PHIL 3139: inductive Logic

ch. 4 of "Probability and Inductive Logic" by lan Hacking

Alex Rausch

PhD Candidate, The University of Texas at Austin

Propositions \& Events

- We have language to assign probabilities to two kinds of things:
(i) propositions and (ii) events
- Propositions are statements, assertions, or conjectures

■ e.g. that you'll have a car accident this year

- e.g. that it will thunderstorm tonight
- propositions are true or false, like the sentences of SL and PL

■ "That it will thunderstorm tonight is probable."

- Events are happenings, occurrences, or things that take time

■ e.g. a car accident involving you this year

- e.g. a thunderstorm tonight
- events occur or do not occur
- "A thunderstorm tonight is probable."

Proposition Notation

- We'll use capital letters, like in sentential logic (SL), to symbolize propositions
- that a thunderstorm will occur tonight = T
- that you will have a car accident this year = C
- We'll use some of the logical connectives of SL, too, namely:
- Disjunction: 'v'
- Conjunction: '\&'
- Negation: ‘~’
- These combine to form sentences, like in SL
- (OvC)
- ~0
- (O \& C) v F

Event Notation

- While logicians tend to use proposition-language, statisticians tend to use event-language
- They use capital letters to symbolize events
- a thunderstorm tonight = T
- a car accident this year = C
- But the logical connectives don't make much sense - what would the following event even be: ($\mathrm{T} \& \mathrm{C}$)
- So, statisticians use set theory notation instead of logical connectives
- (T U C) instead of (T v C)
- ($T \cap C$) instead of ($T \& C$)
- T^{\prime} instead of $\sim T$

Behind the Scenes

- What's really happening here is that there are just two ways of talking about the same underlying reality
- The dots represent "possible worlds", or complete ways the world could be
- In some worlds, you have a car accident this year. In others, you don't.
- In some worlds, it will thunderstorms tonight. In others, it doesn't.

Behind the Scenes: Propositions

- T : It will thunderstorm tonight
- C : You will have a car accident this year

- (T \& C) : It will thunderstorm tonight AND you will have a car accident this year
- (T v C) : It will thunderstorm tonight OR you will have a car accident this year
- ~T : It will not thunderstorm tonight

Behind the Scenes: Events

- $\mathbf{T}=$ set of worlds where a thunderstorm tonight occurs
- $\mathbf{C}=$ set of worlds where a car accident this year occurs

- $(T \cap C)=$ set of worlds in both T and C (i.e., their "intersection")
- ($T \cup C)=$ set of worlds in either \mathbf{T} or \mathbf{C} (i.e., their "union")
- \mathbf{T}^{\prime} = set of worlds NOT in \mathbf{T}

Notation: Probability

- The probability that there will be a thunderstorm tonight = the probability of a thunderstorm tonight $=\operatorname{Pr}(\mathrm{T})$
- $\operatorname{Pr}(\sim T), \operatorname{Pr}(T \& C), \operatorname{Pr}(T v C), \operatorname{Pr}[T \&(T v \sim C)]$ all make sense, too
- Probabilities lie between 0 and 1
- So, for any proposition $\varphi, 0 \leq \operatorname{Pr}(\varphi) \leq 1$
- A necessarily true proposition has probability 1.
- An event that must occur has probability 1.
- We stipulate that the symbol $\mathbf{\Omega}$ ("omega") stands for an arbitrary necessarily true proposition or event that must occur
- So, $\operatorname{Pr}(\Omega)=1$

Addition (Mutual Exclusivity)

- Two propositions are mutually exclusive iff they can't both be true at once
- i.e., the set containing them is not consistent
- i.e., $\operatorname{Pr}(P \& Q)=0$
- e.g. "The 2nd coin-flip lands heads" and "The 2nd coin-flip lands tails"
- If P and Q are mutually exclusive, then $\operatorname{Pr}(P)+\operatorname{Pr}(Q)=\operatorname{Pr}(\operatorname{PvQ})$

Addition (Example)

Take a fair, 6 -sided die.
Let $\mathbf{E}=$ the die lands with an even number of pips up
For $1 \leq n \leq 6$, let $\mathbf{R}_{n}=$ the die lands with exactly n pips up e.g. $\mathbf{R}_{1}=$ the die lands with exactly 1 pip up

What's $\operatorname{Pr}(E)$?

$$
\begin{aligned}
\operatorname{Pr}(E) & =\operatorname{Pr}\left(\mathbf{R}_{\mathbf{2}} \vee \mathbf{R}_{4} \vee \mathbf{R}_{6}\right) \\
& =\operatorname{Pr}\left(\mathbf{R}_{2}\right)+\operatorname{Pr}\left(\mathbf{R}_{4}\right)+\operatorname{Pr}\left(\mathbf{R}_{6}\right) \quad \text { - only because } R_{2}, R_{4}, \text { and } R_{6} \text { are mutually exclusive! } \\
& =1 / 6+1 / 6+1 / 6 \\
& =3 / 6=1 / 2
\end{aligned}
$$

Addition (Mutual Exclusivity)

- Why $\operatorname{Pr}(\mathbf{P})+\operatorname{Pr}(\mathbf{Q}) \neq \operatorname{Pr}(\mathbf{P} \vee \mathbf{Q})$, if \mathbf{P} and \mathbf{Q} are not mutually exclusive:
- You will "double-count" their overlap
- As a result, you could get $\operatorname{Pr}(\mathbf{P}$ v $\mathbf{Q})>1$ (not possible)

Addition (Tangent/Hate)

- "The probabilities of mutually exclusive propositions add up," (so, the probabilities of NOT mutually exclusive propositions don't add up...)
- But probabilities are just numbers between 0 and 1 , and any numbers between 0 and 1 can "add up".
- Suppose \mathbf{P} and \mathbf{Q} are NOT mutually exclusive, and $\operatorname{Pr}(\mathbf{P})=.75$ and $\operatorname{Pr}(\mathbf{Q})=.75$
- Then $\operatorname{Pr}(\mathbf{P})+\operatorname{Pr}(\mathbf{Q})=1.5$
- That's correct, but it doesn't tell you anything meaningful
- that is, $\operatorname{Pr}(P)+\operatorname{Pr}(Q)=1.5 \neq \operatorname{Pr}(\operatorname{PvQ})$
- "The probabilities of mutually exclusive propositions add up to the probability that at least one of them will be true" is better

Addition (Teaser)

Actually, for any two propositions \mathbf{P} and \mathbf{Q},
$\operatorname{Pr}(\mathbf{P} \vee \mathrm{Q})=\operatorname{Pr}(\mathrm{P})+\operatorname{Pr}(\mathrm{Q})-\operatorname{Pr}(\mathbf{P} \& \mathbf{Q})$

- We just subtract any possible "double counting" we did by adding $\operatorname{Pr}(\mathbf{P})$ and $\operatorname{Pr}(\mathbf{Q})$
- If \mathbf{P} and \mathbf{Q} are mutually exclusive, then $\operatorname{Pr}(\mathbf{P} \& \mathbf{Q})=\mathbf{0}$.

Multiplication (Independence)

- two propositions are independent iff the truth of one does not make the truth of the other any more or less probable
- e.g. "The first card drawn is red" and "The first card drawn is an ace"
- Drawing a red card doesn't change the odds of drawing an ace (1/13)
- Drawing an ace doesn't change the odds of drawing a red card (1/2)
- if \mathbf{A} and \mathbf{B} are independent, then $\operatorname{Pr}(\mathbf{A}) \times \operatorname{Pr}(\mathbf{B})=\operatorname{Pr}(\mathbf{A} \& \mathbf{B})$

Example

Let $\mathbf{A}=$ the die rolls a 1 on the 1st roll
Let $\mathbf{B}=$ the die rolls a 2 on the 2 nd roll

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{A} \& B) & =\operatorname{Pr}(\mathbf{A}) \times \operatorname{Pr}(\mathbf{B}) \quad<- \text { only because } A \text { and } B \text { are independent! } \\
& =1 / 6 \times 1 / 6 \\
& =1 / 36
\end{aligned}
$$

Multiplication (Independence)

- But wait...consider this "proof" that no two propositions are independent!
- For any \mathbf{A} and \mathbf{B}, one of these three scenarios obtains:

1

2

3

In 1, if A is true, then B must be false. So A and B are not independent. In 2, if A is true, then B must be true. So A and B are not independent. In 3 , if A is true, then the probability of B changes. So A and B are not independent.

Where's the flaw in this "proof?"

Multiplication (Independence)

- But wait...consider this "proof" that all propositions are independent!
- For any \mathbf{A} and \mathbf{B}, one of these three scenarios obtains:

1

2

3

In 1, if A is true, then B must be false. So A and B are not independent. In 2, if A is true, then B must be true. So A and B are not independent. th3, if A is true, then the probability of B changes. So A and B are not independent.

If A is true, then the probability of B MIGHT stay the same!

Multiplication (Independence)

$\operatorname{Pr}(A)=20 / 80=1 / 4$
$\operatorname{Pr}(B)=20 / 80=1 / 4$
$\operatorname{Pr}(B \mid A)=5 / 20=1 / 4$

Example

Let there be 80 dots total.
Let A contain 20 dots.
Let B contain 20 dots.
Let A\&B contain 5 dots.

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{A} \& B) & =\operatorname{Pr}(\mathbf{A}) \times \operatorname{Pr}(\mathbf{B} \mid \mathbf{A}) \\
& =\operatorname{Pr}(\mathbf{A}) \times \operatorname{Pr}(\mathbf{B}) \quad \text { <- only because } \operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)
\end{aligned}
$$

$$
=1 / 16
$$

$\operatorname{Pr}(\mathbf{A \& B})=5 / 80=1 / 16$

Odd Question \#4

To throw a total of 7 with a pair of dice, you have to get a 1 and a 6, or a 2 and a 5 , or a 3 and a 4.

To throw a total of 6 with a pair of dice, you have to get a 1 and a 5 , or a 2 and a 4 , or a 3 and another 3.

With two fair dice, you would expect:
(a) To throw 7 more frequently than 6
(b) To throw 6 more frequently than 7
(c) To throw 6 and 7 equally often

Odd Question \#4

Assuming tosses are independent, there are 36 possible outcomes:

$[1,1]$	$[2,1]$	$[3,1]$	$[4,1]$	$[5,1]$	$[6,1]$
$[1,2]$	$[2,2]$	$[3,2]$	$[4,2]$	$[5,2]$	$[6,2]$
$[1,3]$	$[2,3]$	$[3,3]$	$[4,3]$	$[5,3]$	$[6,3]$
$[1,4]$	$[2,4]$	$[3,4]$	$[4,4]$	$[5,4]$	$[6,4]$
$[1,5]$	$[2,5]$	$[3,5]$	$[4,5]$	$[5,5]$	$[6,5]$
$[1,6]$	$[2,6]$	$[3,6]$	$[4,6]$	$[5,6]$	$[6,6]$

There are 6 mutually exclusive ways to throw a 7 , at $1 / 36$ probability each. So $\operatorname{Pr}($ throw 7 with 2 dice $)=\operatorname{Pr}([1,6]$ v $[2,5]$ v $[3,4]$ v $[4,3]$ v $[5,2]$ v $[6,1])$

$$
=\operatorname{Pr}([1,6])+\operatorname{Pr}([2,5])+\operatorname{Pr}([3,4])+\operatorname{Pr}([4,3])+\operatorname{Pr}([5,2])+\operatorname{Pr}([6,1]) \text {-only cu м.E. }
$$

$$
=1 / 36+1 / 36+1 / 36+1 / 36+1 / 36+1 / 36=6 / 36=1 / 6
$$

Odd Question \#4

Assuming tosses are independent, there are 36 possible outcomes:

$[1,1]$	$[2,1]$	$[3,1]$	$[4,1]$	$[5,1]$	$[6,1]$
$[1,2]$	$[2,2]$	$[3,2]$	$[4,2]$	$[5,2]$	$[6,2]$
$[1,3]$	$[2,3]$	$[3,3]$	$[4,3]$	$[5,3]$	$[6,3]$
$[1,4]$	$[2,4]$	$[3,4]$	$[4,4]$	$[5,4]$	$[6,4]$
$[1,5]$	$[2,5]$	$[3,5]$	$[4,5]$	$[5,5]$	$[6,5]$
$[1,6]$	$[2,6]$	$[3,6]$	$[4,6]$	$[5,6]$	$[6,6]$

There are 5 mutually exclusive ways to throw a 6, at $1 / 36$ probability each. So $\operatorname{Pr}($ throw 6 with 2 dice $)=\operatorname{Pr}([1,5]$ v $[2,4]$ v $[3,3]$ v $[4,2]$ v $[5,1]$)

$$
\begin{aligned}
& =\operatorname{Pr}([1,5])+\operatorname{Pr}([2,4])+\operatorname{Pr}([3,3])+\operatorname{Pr}([4,2])+\operatorname{Pr}([5,1]) \text { <-only cur M.E! } \\
& =1 / 36+1 / 36+1 / 36+1 / 36+1 / 36=5 / 36
\end{aligned}
$$

Odd Question \#4

To throw a total of 7 with a pair of dice, you have to get a 1 and a 6 , or a 2 and a 5 , or a 3 and a 4.

To throw a total of 6 with a pair of dice, you have to get a 1 and a 5 , or a 2 and a 4 , or a 3 and another 3.

With two fair dice, you would expect:
(a) To throw 7 more frequently than $6 \quad(6 / 36>5 / 36)$
(b) To throw 6 more frequently than 7
(c) To throw 6 and 7 equally often

Compounding Events

Urn 1

Urn 2

Setup: flip a fair coin. If Heads, pull from Urn 1. If Tails, pull from Urn 2.
$\mathbf{R}_{\mathbf{1}}=$ Pull red from Urn 1, $\mathbf{R}_{\mathbf{2}}=$ Pull red from Urn 2, $\mathbf{H}=$ Flip heads, $\mathbf{T}=$ Flip tails
What is Pr (pull red)?
$\operatorname{Pr}($ Pull red $)=\operatorname{Pr}\left(\left(H \& R_{1}\right) v\left(T \& R_{2}\right)\right)$
$=\operatorname{Pr}\left(\mathbf{H} \& \mathbf{R}_{\mathbf{1}}\right)+\operatorname{Pr}\left(\mathbf{T \&} \mathbf{R}_{\mathbf{2}}\right) \quad<-$ only because $(H \& R)$ and $(T \& R)$ are mutually exclusive!
$=\left[\operatorname{Pr}(\mathbf{H}) \times \operatorname{Pr}\left(\mathbf{R}_{1}\right)\right]+\left[\operatorname{Pr}(\mathbf{T}) \times \operatorname{Pr}\left(\mathbf{R}_{\mathbf{2}}\right)\right]<-$ only because H and $R 1$ (T and $R 2$) are independent
$=[1 / 2 \times 3 / 4]+[1 / 2 \times 1 / 4]=3 / 8+1 / 8=4 / 8=1 / 2$

Compounding Events

Urn 1

Urn 2

What if we flip the coin, then pull 2 balls with replacement?
Let $\mathbf{R}_{\mathbf{1}}=$ Red on 1 st pull, $\mathbf{R}_{\mathbf{2}}=$ Red on 2 nd pull
What's $\operatorname{Pr}\left(\mathbf{R}_{1} \& \mathbf{R}_{\mathbf{2}}\right)$?
$X=$ Flip heads $(1 / 2)$, then pull red from Urn $1(3 / 4)$, replace, then pull red from Urn $1(3 / 4)$
$Y=$ Flip tails $(1 / 2)$, then pull red from Urn $2(1 / 4)$, replace, then pull red from Urn $2(1 / 4)$

$$
\begin{aligned}
\operatorname{Pr}\left(\mathbf{R}_{\mathbf{1}} \& \mathbf{R}_{\mathbf{2}}\right) & =\operatorname{Pr}(\mathbf{X} \mathbf{v} \mathbf{Y}) \\
& =\operatorname{Pr}(\mathbf{X})+\operatorname{Pr}(\mathbf{Y}) \quad \text { <- only because } X \text { and } Y \text { are mutually exclusive! } \\
& =[1 / 2 \times 3 / 4 \times 3 / 4]+[1 / 2 \times 1 / 4 \times 1 / 4]=9 / 32+1 / 32=10 / 32=5 / 16
\end{aligned}
$$

Recap

- Two propositions are mutually exclusive iff they can't both be true at once
- If A and B are mutually exclusive, then $\operatorname{Pr}(A)+\operatorname{Pr}(B)=\operatorname{Pr}(A v B)$
- This follows from $\operatorname{Pr}(A$ v $B)=\operatorname{Pr}(A)+\operatorname{Pr}(B)-\operatorname{Pr}(A \& B)$, where $\operatorname{Pr}(A \& B)=0$
- Two propositions are independent iff the truth of one does not make the truth of the other any more or less probable
- If A and B are independent, then $\operatorname{Pr}(A) \times \operatorname{Pr}(B)=\operatorname{Pr}(A \& B)$
- This follows from $\operatorname{Pr}(\mathbf{A} \& B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A)$, where $\operatorname{Pr}(B \mid A)=\operatorname{Pr}(B)$

Group Exercises
Probability \& Inductive Logic p. 45, \#2-4

