

PHIL 313Q: Inductive Logic

Causal & Evidential Decision Theory

Alex Rausch PhD Candidate, The University of Texas at Austin

Decision Matrices

 I'm traveling in the Netherlands and face a fork in the road. North points to The Hague, where I have no family. East points towards a city ending in "-dam", either Amsterdam or Rotterdam, where I have family in either case.

	East is "Amsterdam"	East is "Rotterdam"
Go North	No family -100	No family -100
Go East	Family A +40	Family B +40

- **Go East** "dominates" **Go North** it has a higher expected value on every partition (in every way the world could be)
- **Dominance Rule**: When deciding between actions, choose whichever one dominates the rest. (If no action dominates the others, calculate expected values.)

Decision Matrices

Now imagine that you have a nice family up north (+20), a mean family in Amsterdam (-40), and a super nice family in Rotterdam (+100).

	East is "Amsterdam"	East is "Rotterdam"
Go North	Nice family +20	Nice family +20
Go East	Mean family -40	Super nice family +100

- No action dominates the other.
- **Exp(Go North)** = $(.5 \times 20) + (.5 \times 20) = 20$
- **Exp(Go East)** = $(.5 \times -40) + (.5 \times 100) = 30$
- So, you should go East... if these are the only consequences you care about.

Pascal's Wager

• Blaise Pascal (17th century) argued that it is rational to act so as to come to believe in a good God.

	Good God Exists	~ (Good God Exists)
Act so as to believe	Heaven ∞	Boring life -40
~(Act so as to believe)	Hell _ ∞	Exciting life +40

- Exp(act so as to believe) = $.5(\infty) + (1x-40) = \infty$
- Exp(~ act so as to believe) = $.5(-\infty) + (1x40) = -\infty$

Pascal's Wager

• The atheist's counter wager:

	Bad God Exists	~ (Bad God Exists)
Act so as to believe	Hell _∞	Boring life -40
~(Act so as to believe)	Heaven ∞	Exciting life +40

- Not acting so as to believe dominates!
- **Exp(act so as to believe)** = $.5(-\infty) + .5(-40) = -\infty$
- Exp(~ act so as to believe) = $.5(\infty) + .5(40) = \infty$

Pascal's Wager

- Philosophical issues:
 - Are there separate arguments such as...
 - If God exists, then God is good.
 - If God exists, then God is one.
 - If God exists, then it is the God of tradition X (e.g. Judeo-Christian).
 - Does "acting so as to believe" actually make you believe?
 - Can we change our beliefs at will? (Psychologically? Rationally?)
 - Or do we always need some evidence to change a belief?

Problems for Our Expected Value Calculations

- 3% of smokers over 65 develop lung cancer
 Pr(C|S) = .03
- .05% of non-smokers over 65 develop lung cancer

• **Pr(C|~S)** = .005

- Assume smoking is pleasurable (+50) and lung cancer is not (-5,000)
- $Exp(S) = (1 \times 50) + (.03 \times -5,000) = -100$
- **Exp(~S)** = (1 x 0) + (.005 x -5,000) = -25
- So, don't smoke!
- But now, suppose it's discovered that a gene causes the desire the smoke and lung cancer *separately*.
 - Same data as above, but how would you advise me?
 - o "It doesn't matter!"

Problems with Expected Value Calculations

• Here is a decision table:

	Have gene	~ (Have gene)
Smoke	Pleasure + High Risk (1 x 40) + (.03 x -5000) -110	Pleasure + Low Risk (1 x 40) + (.005 x -5000) 15
~(Smoke)	High Risk (.03 x -5000) -150	Low Risk (.005 x -5000) -25

- **Smoke** dominates!
- What went wrong with the expected value calculation?
 - In this case, smoking doesn't *cause* cancer, it is merely correlated with it!

Problems with Expected Value Calculations

- Evidential Decision Theory: When choose between actions, maximize the expected value of possible consequences even if they are mere correlations
 - Problem: the case of the *smoking/cancer gene*
- Perhaps we need to require that, in order for an expected value calculation to "make sense," the consequences must be *caused by* the actions:
- **Causal Decision Theory**: When choosing between actions, maximize expected value of possible consequences *only if they are caused by the actions*
 - As we'll see now, this view also faces some problems.
 - e.g. Prisoner's Dilemma, Newcomb's Paradox

Prisoner's Dilemma

• Each prisoner wants to maximize his points according to this scheme:

	Prisoner B PEACE	Prisoner B WAR
Prisoner A PEACE	A: 5 B: 5	A: -10 B: +10
Prisoner A WAR	A: 10 B: -10	A: -5 B: -5

- From both prisoners' perspective, choosing WAR dominates. But *if they both reason this way*, they continually lose points.
- The prisoners' choices don't *cause* one another, so Causal Decision theory entails no expected value calculations. But if the prisoners reason similarly (90% of the time):
 - **Exp(Peace)** = $(.9 \times 5) + (.1 \times -10) = 3.5$
 - **Exp(War)** = $(.9 \times -5) + (.1 \times 10) = -4.5 + 1 = -3.5$
- So Evidential Decision theory predicts that each should PEACE (which is correct?)

- You will need to decide between two options.
 - TWO BOX: Take Box B and Box A
 - **ONE BOX:** Take Box B
- The catch: before you enter the room, we perform a brain scan and predict with a high degree of confidence (99%) what you'll do.
 - If we predict you TWO BOX, we put NOTHING in Box B before you enter.
 - If we predict you ONE BOX, we put \$1 MILLION in Box B before you enter.

Box A

- At this point, many people choose **ONE BOX**.
- Expected value calculations agree with this intuition:
 - **Exp(ONE BOX)** = (.99 x 1,000,000) + (.01 x 0) = \$990,000
 - **Exp(TWO BOX)** = (.99 x 1,000) + (.01 x 1,001,000) = \$11,000
- But notice: your action itself has no cause on the consequences (the payouts)
 - What is in Box B is determined prior to your action, so can't be caused by it.
- So while Evidential Decision Theory tells you to ONE BOX, Causal Decision Theory will tell you *no expected value calculations are legitimate*.

• In fact, suppose that the brain scan is complete and you enter the room. The Causal Decision Theorist makes this argument to you:

	Predicted ONE BOX	Predicted TWO BOX
You ONE BOX	\$1,000,000	\$0
You TWO BOX	\$1,001,000	\$1,000

• **TWO BOX** dominates! Why wouldn't you take both boxes at this point?

Back to Basics

- We've learned about how to determine probabilities, categorical and conditional.
- Before any flips: "The fair coin has a 50% probability of landing heads."
- This seems to be a claim *about the coin itself*, and so, *about the world*.
 - We might explain it by appealing to the results of multiple, theoretical flips "in the long run".
- But what about: "The fair coin has a 50% probability of landing heads today at noon."
 - Still a claim *about the coin*. We might explain it by appealing to the laws of physics and the physical properties of the setup and coin itself.
- But we also say things like: **"The probability that the dinosaurs became extinct** due to an asteroid is 90%."
 - This is a claim about our degree of confidence in a theory given available evidence.

Back to Basics

- **Objective Probability:** chance "out in the world," independent of our degrees of belief/confidence
- Subjective Probability: chance "due to ignorance," dependent on our degrees of belief

Philosophical Questions

- 1. Does Objective Probability make any sense?
- 2. Do we live in a "chance"-y world, or is all chance a feature of our ignorance?
- 3. What do you *mean* when you talk about the probability of something?
 - a. Are you reporting on a feature of the world, or on your own degree of confidence?
 - i. If the latter, do you *ever* use "probability"-talk to make a claim about the world and *not just* your degree of confidence?