosenblatt Transform is a statistical normalization that maps a

d‐dimensional random variable onto a new d‐dimensional random

variable using the PDF believed to govern the original variable

(Rosenblatt, 1961). If the PDF does govern the initial random variable,

the resulting random variable will be governed by a d‐dimensional

uniform distribution in which each dimension is independent and

identically distributed. Goodness‐of‐fit hypothesis testing can then be

used to check if the transformed variable is consistent with the uniform

distribution. Performing this testing on the transformed variable allows

us to use simple goodness‐of‐fit hypothesis test statistics with known

distributions for a uniform null PDF—regardless of the initial null PDF

that would be used if the testing was performed on the untransformed

embeddings. The Rosenblatt transform also ensures that the two

dimensions of the embeddings are independent under the null

hypothesis. This feature of the transform simplifies setting critical

values for the hypothesis test as the critical value does not need to be

adjusted to account for dependencies in the embedding dimensions

under the null hypothesis. Embedding sets from test samples were

transformed based on the embedding PDF for the baseline sample

before performing goodness‐of‐fit hypothesis testing.

2.11 | Goodness‐of‐fit hypothesis testing

After applying the Rosenblatt Transform defined by the density estimate

for the baseline sample to image embeddings from the test sample,

goodness‐of‐fit hypothesis tests were used to test the null hypothesis

that the transformed embeddings are consistent with a uniform

distribution. Rejection of this null hypothesis indicated that the particles

in the test sample were not consistent with those in the baseline sample

and thus potentially formed under a different set of conditions.

All goodness‐of‐fit hypothesis testing was performed using a

Kolmogorov–Smirnov (KS) test (Darling, 1957), a one‐dimensional

TABLE 1 ConvNet structure used in this study

Layer no. Layer type
No. of
features Feature size Activation Input shape Output shape

1 Convolutional 32 3 × 3 ReLU 24 × 24 × 3 22 × 22 × 32

2 Convolutional 32 3 × 3 ReLU 22 × 22 × 32 20 × 20 × 32

3 Dropout (10% rate) – – – 20 × 20 × 32 20 × 20 × 32

4 Convolutional 32 3 × 3 ReLU 20 × 20 × 32 18 × 18 × 32

5 Convolutional 64 3 × 3 ReLU 18 × 18 × 32 16 × 16 × 64

6 Max pooling (2 × 2) – – – 16 × 16 × 64 8 × 8 × 64

7 Dropout (10% rate) – – – 8 × 8 × 64 8 × 8 × 64

8 Convolutional 64 3 × 3 ReLU 8 × 8 × 64 6 × 6 × 64

9 Convolutional 64 3 × 3 ReLU 6 × 6 × 64 4 × 4 × 64

10 Flatten – – – 4 × 4 × 64 1,024

11 Dropout (10% rate) – – – 1,024 1,024

12 Dense 64 n/a Softplus 1,024 64

13 Dense 2 n/a None 64 2

Abbreviations: ConvNet, convolutional neural network; ReLU, rectified linear unit.
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(1D) goodness‐of‐fit hypothesis test that compares the cumulative

distribution function (CDF) of the embeddings to the CDF of a 1D

uniform distribution. Two 1D KS tests were performed on each di-

mension of the transformed embeddings to test the null hypothesis

as the dimensions of the transformed embeddings are independent

under the null hypothesis. The null hypothesis was rejected if either

dimension was not consistent with a uniform distribution. The de-

sired overall type I error (i.e., false‐positive) rate of the test can be

used to set error rates for the two individual tests obtained using the

Bonferroni correction. The overall null hypothesis was rejected if

either of the two tests rejected the null hypothesis. A 5% overall type

I error rate was used in this analysis.

Test statistics for the hypothesis test were calculated using sets

of a small number (e.g., 5–200) of particles randomly selected from

the test sample. Since the statistical power of these hypothesis tests

scales with the number of data points used in the analysis, restricting

the number of particles that are analyzed at once helped control the

sensitivity of the analysis. In this study sets of either 20 or 200

particles were used to compare test samples to the baseline sample.

Monte Carlo simulations were used to select appropriate critical

values (aiming at obtaining a user‐specified type I error rate) of the

test statistic to account for the bias introduced by both the non-

parametric density estimate and subsampling scheme. The test sta-

tistic distribution for sets of 20 particles was estimated by randomly

subsampling 10,000 sets of 20 training particles from the baseline

condition and evaluating the test statistics for each subsample. These

distributions were then used to select critical values at the appro-

priate significance level for each test. This process was repeated

using sets of 200 particles, resulting in a second test statistic dis-

tribution and critical value for these larger particle sets.

Test samples were compared against baseline samples by re-

peatedly subsampling sets of particles from the test sample and using

the algorithm to identify the fraction of these subsamples that were

consistent with the baseline sample. 2,500 sets of either 20 or

200 particles were subsampled from the test sample. After computing

the Rosenblatt transformed embeddings for each subsample, the hy-

pothesis test was used to determine if each subsample was consistent

with the baseline sample. The similarity between the test sample and

the baseline sample using a given number of particles was recorded as

the fraction of the 2,500 subsamples that did not contain particles

consistent with the baseline sample.

2.12 | Particle morphology comparison

The algorithm described above was used to compare samples of

aggregated IVIg formed under different stress conditions and in

different containers. A ConvNet was trained on FIM images of par-

ticles made in Plastic and Glass 1 containers with a triplet loss ap-

proach. The remaining steps of the algorithm were then trained to

identify sets of either 20 or 200 particles that resemble sets of the

corresponding number of particles made in one container after ex-

posure to one stress. These later steps were separately trained

12 times to cover the six possible baseline classes (particles made by

one stress in one container) and the two‐particle set sizes (20 or 200)

that were used during testing.

The trained algorithms were used to investigate the impact of

different stresses and different containers on particle morphology. This

comparison was performed by comparing small sets of test particles

from each sample to all the training particles from a single container

and stress. To investigate the impact of stresses on particle popula-

tions, the algorithm was used to compare particles generated by

freeze‐thaw stress (the baseline stress class) in each of the three

containers to particles made in the same container type after exposure

to shaking and freeze‐thaw stresses. Similarly, the effect of container

on particle populations was investigated by comparing particles made

in Glass 1 containers after exposure to each stress to samples of those

made in each of the three containers after exposure to the same stress.

2.13 | Surface characterization

The two glass vial types used in this analysis were characterized using

contact angles and surface profilometry. Each of these measurements

was performed by cutting off the bottom of the vial and cleaning the

inner surface with ethanol, water, and nitrogen before measurements.

To assess the hydrophobicity of the glass containers, contact

angles were measured for each vial using a ramé‐hart Model 210

goniometer/tensometer with DROPimage Pro software (Succasunna,

NJ). This instrument was used to measure static, advancing, and re-

ceding contact angles on each of the three surfaces. These mea-

surements were performed in triplicate. Between measurements, the

surfaces were cleaned with ethanol, water, and nitrogen gas.

Surface profilometry was performed with a Dektak 3030 Pro-

filometer (Billerica, MA) to measure the roughness of the two vials.

Surface profiles were measured along a flat 1 mm length along the

inner surface of the vial. These profiles were fitted to a second‐
degree polynomial which was then subtracted from the raw data to

account for the macroscopic curvature of these surfaces. The flat-

tened surface profiles were then used to calculate the arithmetic

average roughness Ra of each container which is calculated using:

∑= | |
=

R
n

h
1

,a
i

n

i
1

(3)

where n is the total number of locations along the 1mm length that

the height was measured, i indexes the different height measure-

ments, and hi is the height measured at point i .

3 | RESULTS

3.1 | FIM

Figure 3 shows collections of randomly selected FIM images

obtained from each of the six conditions compared in this analysis.
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These images reveal obvious differences between particles

generated by freeze‐thawing and shaking stresses; particles

observed after shaking (Figure 3a–c) are typically large and exhibit

complex morphologies while particles imaged after freeze‐thaw
cycling (Figure 3d–f) are much smaller with simple morphologies.

Conversely, the effect of different containers on particle

morphologies generated by these stresses is not visually obvious

from the images.

3.2 | ConvNets

Figure 4 shows contour plots of the distribution of embeddings

returned by the trained ConvNet for particles made by freeze‐
thawing and shaking stresses. The contours for the different

stresses are visually separated within this embedding space, in-

dicating that the network can distinguish between particles

generated by shaking and freeze‐thaw stresses. Figure 4 also

shows sample particles that are mapped to different locations in

the embedding space. In this embedding scheme, small particles

with simple but common structures are mapped near the mode of

the freeze‐thaw distribution whereas large, complex hetero-

geneous particles are mapped near the mode of the shaking

distribution.

Figure 5shows contour plots of the estimated PDF of em-

beddings returned by the trained ConvNet for all particles not

included in the network—including those from the four samples

per condition that were not used to train the network. Figure 5a

shows the embeddings for particles formed in Plastic containers,

Figure 5b shows those formed in Glass 1 containers, and Figure 5c

shows those formed in Glass 2 containers. These contour plots

indicate an observable difference in the particle morphologies

produced in the three containers as a result of shaking stresses.

Compared with particles produced by shaking Glass 2 or Plastic

containers, particles produced by shaking samples in Glass 1

containers (Figure 5b) have a much tighter density in the embed-

ding space than either of the other samples. Particles produced by

freeze‐thawing stress appear to be influenced to a lesser extent by

the container in which they were formed; particles produced

freeze‐thaw cycling in Glass 1 containers exhibit a slightly more

diffuse distribution than those produced in the other container

types (Figure 5b).

F IGURE 3 Sample collages of intravenous immunoglobulin aggregates generated by (a) shaking in plastic microcentrifuge tubes,
(b) freeze‐thawing in plastic microcentrifuge tubes, (c) shaking in Glass 1 vials, (d) freeze‐thawing in Glass 1 vials, (e) shaking in Glass 2 vials,
(f) freeze‐thawing in Glass 2 vials [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Particle comparisons

The remaining steps of the algorithm were used to compare the

particle populations produced within different containers when ex-

posed to different stresses. This comparison was done by choosing

one of the samples being compared to be the baseline sample, sub-

sampling small sets of particles from the other (test) sample, and

testing the null hypothesis that each subsample contained particles

that were consistent with those in the baseline sample. Table 2

shows the rejection frequencies when comparing sets of 20 particles

from each of the three containers to those made by applying freeze‐
thaw stress to the same container. As was expected from both the

raw flow imaging data shown in Figure 3 and the embeddings in

Figure 5, the algorithm can easily identify morphology differences

between particle populations that had been exposed to these two

stresses using only a small number of particle images. Additionally,

the algorithm only misidentified unseen test particles made under

baseline conditions as being different from the baseline population

around 5% of the time—the type I error rate that the test was de-

signed to give.

Table 3 shows the rejection frequencies when comparing sets of

either 20 or 200 test particles made by each stress to those produced

in Glass 1 containers when exposed to the same stress. Interestingly,

the ability of the algorithm to distinguish between particles produced

in each of the three containers depended on the applied stress. Sets

of 20 particles produced by exposing IVIG solutions in Plastic or

Glass 2 containers to freeze‐thawing stress were only able to be

distinguished from those produced in Glass 1 containers at ap-

proximately the same rate as the type I error rate. In contrast, sets of

20 particles produced by shaking stress in each container were dis-

tinguishable from those made in Glass 1 containers approximately

40% of the time—eight times the type I error rate of the test. In-

creasing the size of the particle sets to 200 increased the fraction of

shaking particle sets from Glass 2 and Plastic containers that were

distinguished from those produced in Glass 1 containers with only a

small increase in the false positive rate when the test was applied to

held‐out baseline samples. In addition, the larger particle sets allowed

the algorithm to distinguish between particles made by freeze‐
thawing stress in Glass 1 and Glass 2 ~40% of the time and those

produced in Glass 1 and Plastic 20% of the time.

F IGURE 4 Contour plot of the FIM image embeddings of particles used to train the ConvNet. The colors of the plot indicate the density (i.e.,
PDF value) of image embeddings from a specific stress in that region of the embedding space. The darker orange‐to‐red contour corresponds to
particles formed using shaking stress while the lighter blue‐to‐purple contour corresponds to particles formed using freeze‐thaw stress. Regions

of a single color have PDF values between the values indicated on the color bar. The values of the color transitions were manually selected to
aid in viewing these PDFs. Also shown on each figure are typical FIM images that embed within specific regions of the contour plot. ConvNet,
convolutional neural network; FIM, flow imaging microscopy; PDF, probability density function [Color figure can be viewed at

wileyonlinelibrary.com]
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3.4 | Surface characterization

Table 4 shows the surface characterization results for the two types

of glass vials. The contact angle measurements suggest that the two

glasses have similar hydrophobicities, with Glass 1 being slightly

more hydrophilic than Glass 2. Both surfaces were also found to have

similar roughnesses.

4 | DISCUSSION

This study presents and demonstrates a novel algorithm designed to

compare FIM images of protein aggregates and other particles ob-

tained from one sample to those obtained in some baseline sample.

This approach is a departure from previous techniques used to pre-

dict to which of a small set of conditions a sample was exposed

(Calderon et al., 2018; Gambe‐Gilbuena et al., 2020). The primary

advantage of this new approach is its ability to determine, using only a

small number of FIM images, if a new sample exhibits significantly

different particle populations than those found under baseline con-

ditions. The combination of traditional statistical tools with powerful

machine learning algorithms can be used to determine if two samples

exhibit a morphology difference that cannot be explained by sample‐
to‐sample variance in particle morphology under a single root cause.

This approach is effective at identifying (statistically) significant dif-

ferences in particle morphology occurring due to different root

causes such as manufacturing changes or process upsets that could

warrant further investigation.

The use of statistical tools in this algorithm also give users

control over the sensitivity of the analysis to changes in particle

morphology. Decreasing the type I error rate or increasing the

number of particles used in the hypothesis test increases the sensi-

tivity of the test so that smaller deviations in particle morphology

from the baseline condition are identified as significant. This feature

allows the sensitivity of the algorithm to be tuned for a specific

F IGURE 5 Contour plots of the flow imaging microscopy

image embeddings of particles not shown to train the
algorithm made in (a) Plastic microcentrifuge tubes
(b) Glass 1 vials and (c) Glass 2 vials. The darker

orange‐to‐red contours in each plot correspond to particles made
using shaking stress while the lighter blue‐to‐purple
contours in each correspond to particles made using

freeze‐thaw stress. Colors in this figure are interpreted as
described for Figure 4 [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 2 Probability that a set of 20 images of particles produced
by freeze‐thaw or by shaking stress in a container will be

distinguishable from a baseline population of particles made by
freeze‐thaw stress in the same container

Baseline sample:
particles made by

freeze‐thaw stress in
denoted container

Probability of rejecting test particle sets
(20 particles)

Aggregates made

by freeze‐thaw
stress

Aggregates made
by shaking stress

Glass 1 5.0% 100.0%

Glass 2 5.9% 100.0%

Plastic 5.0% 100.0%
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application. For instance, the sensitivity of the algorithm can be in-

creased for formulation development to better detect subtle changes

in particle morphology between possible formulations. In contrast, in

process monitoring applications the sensitivity of the algorithm can

be decreased to minimize the chances that a false positive difference

between a baseline “normal” reference batch and a new batch of

product triggers unnecessary process shutdowns.

The techniques used to learn low‐dimensional FIM image re-

presentations, calculate density estimates, and perform goodness‐of‐
fit hypothesis testing were chosen to demonstrate the algorithm

using relatively simple techniques. While the techniques used here

were effective in this analysis, in practice other techniques for these

analyses could be considered to further improve the performance of

the algorithm. For example, different goodness‐of‐fit hypothesis tests
(Anderson & Darling, 1954; Hong & Li, 2005; Justel, Peña, & Zamar,

1997) may provide better statistical power against deviations in

particle morphology than the test used here.

The performance of this algorithm was demonstrated on particles

made by subjecting IVIg solutions in three types of containers to two

different stresses. Freeze‐thawing and shaking stresses produced

particle populations that would be easy to distinguish by visual

inspection of the FIM images (Figure 3). These stresses produced

visually resolved embeddings in the learned embedding space

(Figures 4 and 5) which can then be easily distinguished using

hypothesis testing (Table 2). It should be noted that this approach can

still be used to classify samples by the stresses that they were exposed

to as was done in previous papers (Calderon et al., 2018; Gambe‐
Gilbuena et al., 2020). If FIM images of different suspected stresses

are available, this algorithm can be used to check if the particles in a

sample are consistent with those produced by one of these stresses.

The algorithm was also able to identify the impact of container

surfaces on particle populations. The results are shown in Table 3

suggest that the particle populations produced by freeze‐thaw and

shaking stress are influenced by the container, but that the effect is

more obvious when shaking stress is used to create particles. The

larger impact of the container on the particles produced by shaking

stress agrees with the mechanistic understanding of these stresses.

Agitation‐induced aggregation likely occurs at interfaces including

the air‐water and container‐water interfaces (Gerhardt et al., 2014;

Teska et al., 2016). In contrast, during freeze‐thawing aggregation

due to adsorption to ice‐water interfaces and cryoconcentration

effects (Bhatnagar, Bogner, & Pikal, 2007) may occur at locations

removed from container interfaces. Thus, the container interfaces

might be expected to impact particle populations more when shaking

stresses rather than freeze‐thawing stresses are used to cause

aggregation.

While the effect of container type was more subtle for particles

made via freeze‐thaw stress, the distribution of FIM image embed-

dings showed increased density near the mode of the distribution for

Glass 2 vials as compared to that for Glass 1 vials (Figure 5). This

difference was statistically discernible when sets of 200 particle

images were analyzed. This result is somewhat surprising given the

expected limited role of the container‐water interface on aggregation

induced by freeze‐thawing. One possible explanation for the differ-

ent particle fingerprints observed following freeze‐thaw cycling in

the two types of glass vials is differences in heat transfer through the

vial walls. Differences in the thickness or geometry of the glass be-

tween the two vial types could cause a difference in the heat transfer

rate through the container walls. Higher heat transfer rates would

accelerate the growth of ice crystals from the walls of the container

that occurs during liquid nitrogen‐induced freezing (Searles,

Carpenter, & Randolph, 2001). This faster growth results in a larger

amount of ice interfacial area (Sarciaux, Mansour, Hageman, &

Nail, 1999) and increased protein inclusion within growing ice crys-

tals (Dong, Hubel, Bischof, & Aksan, 2009; Twomey et al., 2013)

which can induce protein unfolding and aggregation (Strambini &

Gabellieri, 1996; Strambini & Gonnelli, 2007).

The algorithm was not explicitly trained to detect the observed

differences between particle populations produced in Glass 1 and 2

containers as particles generated in Glass 2 were not used to train

the ConvNet embedding step. The ability to compare unseen particle

types against those in a user‐defined baseline allows new samples to

be analyzed using a fraction of the FIM images (20–200) that would

be required to retrain a ConvNet on a new particle type (>10,000).

TABLE 3 Probability that a set 20 or 200
random particles formed in Glass 1, Glass 2,
or Plastic containers by freeze‐thaw or

shaking stress will be distinguishable from a
baseline population of particles made in the
Glass 1 containers by the respective stress

Baseline sample:

particles made in
Glass 1 containers by

denoted stress

Number of

particles

Probability of rejecting test particle sets

Particles formed
in Glass 1

containers (%)

Particles formed
in Glass 2

containers (%)

Particles formed
in plastic

containers (%)

Freeze‐thaw 20 5.0 6.8 5.1

200 6.6 40.6 21.5

Shaking 20 5.1 36.0 13.4

200 4.0 100.0 70.6

TABLE 4 Contact angle and surface roughness measurements for
Glass 1 and Glass 2 containers

Container

Static
contact

angle

Advancing
contact

angle

Receding
contact

angle

Contact

angle
hys-

teresis Ra (nm)

Glass 1 16 23 <5 <18 28

Glass 2 27 31 <5 <26 12
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The required number of FIM images can be recorded rapidly using

small volumes of sample.

The algorithm revealed that different types of particles can form

in a single protein formulation when stressed in different types of

containers, even when the containers are as similar as the two bor-

osilicate glass container types tested here. The container‐dependent
formation of different particles would have been difficult to predict

using simple surface characterization techniques, since the glasses

have similar roughness and hydrophobicity (Table 4).

The analysis presented here can be used to compare the effect of

changes in container types (e.g., new lots of glass vials) on protein

stability using an approach that incorporates standard accelerated

stability protocols. Before any change, a baseline set of FIM images

should be obtained after subjecting the protein formulation to ac-

celerated stability conditions (e.g., agitation and freeze‐thawing),

capturing images of the resulting particles using FIM and training the

algorithm to recognize the imaged particles. The accelerated stability

protocol can then be repeated on a small number of containers in the

new lot, and then the trained algorithm can be used to analyze

whether new types of particles are associated with the new container

lot. If the new container lot is found to produce statistically different

particle populations, the lot may require additional characterization

before use with the drug product.
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