PHIL 3139: inductive Logic

ch. 5 of "Probability and Inductive Logic" by lan Hacking

Alex Rausch

PhD Candidate, The University of Texas at Austin

Conditional Probability

- We've been dealing mostly with "categorical" probability: probability with no assumptions
- e.g. the probability of drawing an ace on the 1st card
- $\operatorname{Pr}\left(A_{1}\right)$
- Now we'll focus on "conditional" probability: probability on one event on the condition of another
- e.g. the probability of drawing an ace on the 2nd card on the condition that we drew an ace on the 1st card
- $\operatorname{Pr}\left(A_{2} \mid A_{1}\right)$
- We already saw that $\operatorname{Pr}(A \& B)=\operatorname{Pr}(A) \times \operatorname{Pr}(B \mid A)$.
- So, $\operatorname{Pr}(B \mid A)=\operatorname{Pr}(A \& B) / \operatorname{Pr}(A)$, if $\operatorname{Pr}(A)>0$
- Note that, also, $\operatorname{Pr}(A \& B)=\operatorname{Pr}(B \& A)=\operatorname{Pr}(B) \times \operatorname{Pr}(A \mid B)$
- So, $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(B \& A) / \operatorname{Pr}(B)$

Conditional Probability

You basically have 4 equations at your disposal:
(1) $\operatorname{Pr}(\mathrm{A} \& \mathrm{~B})=\operatorname{Pr}(\mathrm{A}) \times \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})$
(2) $\operatorname{Pr}(A \& B)=\operatorname{Pr}(B) \times \operatorname{Pr}(A \mid B)$
(3) $\operatorname{Pr}(\mathbf{A} \mid \mathbf{B})=\operatorname{Pr}(\mathbf{A} \& \mathbf{B}) / \operatorname{Pr}(\mathbf{B}) \quad$ from (2)
(4) $\operatorname{Pr}(\mathbf{B} \mid \mathbf{A})=\operatorname{Pr}(\mathbf{A} \& \mathbf{B}) / \operatorname{Pr}(\mathbf{A})$ from (1)

In conditional probability problems, you'll be able to infer from the setup, or calculate, some of these terms in order to solve for the others.

Conditional Probability (Examples)

Take a fair die. What's the probability of rolling a 6 assuming you roll an even?
Let $\mathbf{R}_{n}=$ roll $n, \mathbf{E}=$ roll even
What's $\operatorname{Pr}\left(R_{6} \mid E\right)$?
Intuitively, half (3) of the faces are even, and 6 is one of them. So, $1 / 3$.

$$
\begin{aligned}
\operatorname{Pr}\left(R_{6} \mid E\right) & =\operatorname{Pr}\left(R_{6} \& E\right) / \operatorname{Pr}(E) \\
& =\operatorname{Pr}\left(R_{6}\right) / \operatorname{Pr}(E) \\
& =1 / 6 / 1 / 2 \\
& =1 / 3
\end{aligned}
$$

$$
=\operatorname{Pr}\left(R_{6}\right) / \operatorname{Pr}(E) \quad<- \text { this requires insight. } R_{6} \text { and } E \text { are NOT mutually exclusive, }
$$

$$
=1 / 6 / 1 / 2 \quad \text { so I can't multiply their probabilities to get } \operatorname{Pr}\left(\mathbf{R}_{6} \& E\right)
$$

Checks out!

Conditional Probability (Examples)

Let $\mathbf{M}=$ roll a 1 or a prime number
Let $\mathbf{E}=$ roll an even number
Let $\mathbf{R}_{n}=$ roll an n

What's $\operatorname{Pr}(E \mid M)$?

Intuitively, there are 4 ways to get $\mathbf{M}(1,2,3,5)$, one of which (2) is even. So, $1 / 4$.

$$
\begin{aligned}
\operatorname{Pr}(E \mid M) & =\operatorname{Pr}(E \& M) / \operatorname{Pr}(M) \\
& =\operatorname{Pr}\left(R_{2}\right) /(4 / 6) \\
& =1 / 6 /(4 / 6)=1 / 4
\end{aligned}
$$

$$
=\operatorname{Pr}\left(\mathbf{R}_{2}\right) /(4 / 6) \quad \text { <- this requires insight. } R_{6} \text { and } E \text { are NOT mutually exclusive }
$$

Checks out!

Conditional Probability (Examples)

Take a standard 52-card, shuffled deck. You're dealt a card at random. Let $\mathbf{R}=$ dealt red, $\mathbf{C}=$ dealt clubs, $\mathbf{A}=$ dealt ace

Suppose you're told you've been dealt either red or clubs, i.e. R v C What's $\operatorname{Pr}(\mathbf{A} \mid \mathrm{RvC})$?

Intuitively: 26 red +13 clubs $=39$ red-or-club cards. 3 are aces. So, $3 / 39=1 / 13$.

$$
\begin{array}{rlrl}
\operatorname{Pr}(\mathbf{A} \mid \mathbf{R} \mathbf{v}) & =\operatorname{Pr}(\mathbf{A} \&(\mathbf{R} \mathbf{v})) / \operatorname{Pr}(\mathbf{R} \mathbf{v}) \\
& =(3 / 52) /(39 / 52) & \quad \text { <- this requires insight, but I could have added } \operatorname{Pr}(R) \text { and } \operatorname{Pr}(C) \\
& =3 / 39=1 / 13 & & \text { to get } \operatorname{Pr}(R \vee C), \text { since those are mutually exclusive }
\end{array}
$$

Checks out!

Compounding Events (Again)

Urn 1

Urn 2

Setup: flip a fair coin. If Heads, pull from Urn 1. If Tails, pull from Urn 2.
$\mathbf{R}=$ Pull a red ball, $\mathbf{H}=$ Flip heads, $\mathbf{T}=$ Flip tails
What is $\operatorname{Pr}(R)$?

```
Pr(R)= Pr( (H&R) v (T&R) )
    = Pr(H&R) + Pr(T&R)
    = [Pr(H) x Pr(R|H)]+[Pr(T) x Pr(R|T)]
    =[1/2 X3/4}]+[1/2\times1/4]=1/8+3/8=4/8=1/
```


Conditional Probability (Examples)

Urn A

Setup: Pick a ball at random. Then replace. $\mathbf{R}=$ Pull a red ball, $\mathbf{A}=$ Pull from $A, \mathbf{B}=$ Pull from B What is $\operatorname{Pr}(\mathbf{A} \mid \mathbf{R})$?

Intuitively: these are mutually exclusive paths, so $P(R)=.4+.2=.6$ 60% chance of pulling red. $60 \%=40 \%$ from $A+20 \%$ from B So, $40 / 60$ Rs are from A.
So, $P(A \mid R)=40 / 60=2 / 3$

Conditional Probability (Examples)

Urn B

Setup: Pick a ball at random. Then replace.
$\mathbf{R}=$ Pull a red ball, $\mathbf{A}=$ Pull from $A, \mathbf{B}=$ Pull from B
Notice $\operatorname{Pr}(\mathbf{R} \mid A)=.8, \operatorname{Pr}(\mathbf{R} \mid \mathbf{B})=.4$, and $\operatorname{Pr}(\mathbf{A})=\operatorname{Pr}(\mathbf{B})=.5$
Suppose you pull a red ball. What's the probability it came from A ?

$$
\begin{aligned}
\operatorname{Pr}(A \mid R) & =\operatorname{Pr}(A \& R) / \operatorname{Pr}(R) \\
& =[\operatorname{Pr}(R \mid A) \times \operatorname{P}(A)] / \operatorname{Pr}((A \& R) v(B \& R)) \\
& =[\operatorname{Pr}(R \mid A) \times \operatorname{P}(A)] /[\operatorname{Pr}(A \& R)+\operatorname{Pr}(B \& R)] \\
& =[.8 \times .5] /[\operatorname{Pr}(R \mid A) \times \operatorname{P}(A)+\operatorname{Pr}(R \mid B) \times P(B)] \\
& =.4 /[.4+.2]=.4 / .6=2 / 3
\end{aligned}
$$

Conditional Probability (Examples)

Acme (supplies 60\%) Bolt (supplies 40\%)

What's the probability that a random shock absorber is reliable?
A = Shock absorber chosen randomly is from Acme
B = Shock absorber chosen randomly is from Bolt
$\mathbf{R}=$ Shock absorber chosen randomly is reliable

$$
\begin{aligned}
\operatorname{Pr}(\mathbf{R})=\operatorname{Pr}((A \& R) \mathbf{v}(B \& R)) & =\operatorname{Pr}(A \& R)+\operatorname{Pr}(B \& R) \\
& =\operatorname{Pr}(A) \operatorname{Pr}(\mathbf{R} \mid A)+\operatorname{Pr}(B) \operatorname{Pr}(\mathbf{R} \mid \mathrm{B}) \\
& =[.6 \times .96]+[.4 \times .72]=.864
\end{aligned}
$$

Conditional Probability (Examples)

Acme (supplies 60\%) Bolt (supplies 40\%)

Mutually exclusive paths, so chance of R is
$.576+.288=.864$

Conditional Probability (Examples)

Steroid Team (80\% juice) Clean Team (20\% juice)

Setup: Coach sends a team randomly. Then the team that goes gets a member tested. Suppose the team-member tests positive for steroids.
What's the chance the coach sent the Steroid Team?
$\mathbf{S}=$ coach sent Steroid Team, C = coach sent Clean Team, $\mathbf{U}=$ tested positive $\operatorname{Pr}(\mathbf{S} \mid \mathrm{U})=\operatorname{Pr}(\mathbf{S} \& \mathrm{U}) / \operatorname{Pr}(\mathrm{U})=$
$=\operatorname{Pr}(S) \operatorname{Pr}(U \mid S) / \operatorname{Pr}(S \& U) v(C \& U))$
$=(.5 \times .8) /(\operatorname{Pr}(\mathbf{S}) \times \operatorname{Pr}(\mathbf{U} \mid \mathbf{S})+\operatorname{Pr}(\mathbf{C}) \times \operatorname{Pr}(\mathbf{U} \mid \mathbf{C}))$
$=.4 /[(.5 \times .8)+(.5 \times .2)]$
$=.4 /(.4+.1)=.4 / .5=80 \%$

Conditional Probability (Examples)

Urn A

Urn B

Setup: Flip a coin. If heads, draw from Urn A twice with replacement. If tails, draw from Urn B twice with replacement.
$\mathbf{R}_{n}=$ Pull a red ball on $n^{\text {th }}$ draw, $\mathbf{A}=$ Pulled from Urn A (heads), $\mathbf{B}=$ Pulled from Urn B (tails) What is $\operatorname{Pr}\left(A \mid R_{1} \& R_{2}\right)$?

$$
\begin{aligned}
& =\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right) / \operatorname{Pr}\left(R_{1} \& R_{2}\right) \\
& =\operatorname{Pr}\left(A \& R_{1}\right)^{*} \operatorname{Pr}\left(R_{2} \mid A \& R_{1}\right) /\left(\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right)+\operatorname{Pr}\left(B \& R_{1} \& R_{2}\right)\right) \\
& =\operatorname{Pr}(A) \operatorname{Pr}\left(R_{1} \mid A\right)^{*} .8 /\left(\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right)+\operatorname{Pr}\left(B \& R_{1} \& R_{2}\right)\right) \\
& =(1 / 2)(.8)^{*} .8 /\left(\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right)+\operatorname{Pr}\left(B \& R_{1} \& R_{2}\right)\right) \\
& =.32 /\left(.4+\operatorname{Pr}\left(B \& R_{1}\right) \operatorname{Pr}\left(R_{2} \mid B \& R_{1}\right)\right)
\end{aligned}
$$

Conditional Probability (Examples)

What is $\operatorname{Pr}\left(A \mid R_{1} \& R_{2}\right)$?
$=\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right) / \operatorname{Pr}\left(R_{1} \& R_{2}\right)$
$=\operatorname{Pr}\left(A \& R_{1}\right) * \operatorname{Pr}\left(R_{2} \mid A \& R_{1}\right) /\left(\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right)+\operatorname{Pr}\left(B \& R_{1} \& R_{2}\right)\right)$
$=\operatorname{Pr}(A) \operatorname{Pr}\left(R_{1} \mid A\right)^{*} .8 /\left(\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right)+\operatorname{Pr}\left(B \& R_{1} \& R_{2}\right)\right)$
$=(1 / 2)(.8) * .8 /\left(\operatorname{Pr}\left(A \& R_{1} \& R_{2}\right)+\operatorname{Pr}\left(B \& R_{1} \& R_{2}\right)\right)$
$=.32 /\left(.32+\operatorname{Pr}\left(B \& \mathbf{R}_{1}\right) \operatorname{Pr}\left(\mathbf{R}_{\mathbf{2}} \mid B \& \mathbf{R}_{\mathbf{1}}\right)\right)$
$=.32 /\left(.32+\operatorname{Pr}(B) \operatorname{Pr}\left(\mathbf{R}_{1} \mid B\right) .4\right)$
$=.32 /(.32+(1 / 2)(.4)(.4))$
$=.32 / .32+.08=.32 / .4=.8$

Group Practice

- see slide \#7, and imagine running two consecutive trials. How would you think about the probability of the following event: pulling a red ball on the first trial and a green ball on the second trial? (cf. \#3 on Pset 5)
- Since there is replacement between trials, the probability of these (independent) compound event is the probability of the first multiplied by the probability of the second.
- p56. \#3
- T = Randomly selected child lives in Triangle
- $\mathbf{P}=$ Randomly selected child tests positive

○ $\operatorname{Pr}(\mathrm{T})=.02, \operatorname{Pr}(\mathrm{P} \mid \mathrm{T})=.14, \operatorname{Pr}(\mathrm{P} \mid \sim \mathrm{T})=.01$

- (a) $\operatorname{Pr}(T \& P)=\operatorname{Pr}(T) \operatorname{Pr}(P \mid T)=.02 \times .14=.0028$
- (b) $\operatorname{Pr}(\mathbf{P})=\operatorname{Pr}((P \& T) v(P \& \sim T))=\operatorname{Pr}(P \& T)+\operatorname{Pr}(P \& \sim T)=.0028+\operatorname{Pr}(\sim T) \operatorname{Pr}\left(\left.P\right|^{\sim T}\right)$

$$
=.0028+(.98 \times .01)=.0028+.0098=. .0126
$$

- (c) $\operatorname{Pr}(\mathbf{T} \mid P)=\operatorname{Pr}(\mathbf{T} \& P) / \operatorname{Pr}(\mathbf{P})=.0028 / .0126=2 / 9$ (or about $.22 \ldots$)

