Oxford Cambridge and RSA

GCSE

Mathematics (9-1)

Unit J560/02: Paper 2(Foundation Tier)
General Certificate of Secondary Education

Mark Scheme for June 2017

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

Annotations used in the detailed Mark Scheme.

Annotation	Meaning
\checkmark	Correct
\boldsymbol{x}	Incorrect
BOD	Benefit of doubt
FT	Follow through
ISW	lgnore subsequent working (after correct answer obtained), provided method has been completed
M0	Method mark awarded 0
M1	Method mark awarded 1
M2	Method mark awarded 2
A1	Accuracy mark awarded 1
B1	Independent mark awarded 1
B2	Independent mark awarded 2
MR	Misread
SC	Special case
\wedge	Omission sign

Subject-Specific Marking Instructions

1. M marks are for using a correct method and are not lost for purely numerical errors.

A marks are for an accurate answer and depend on preceding \mathbf{M} (method) marks. Therefore M0 A1 cannot be awarded.
B marks are independent of \mathbf{M} (method) marks and are for a correct final answer, a partially correct answer, or a correct intermediate stage. SC marks are for special cases that are worthy of some credit.
2. Unless the answer and marks columns of the mark scheme specify \mathbf{M} and \mathbf{A} marks etc, or the mark scheme is 'banded', then if the correct answer is clearly given and is not from wrong working full marks should be awarded.

Do not award the marks if the answer was obtained from an incorrect method, ie incorrect working is seen and the correct answer clearly follows from it.
3. Where follow through (FT) is indicated in the mark scheme, marks can be awarded where the candidate's work follows correctly from a previous answer whether or not it was correct.

Figures or expressions that are being followed through are sometimes encompassed by single quotation marks after the word their for clarity, eg FT $180 \times$ (their ' 37 ' +16), or FT $300-\sqrt{ }\left(\right.$ their $\left.5^{2}+7^{2}\right)$. Answers to part questions which are being followed through are indicated by eg FT $3 \times$ their (a).

For questions with FT available you must ensure that you refer back to the relevant previous answer. You may find it easier to mark these questions candidate by candidate rather than question by question.
4. Where dependent (dep) marks are indicated in the mark scheme, you must check that the candidate has met all the criteria specified for the mark to be awarded.
5. The following abbreviations are commonly found in GCSE Mathematics mark schemes.

- cao means correct answer only.
- figs 237, for example, means any answer with only these digits. You should ignore leading or trailing zeros and any decimal point eg
- $237000,2.37,2.370,0.00237$ would be acceptable but 23070 or 2374 would not.
- isw means ignore subsequent working (after correct answer obtained).
- nfww means not from wrong working.
- oe means or equivalent.
- rot means rounded or truncated
- seen means that you should award the mark if that number/expression is seen anywhere in the answer space, including the answer line, even if it is not in the method leading to the final answer.
- soi means seen or implied.

6. Make no deductions for wrong work after an acceptable answer unless the mark scheme says otherwise, indicated for example by the instruction 'mark final answer'.
7. As a general principle, if two or more methods are offered, mark only the method that leads to the answer on the answer line. If two (or more) answers are offered, mark the poorer (poorest).
8. When the data of a question is consistently misread in such a way as not to alter the nature or difficulty of the question, please follow the candidate's work and allow follow through for \mathbf{A} and \mathbf{B} marks. Deduct 1 mark from any \mathbf{A} or \mathbf{B} marks earned and record this by using the MR annotation. \mathbf{M} marks are not deducted for misreads.
9. Unless the question asks for an answer to a specific degree of accuracy, always mark at the greatest number of significant figures even if this is rounded or truncated on the answer line. For example, an answer in the mark scheme is 15.75 , which is seen in the working. The candidate then rounds or truncates this to $15.8,15$ or 16 on the answer line. Allow full marks for the 15.75.
10. If the correct answer is seen in the body and the answer given in the answer space is a clear transcription error allow full marks unless the mark scheme says 'mark final answer' or 'cao'. Place the annotation \checkmark next to the correct answer.

If the answer space is blank but the correct answer is seen in the body allow full marks. Place the annotation \checkmark next to the correct answer.
If the correct answer is seen in the working but a completely different answer is seen in the answer space, then accuracy marks for the answer are lost. Method marks would still be awarded. Use the M0, M1, M2 annotations as appropriate and place the annotation \times next to the wrong answer.
11. Ranges of answers given in the mark scheme are always inclusive.
12. For methods not provided for in the mark scheme give as far as possible equivalent marks for equivalent work. If in doubt, consult your Team Leader.
13. Anything in the mark scheme which is in square brackets [...] is not required for the mark to be earned, but if present it must be correct.

MARK SCHEME

Question			Answer	Marks	Part marks and guidance	
1	a		[Rowan Frequency] 6 [Other Tally]HTH HII	2	B1 for each	
	b		All heights correct and all bars correctly placed	2FT	FT their Rowan frequency B1 for two correct heights or all heights correct with unequal widths	Correct heights are 15, 18, 6, 13 Tolerance on Oak and Rowan $\pm 1 \mathrm{~mm}$ by eye Tolerance for Beech and Other closer to middle of rectangle than the top or bottom Allow good freehand if within tolerance
	C		30	2	M1 for 18/60 oe	
2	a	I	$71 / 4$ oe	1		Accept eg $\frac{58}{8}$ ISW Do not accept eg $6 \frac{5}{4}$
		ii	36	2	M1 for $63 \div 7$ soi	Implied by $\left[\frac{1}{7}\right.$ of 63] $=9$ $\frac{63}{7}$ not enough for M1 without 9 or division sign or bus stop eg 7) $\overline{63}$

Question			Answer	Marks	Part marks and guidance	
	b		8.60	3	M2 for $6.45 \times 4 \div 3$ oe Or M1 for 6.45×4 oe or $25.8[0]$ seen	
4	a	i	3.2	2	Accept 3.1 to 3.3 M1 for 6.2 to $6.6[\mathrm{~cm}]$ seen or 62 to $66[\mathrm{~mm}]$ seen	May be seen on diagram or on the answer line
		ii	115	1	Accept 113 to 117	
	b		C marked 5 cm from B C marked on bearing of 230° from B	2	Accept 4.8 to 5.2 cm Accept 226° to 234° B1 for one correct	Condone C not labelled if clear indication is given eg marked with a cross If C not indicated, an arc radius 5 cm , centre B scores B1 with no other arcs Use overlay as a guide for 2 marks or use on screen ruler and protractor to confirm B1. Protractor reading 126° to 134°
5	a		$3 x^{2}+6 x y$ final answer	2	B1 for $3 \mathrm{x}^{2}$ or $6 x y$ seen	$\begin{aligned} & \text { Condone 6yx } \\ & \text { Do not accept eg } 6 \times x \times y \end{aligned}$
	b	i	4	1		
		ii	33	2	M1 for $\frac{x}{3}=9+2$ or better or M1 for $x=a \times b$ following $\frac{x}{b}=a$	Alternative method M1 for $x-6=27$ or M1 for $x=a+b$ following $x-a=b$
6	a		Corresponding	1		Do not accept F angles

Question			Answer	Marks	Part marks and guidance	
	b		Angle $B X C=50$ [Angles in a] isosceles [triangle] Angles in a triangle add up to 180	2 1 1	B1 for Angle XCB = 65 Accept Alternate angles [are equal] and Angles on a [straight] line $=180$	XCB may be seen on the diagram Accept C for XCB, X for BXC Condone isos for isosceles [Angles in a] isosceles triangle add up to 180 scores final 2 marks Key words for 1 mark in 'Angles in a triangle add up to 180' are 'triangle' and '180'
7			For candidates who have not added the erratum "The coin is put back" to their script you must use mark scheme in APPENDIX A [1p] 6 [2p] 8 [5p] 5 and [10p] 1	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$	M1 for $5 p$ and 10 p coins total value being 35 p soi or $57-$ their 6×1 - their 8×2 Or Following 0 marks SC1 for a total of 20 coins or a total of 57p	eg M1 implied by [5p] 1 and [10p] 3 from values given in the answer spaces
8	a	i	11	1		Accept -11, ± 11
		ii	$\frac{1}{16}$	1		Accept 0.0625

Question			Answer	Marks	Part marks and guidance	
	b		9	2	M1 for $(9-6)^{2}$ or better Or SC1 for answer of 144	
	c		$5^{3}=125$	1		
9	a		12	3	M2 for $420 \div 7 \div 5$ or $420 \div 35$ Or M1 for $420 \div 7$ soi or $420 \div 5$ soi	Condone 12.0, 12.00
	b	i	20\% is one day oe	1	Or 20\% = 1/5	See Appendix B
		ii	336	2	M1 for 420×0.8 oe or $420-84$ or their $12 \times 7 \times 4$ oe	
10	a	i	$4-n$ final answer	1		Accept eg $4-x$ Ignore $C=$ or $w=$ etc Ignore any units given in all parts
		ii	$2 n$ final answer	1		Accept $n 2,2 \times n, n \times 2$ Condone 4(4-n) Ignore $A=$ etc

Question		Answer	Marks	Part marks and guidance	
	b	$\begin{aligned} & \frac{16}{6} \text { or } \frac{8}{3} \text { or } 2 \frac{4}{6} \text { or } 2 \frac{2}{3} \\ & \text { or } 2.6[6 \ldots] \text { or } 2.7 \end{aligned}$	3	M1 for $4(4-n)$ oe or $4 \times 4 \div 3$ or better And M1 for their $4(4-n)=2 n$ or better or $2 n=\frac{16}{3}$ oe or $4(4-n)=\frac{16}{3}$ oe	Isw Accept eg $5 \frac{1}{3}$ or $5.33[\ldots]$ for $\frac{16}{3}$ M1M1 implied by eg $5.33 \div 2$
11	a	18, 29	1		Ignore subsequent terms
	b	7	2	M1 for the term before 31 is 19 soi	Condone 7, 12, 19, ... for 2 marks. MO if a 19 is just seen as the difference
	C	First term is $y-x$ Fourth term is $x+y$ Fifth term is $y+x+y$ or $2 y+x$ oe	$\begin{gathered} 1 \\ 1 \\ 1 F T \end{gathered}$	FT their Fourth term +y	Condone their correct expressions equated to different variables eg $2 y$ $+x=n$ etc Their Fourth term an expression in x and/or y
12	a	Valid reason	1	Such as 'to make it easier to work out the area'	See Appendix B

Question			Answer	Marks	Part marks and guidance	
17	(a)		$\frac{y+3}{7}$ or $\frac{-y-3}{-7}$ final answer	2	M1 for $y+3=7 x$ or $\frac{y}{7}=x-\frac{3}{7}$ Or for correct FT completion to answer after incorrect first step has been shown	For M1, accept the 'negative terms' versions
	(b)	(i)	$x(x-y)$ final answer	1		Condone omission of final bracket Condone [1]x([1]x - [1]y)
		(ii)	$(x+6)(x+2)$ final answer	2	M1 for $(x+a)(x+b)$ where $a b= \pm 12$ or $a+b= \pm 8$ or for $x(x+6)+2(x+6)$ seen or $x(x+2)+6(x+2)$ seen	a, b integers For 2 marks, condone solutions after correct factors For 2 marks or M1, condone omission of final bracket
18			69, 76, 76, 79	4	In any order B3 for 4 values with a mode of 76 and a range of 10 OR B1 for the sum of the 4 values is 300 soi B1 for at least 2 values with a mode of 76 B1 for a range of 10 for their given values	Mark final answer in working if answer line blank Integers only for all B marks Condone if 300 shown in working and then their final values do not sum to 300 May be from 2, 3 or 4 values on answer line May be from 2, 3 or 4 values on answer line
19	(a)		$22: 15$	2	M1 for any equivalent ratio or for two correct ratios with a common number of children seen implied by $22 k$ and $15 k$ seen ($k>1$ and an integer) Or for $\frac{11}{3}: \frac{5}{2}$ or for $11: 7.5$	15k : 22k implies M1 Accept 3.66 to $3.67: 2.5$

Question		Answer	Marks	Part marks and guidance	
	(b)	258	3	M2 for $\frac{36}{2} \times 5+\frac{36}{3} \times 11[+36]$ oe or $((2 \times 11)+(3 \times 5)) \times 36 \div 6[+36]$ oe or $\frac{6}{6+15+22} \times x=36$ oe or M1 for $\frac{36}{2} \times 5$ or $\frac{36}{2} \times 7$ soi or $\frac{36}{3} \times 11$ or $\frac{36}{3} \times 14$ soi oe	M2 implied by 222 [+36] not spoiled $90+132[+36]$ Implied by 90 or 126 or 132 or 168 seen
20		160 and assumed that sample of 50 is representative oe	3	B2 for 160 or M1 for $\frac{8}{50} \times 1000$ oe AND B1 for assumed that sample of 50 is representative oe	Accept: Representative, not biased, random Ignore extra comments after correct comment given SEE APPENDIX B
21	(a)	$13^{2}-12^{2} \text { or } 169-144$ $\sqrt{13^{2}-12^{2}}$ soi Two shortest sides in both triangles are $5[\mathrm{~cm}]$ and $12[\mathrm{~cm}]$	M1 M1 dep A1	Or $5^{2}+12^{2}$ or $25+144$ or $\sqrt{5^{2}+12^{2}}$ soi or $5[\mathrm{~cm}]$ side clearly labelled on triangle P and $13[\mathrm{~cm}]$ clearly labelled on triangle Q	$5^{2}+12^{2}$ seen with $13^{2}+12^{2}$ scores M0 May be seen in stages eg $5 \times 5=2512 \times 12=144$ $25+144=$ For second M1 must see $\sqrt{ }$ symbol $\sqrt{13^{2}+12^{2}}$ scores M0

Question		Answer	Marks	Part marks and guidance	
(b)		$[$ All] the sides are the same length	1	Accept SAS or RHS or SSS soi	See Appendix B

APPENDIX A

Qu7 Erratum

Markscheme for candidates who have not written "The coin is put back".

Mark according to standard ms

Or
(note that the coin is not put back and that coin could be any of 1 p, $2 p, 5$ p or $10 p$ - if the candidate does not state which coin has been taken or they assume 20 coins remain, mark to candidates advantage.)
[If 1 p taken]
B1 for 1 p coins $=5$
B1 for 2 p coins $=8$
M1 for 36p remaining or $57-$ their 5×1 - their 8×2
B1 for impossible
[If 2p taken]
B1 for 1 p coins $=6$
B 1 for 2 p coins $=7$
M1 for 37p remaining or $57-$ their 6×1 - their 7×2
B1 for impossible
[If 5 p or 10p taken]
B1 for 1 p coins $=6$
B1 for 2 p coins $=8$
B2 5 p coins $=3$ and 10 p coins $=2$
Or M1 for 5 p and 10p coins total value
being 35 p soi
or $57-$ their 6×1 - their 8×2
Following 0 marks
SC1 for a total of 19 coins or a total of 57p from values given in the answer spaces

Exemplar responses for Q3(a) explanation mark

	Response	Mark
1	For 10×12.4 Nathan has only times by 1 . For 20×12.4 he has only times by $2.10 \times 12.4=124$. Accept identifying that he has timesed by 1 instead of 10 , or by 2 instead of 20.	1
2	10×12.4 is not 12.40 it is 124 . He didn't add the 0 s onto the numbers. 10×124 is not 12.40 it is 124 scores 1, ignore the rest of the explanation because it is unclear rather than being incorrect.	1
3	He added 0 to 12.4 Explains what he has done wrong.	1
4	He does not move the decimal place when he x by 10 so it should have been 124.0. Doesn't need to say where	1
5	Nathan has got the place value wrong on first answer. They have correctly identified that the error is in the place value	1
6	$10 \times 12.4=124$ so 20×12.4 is wrong Allow identification of error in second line	1
7	Instead of moving the decimal place to the right he just added a zero to the end of the number and instead of multiplying he add. Ignore final part of statement	1
8	He hasn't multiplied it he just added a zero that makes no difference. Error identified and 'makes no difference' explains error	1
9	He said that 20×12.4 is 24.80 when it is 248 which means the answer is 285.2 Accept reference to second line of working	1
10	When Nathan done 10×12.4 it should equal 124 $10 \times 12.4=124$ is not enough. 'It should equal 124^{\prime} is just about enough to identify the error.	1bod
11	When he multiplied by 10 he didn't remove the decimal place and same when he multiplied by 20 Multiplying by 10 isn't the same as removing the decimal place.	0
12	Nathan kept the decimal in. When calculating a sum with a decimal you take it out as you do the sum then put it back at the end. Too vague.	0
13	Nathan has divided the 12.4 rather than moving the decimal point to the right (positive/multiplying) Moving the decimal point to the right would score 1, but we can't ignore the rest of the explanation because it is incorrect rather than unclear.	0
14	12.40 is wrong Identifies error but doesn't explain	0

Exemplar responses for Q9(b)i

	Response	Mark
1	20% is $1 / 5$ and she is getting rid of $1 / 5$ of her days so 20% is reasonable	1
2	Because each day is 20% of that week so to take off 20% is fine.	1
3	5 days $=100 \%, 5$ days -1 day $=80 \%, 1$ day $=20 \%$	1
4	$20 \%=84 £ 420-84=£ 336.20 \%$ of 420 is equal to 1 day of pay.	1
5	Because 5 days add up to 100\% and each day is worth 20% which is reasonable.	1
6	20% is how much she would get each day usually.	1
7	20% is equal to 1 days pay	1
8	Because 20\% of her original pay is how much she earns in one day so she doesn't lose any more than	1
9	Because each day represents 20\% of her weekly pay	1
10	20% of 5 is 1. She loses 1 day pay!	1
11	$20 \% \times 5=100 \% 20 \% \times 4=80$	1
	If one day isn't mentioned, reference to 5days \& 4 days could imply 1 day	
12	Because she is working a day less so 5 days = 100\%, 4 days $=80 \%$.	1
13	Because she is working for 1 less day 20% is stated in the question	1
14	20% is a reasonable reduction as 7 hours = 20% of Lillian's earnings. 7 hours is equivalent to one day	1
15	Because it works out as a day less pay. 20% is stated in the question	1
16		
17	She is not working 5 days a week therefore $2 / 10$ has been taken away 2/10 doesn't link to one day even though it is equivalent to $1 / 5$	0
18	She is working less hours	0
19	Its only a $1 / 5$ of her earnings Not linked to day	0
20	Because she was going to work 4 days a week while before she was working for 5 days a week 80% not linked to 4 days	0
21	A 20% reduction is reasonable, she only wants to work 4 days a week, she will only be earning 80% of what she used to earn.	0
22	She is working for 20\% less time	0
23	She would only be losing out on 84 pounds	0
24	Because 20\% is one whole and she is working one less day. 'One whole day' would have scored	

Exemplar responses for Q12(a)

Acceptable answers are likely to include reference to easier, approximate or estimate

	Response	Mark
1	$6400: 16200=64: 162=32: 81$ which is roughly $30: 80=3: 8$ so yes	3B
2	$6000+16000=22000,22000 \div(3+8)=2000$ Method C but better $3 \times 2000=6000,8 \times 2000=16000$ so yes she is correct	3 C
3	3.2 and 8.1 in working. Close as he can round the decimals to nearest whole number. Decision not clear	M2B
4	$3: 8=6: 16=6000: 16000$ yes Katie is correct if she rounds to the nearest 1000 Reverse method	3A
5	$16200 \div 8=2040,2040 \times 3=6120$ she is not correct Error made in calculation M2 not available	M1C
6	$16200 \div 8=2025,2025 \times 3=6075$ which is close to 6400 so yes she is approximately correct	3 C
7	$16200+6400=22600,22600 \div 11=2540,2540 \times 3$ - Intention to find $3 / 11$ with errors	M1C
8	$16200+6400=22600=22000,22000 \div 11=2000$ 为	M1D
9	$16200 \div 8 \times 3=6075$ No it is not correct \quad Correctly evaluated calculation with ratio 3:8	M2C
10	16200: $6400=81: 32=8.1: 3.2$ which is approximately $8: 3$ so she is correct	3B
11	$6000 \div 3=2000$ and $16000 \div 8=2000$ so yes Equivalent to $4^{\text {th }}$ the method but better	3D
12	$16000 \div 8=2000,6400 \div 3=2138.3 \times 11=23466$. Approximately 400 off so No. Error in calculation	M1C/D
13	$16200 \times 3 / 8=6075$. No not correct as for ratio to be correct her loan would have to be $£ 6075$.	M2C
14	$6400 \div 3=2133.33,16200 \div 8=2025$. Not correct as ratio parts are not equal.	M2D
15	$16200-6400=9800,9800 \div 5 \times 3=5880$ No	M2C

Exemplar responses for Q20

Answer should refer to sample and imply the sample asked was random/representative Accept answers that refer to the proportions for 1000 being the same as the sample oe

	Response	Mark
1	Assume he asked males and females Implies sample should be representative	1
2	He did not just ask one age group Implies sample should be representative	1
3	His sample is random	1
4	The sample is reliable for other customers	1
5	He used stratified sampling meaning it was in proportion	1
6	It stays in the same proportion	1
7	Assuming the other people say the same	1
8	Everyone has the same style as the people in the survey	1
9	I assume that the trend in his table would carry on for the next 1000 shoes.	1
10	I made the assumption that his other customers buy the same as the customers he sampled	1
11	50 customers represent the same as what 1000 customers want	1
12	For every 50 customers the variation is constant	BOD1
13	I assumed the number of people choosing sandals would remain the same	BOD1
14	He asked his consistent regular reliable customers	BOD 1
15	He only asked people visiting the shoe shop to answer his survey This does not address the sample issue - they are all his customers	0
16	Because for every customer's choice 20 pairs should be bought.	0
17	He only sampled 50 people so the results might not be accurate.	0
18	The same customers came in	0

Exemplar responses for Q21(b)

	Response	Mark
1	Their sides are the same lengths	1
2	They both have the same side lengths and are right angled	1
3	EXACTLY the same - angles and sides	1
4	They both has a right angles with the adjacent side being 12 cm and their hypotenuse be 13 cm	1
5	The measurements of their sides have not changed only the position of the shape has same implied	1
6	Because they're both a right angle triangles with the same length lines	1
7	Same lengths on each line	1
8	Same lengths and angles	1
9	Because they are both right angle triangles with the same lengths	1
10	Because they both have the same sides	1
11	The two triangles are congruent as they have same sides and shape	1
12	RHS sometimes this is implied from a worded sentence	1
13	They have the same measurements exactly measurements could refer to angles	0
14	Because they are the same size and do not change shape. Sides not referred to	0
15	As they both have the same numbers and a right angle	0
16	Two sides have the same length	0
17	Because they both have the same length short side and are both right angled triangles 'Short sides' would imply SAS and so score 1	0
18	Because they have 2 sides and an angle that are the same 'and angle inbetween' would score 1	0
19	They are the same but just at a different position	0
20	ASA	0

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee
Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

