PHIL 3130: inductive Logic

ch. 8 of "Probability and Inductive Logic" by lan Hacking

Alex Rausch

PhD Candidate, The University of Texas at Austin

The Monty Hall Problem

- There are three doors. Behind one of them is a brand new car. Behind the other two are worthless goats.

The Monty Hall Problem

- Here's how the game works.
- First, you pick a door. Let's say you pick \#1.

- I'll look behind the other two doors and show you the goat behind one of them.
- You now have the option to stick with your original choice (\#1) or switch (\#2).
- What do you do?
- There is a $1 / 3$ chance that the car is behind each door.
- There is a $2 / 3$ chance that the car is behind \#2 or \#3.
- You select and I reveal...there is a $2 / 3$ chance that the car is behind \#2.

Expected Value

- Suppose there's a lottery with 100 tickets. The prize is $\$ 90$.
- Actions, like accepting a free ticket (A), have possible consequences, like winning the lottery (W).
- A consequence has a chance, or probability, of occurring given an action.
- The probability of winning the lottery given accepting a free ticket is 1/100.
- $\operatorname{Pr}(\mathbf{W} \mid A)=1 / 100$
- A consequence can be assigned a number representing its worth to us. Call this the utility of the consequence.
- The utility of winning the lottery is $\$ 90$.
- $\mathbf{U}(\mathbf{W})=\$ 90$
- The weighted utility of a consequence (given an action) is the consequence's utility times its probability (given the action).
- The weighted utility of winning the lottery given accepting a free ticket is

$$
\mathrm{U}(\mathrm{~W}) \times \operatorname{Pr}(\mathbf{W} \mid A)=\$ 90 \times 1 / 100=\$ 0.90
$$

Expected Value

- The expected value of an action is the sum of its possible consequences' weighted utilities.
- What are the possible consequences of accepting a free lottery ticket (A) ?
- W = Winning the lottery, ~W = Not winning the lottery
- What's the utility and probability of each possible consequence given the action?
- $\mathbf{U}(\mathbf{W})=\$ 90, \operatorname{Pr}(\mathbf{W} \mid A)=1 / 100$
- U(~W) = \$0, Pr(~W | A) = 99/100
- What are the weighted utility of each possible consequence?
- $\mathbf{U}(\mathbf{W}) \times \operatorname{Pr}(\mathbf{W} \mid A)=\$ 90 \times(1 / 100)=\$ 0.90$
- U(~W) $\times \operatorname{Pr}(\sim W \mid A)=\$ 0 \times(99 / 100)=\$ 0$
- What is the expected value of accepting a free lottery ticket (A)?
- $\operatorname{Exp}(A)=(U(W) \times \operatorname{Pr}(\mathbf{W} \mid \mathbf{A}))+(\mathbf{U}(\sim \mathbf{W}) \times \operatorname{Pr}(\sim \mathbf{W} \mid A))=\$ 0.90+\$ 0=\$ 0.90$
- A ticket is "worth" \$0.90. (Image you bought all 100 tickets. You'd be guaranteed to win $\$ 90.100$ tickets are worth $\$ 90 . \$ 90 / 100$ tickets $=\$ 0.90$ per ticket)

Expected Value

- Suppose there is a lottery with 1250 tickets, each with a fair chance of being drawn.
- The tickets cost $\$ 0.75$ each. The winner gets $\$ 937$. Each loser receives a consolation prize of $\$ 0.05$.
- Assuming you only care about making money on average, should you buy a ticket?
- $\operatorname{Exp}($ buying a ticket $)=(1) \times(-0.75)+(1 / 1,250) \times(937)+(1,249 / 1,250) \times(0.05)$

$$
=-0.75+.7496+.04996=.04956
$$

- Yes! You expect to make 4-5 cents on average per ticket.
- Suppose you bought all 1,250 tickets at $\$ 0.75$ each, so 937.5 .
- Then you win $\$ 937$ and get $(\$ 0.05 \times 1,249)=\$ 62.45$ in consolation.
- $\$ 937+\$ 62.45-\$ 937.5=\$ 61.95 / 1,250=\$ 0.04956$

Expected Value

- Let's play a game. Playing will cost you \$5. Here are the rules:
- I draw a random card from a shuffled deck.
- If it's red, you win \$8.
- If it's a club, you win \$4.
- If it's a spade, you win \$0.
- Want to play?
- $\mathbf{P}=$ you play the game; $\mathbf{F}=$ spend $\$ 5 ; \mathbf{R}=i t$'s red; $\mathbf{C}=i t$'s clubs, $\mathbf{S}=$ it's spades
- What's Exp(P)?
- The consequences are $\mathbf{F}, \mathbf{R}, \mathbf{C}, \mathbf{S}$.
- $\operatorname{Pr}(\mathbf{F} \mid P)=1 ; \operatorname{Pr}(\mathbf{R} \mid P)=1 / 2 ; \operatorname{Pr}(\mathbf{C} \mid P)=1 / 4 ; \operatorname{Pr}(\mathbf{S} \mid P)=1 / 4$
- $U(F)=-5 ; U(R)=8 ; U(C)=4 ; U(S)=0$

$$
\begin{aligned}
& =(-5) \times(1)+(8) \times(1 / 2)+(4) \times(1 / 4)+(0) \times(1 / 4) \\
& =-5+4+0
\end{aligned}
$$

- The expected value of playing this game is $\$ 0$. You can expect to break even.

Expected Value

- But how do we know what all the possible consequences of an action are?
- Aren't there other possible consequences of playing the break-even game?$\mathrm{U}($ winning a single draw $)=$?$\mathrm{U}($ losing a single draw $)=$?$\mathrm{U}($ wasting time playing a break-even game $)=-$?$\mathrm{U}($ playing a game with Alex $)=$?...
- $\operatorname{Exp}(P)=U(F) \operatorname{Pr}(F \mid P)+U(R) \operatorname{Pr}(R \mid P)+U(C) \operatorname{Pr}(C \mid P)+U(S) \operatorname{Pr}(S \mid P)+$
$\mathbf{U}($ winning a single draw) $\operatorname{Pr}($ winning a single draw | P$)+$
$\mathrm{U}($ losing a single draw) $\operatorname{Pr}($ losing a single draw | P) + $\mathrm{U}($ wasting time ... $) \operatorname{Pr}($ wasting time ... | P$)$ + $\mathrm{U}($ playing a game with Alex) $\operatorname{Pr}($ playing a game with Alex | P) + ...
- There's nothing wrong with this. But most of our expected value calculations are restricted for practical purposes to a set of relevant consequences.

Expected Value

- Say action \mathbf{A} has 3 consequences, $\mathbf{C}_{1}, \mathbf{C}_{2}$, and \mathbf{C}_{3}. Then (EQ) $\quad \operatorname{Exp}(A)=U\left(C_{1}\right) \operatorname{Pr}\left(C_{1} \mid A\right)+U\left(C_{2}\right) \operatorname{Pr}\left(C_{2} \mid A\right)+U\left(C_{3}\right) \operatorname{Pr}\left(C_{3} \mid A\right)$
- Why this formula?
- If the utility of a consequence goes up (down), the expected value goes up (down)
- The utility of more probable consequences counts for more
- But there are infinitely many formulas that satisfy those requirements, such as:
- $\operatorname{Exp}^{*}(A)=U\left(C_{1}\right)^{2} \operatorname{Pr}\left(C_{1} \mid A\right)+U\left(C_{2}\right)^{2} \operatorname{Pr}\left(C_{2} \mid A\right)+U\left(C_{3}\right)^{2} \operatorname{Pr}\left(C_{3} \mid A\right)$
- $\operatorname{Exp}^{*}(A)=U\left(C_{1}\right) /\left(1.01-\operatorname{Pr}\left(C_{1} \mid A\right)\right)+U\left(C_{2}\right) /\left(1.01-\operatorname{Pr}\left(C_{2} \mid A\right)\right)+U\left(C_{3}\right) /\left(1.01-\operatorname{Pr}\left(C_{3} \mid\right.\right.$ A))
- One reason to prefer (EQ): it calculates the average utility out of 100 trials given the relative frequencies of the consequences. Suppose $\mathbf{C}_{1}: \mathbf{C}_{2}: \mathbf{C}_{3}=3: 2: 5$. Then

$$
\begin{aligned}
\operatorname{Exp}(A) & =U\left(C_{1}\right)(30 / 100)+U\left(C_{2}\right)(20 / 100)+U\left(C_{3}\right)(50 / 100) \\
& =\left(U\left(C_{1}\right) 30+U\left(C_{2}\right) 20+U\left(C_{3}\right) 50\right) / 100
\end{aligned}
$$

- Perhaps EQ is easier to grasp, or more intuitive, given how we think (100 = one whole)
- But other functions could play a similar role - the role of letting us compare the values

Expected Value

- A bad storm has 20\% probability. You have to decide between train and plane.
- The TRAIN will take at least 1 hour no matter what
- Plus 5 additional hours if no storm
- Plus 7 additional hours if storm
- The PLANE will take at least 3 hours no matter what
- Plus 1 additional hour if no storm
- Plus 10 additional hours if storm
- What's the expected travel time (expected value) of traveling by each?
- $\operatorname{Exp}($ TRAIN $)=1+5 x(.80)+7 x(.20)=6.4$ hours
- $\operatorname{Exp}($ PLANE $)=3+1 x(.80)+10 x(.20)=5.8$ hours
- So, basing our decision only on the expected travel time, we should choose the plane.
- Of course, if we allow other consequences into our calculation, and assign these consequences utility in terms of "hours"...that can change our answer.
- Maybe spending 7 hours in a train station is really bad, even worse than spending 10 hours in an airport!

Expected Value

- Imagine a raffle with only 4 tickets, each with $1 / 4$ probability of being drawn.
- Two tickets will be drawn. The first ticket wins $\$ 90$. The second wins $\$ 9$.
- What's the expected value of accepting a free ticket?

Ticket
1

Ticket
2

Ticket
3

Ticket
4

- A ticket has a $1 / 4$ chance of being Ticket 1 , a $1 / 4$ chance of being Ticket 2 , a $1 / 4$ chance of being Ticket 3, and a $1 / 4$ chance of being Ticket 4.
- $\operatorname{Exp}($ accepting a free ticket $)=\$ 90 x(1 / 4)+\$ 9 x(1 / 4)+\$ 0 x(1 / 4)+\$ 0 x(1 / 4)=24.75$. ${ }^{\wedge}$ note that this is NOT $\$ 9(1 / 3)$,
i.e. NOT $\$ 9$ times the conditional probability of getting your ticket pulled 2 nd, assuming it did not get pulled first

Martingale Betting Strategy

- Consider a simplified version of roulette, where there's a 50% chance of landing red.
- If you bet $\$ y$ on red and win, you get $\$ 2 y$.
- You deploy this strategy:
- Bet $\$ 10$ on red on spin 0. If you win, claim $\$ 20$ and stop. Otherwise:
- Bet $\$ 20$ on red on spin 1. If you win, claim $\$ 40$ and stop. Otherwise:
- Bet $\$ 40$ on red on spin 2. If you win, claim $\$ 80$ and stop. Otherwise:
- ...
- Bet $\$\left(2^{n}\right)(10)$ on red on spin n. If you win, claim $\$\left(2^{n}\right)(20)$ and stop.
- If you win on Spin 1, net earnings are: $+20-10=10$
- If you win on Spin 2, net earnings are: $+40-20-10=10$
- If you win on Spin 3, net earnings are: +80-40-20-10=10
- If you win on Spin n, net earnings are: $+\left(2^{n}\right)(20)-2^{n}(10)-\left(2^{n}\right)(5)-\ldots-20-10=10$

Martingale Betting Strategy

Spin \#	Bet required
0	$\$ 10$
1	$\$ 20$
2	$\$ 40$
3	$\$ 80$
4	$\$ 160$
5	$\$ 320$
6	$\$ 640$
7	$\$ 1280$
8	$\$ 2560$

Recall: there is a 52% chance of 7 heads in a row in 100 flips

St. Petersburg Paradox

- Imagine a fair coin that you flip until you get heads, with the following payouts:

Flip \#	Payout
1	$\$ 2$
2	$\$ 4$
3	$\$ 8$
4	$\$ 16$
n	$\$ 2^{n}$

- How much would you pay to play this game?

St. Petersburg Paradox

Flip\#	Payout
1	$\$ 2$
2	$\$ 4$
3	$\$ 8$
4	$\$ 16$
n	$\$ 2^{n}$

$$
\begin{aligned}
\operatorname{Exp}(\text { playing }) & =1 / 2(2)+1 / 4(4)+(1 / 8) 8+(1 / 16) 16+\ldots \\
& =1+1+1+1+\ldots \\
& =\infty
\end{aligned}
$$

There is no upper bound on what you should be willing to pay to play this game.

St. Petersburg Paradox: What Went Wrong?

1. "Nothing! Most of the time, the prize is small. But for any amount of money, there is some chance you'll win it!"
a. No one in their right mind would pay much to enter this game.
2. "The game is impossible. You can't flip a real coin infinitely many times."
a. Let's imagine the game ends at 1,000 flips, no matter what. Then the expected value of playing is $\$ 1,000$. Would you even pay 10% of that ($\$ 100$) to enter?
3. "The utility of money diminishes as you make more of it. So, the $\$ 1$ you can make from the first few flips really is worth 1 unit of utility, but the $\$ 1$ s you can make after 500 flips are worth less than 1 unit of utility."
a. Diminishing returns is a useful concept, but most people won't even pay $\$ 20$ to enter this game. The value of money would need to drastically drop off after about $\$ 32-\$ 64$ for this explanation to be plausible.
4. "I simply don't care about utilities under a certain threshold of consequences with extremely low probability. This game might as well stop after the 20th flip for me it's less than 1 in a million odds that the game will get that far."

Decision Theory

- According to the expected value rule, if you are trying to decide between multiple actions, you should (rationally) do whatever maximizes expected value.
- Suppose you are deciding between parking illegally on the street (10% chance of a $\$ 20$ fine) or in a lot (100% chance of $3 \$$ fee).
- Exp(illegally parking) $=.1 \times(-\$ 20)=-\$ 2$
- Exp(legally parking) $=1 \times(-\$ 3)=-\$ 3$
- So the expected value rule says you should illegally park.
- But surely someone can rationally choose to legally park. These folks are "risk-averse".
- And others can rationally choose to illegally park. These folks are "risk-seeking".
- Two Options:
- 1. The expected value rule is just wrong. There is more to what you should rationally do than maximize expected value.
- 2. The expected value rule is correct, but taking a risk can be assigned a positive or negative utility depending on the person.

Decision Theory

- Expected Value Rule Advocate: "Risk-averse folks assign a -\$5 value to taking the risk. Risk-seeing folks assign $\$ 2$ to taking the risk. Factor in the utility of risk for each kind of person and you'll find that it is always rational to maximize utility."
- Suppose you are deciding between parking illegally on the street (10% chance of a $\$ 20$ fine and 100% chance of taking a risk) or in a lot (100% chance of $3 \$$ fee and 100% of not taking a risk).
- If you are risk-averse:
- Exp(illegally parking) $=(.1 \times-\$ 20)+(1 \times-\$ 5)=-\$ 7$
- Exp(legally parking) $=(1 \times-\$ 3)+(1 \times \$ 0)=-\$ 3$
- If you are risk-seeking:
- Exp(illegally parking) $=(.1 \times-\$ 20)+(1 \times \$ 2)=\$ 0$
- Exp(legally parking) = (1 x-\$3) + (1 x \$0) = -\$3
- Objection: This assumes that all different kinds of consequences can be weighed against each other on a single scale (money, risk, anxiety, etc.). It's not plausible to represent risk-aversion as a utility, since the exact number would be arbitrary.
- Choice A. 61\% chance to win $\$ 520,000$
- Choice B. 63% chance to win $\$ 500,000$

■ Many people prefer Choice A - as per Expected Value Rule.

- $\operatorname{Exp}(A)=.61 \times \$ 520,000=\$ 317,200$
- $\operatorname{Exp}(\mathrm{B})=.63 \times \$ 500,000=\$ 315,000$
- Choice F: 98\% chance to win $\$ 520,000$
- Choice G: 100% chance to win $\$ 500,000$
- Many people prefer Choice G - against Expected Value Rule.

■ $\operatorname{Exp}(F)=.98 \times \$ 520,000=\$ 509,600$

- $\operatorname{Exp}(\mathrm{G})=1 \times \$ 500,000=\$ 500,000$
- What does the Allais Paradox show about these people?
- 1. They are irrational.
- 2. The simple expected value equation is incorrect because more probable consequences (approaching 1) should have more weight.

Expected Value

- (EQ) $\operatorname{Exp}(A)=U\left(C_{1}\right) \operatorname{Pr}\left(C_{1} \mid A\right)+U\left(C_{2}\right) \operatorname{Pr}\left(C_{2} \mid A\right)+\ldots+U\left(C_{n}\right) \operatorname{Pr}\left(C_{n} \mid A\right)$
- St. Petersburg Paradox provides some evidence that EQ needs to be updated because the utility of consequences with very small probabilities should weigh less.
- Allais Paradox provides some evidence that EQ needs to be updated because the utility of consequences with higher probabilities (approaching 1) should weigh more.
- So let's define a function $\boldsymbol{\alpha}$ from [0,1] into [0,1].
- $\boldsymbol{\alpha}$ maps the "lower end" of $[0,1]$ to $[0,1]$.
- $\quad \alpha$ maps the "higher end" of $[0,1]$ to $[1,1.1]$
- (EQ+) $\operatorname{Exp}(A)=U\left(C_{1}\right) \operatorname{Pr}\left(C_{1} \mid A\right) \alpha \operatorname{Pr}\left(C_{1} \mid A\right)+U\left(C_{2}\right) \operatorname{Pr}\left(C_{2} \mid A\right) \alpha \operatorname{Pr}\left(C_{2} \mid A\right)+\ldots$
- Are there counter-examples to $\mathrm{EQ}+$, which would require further revision?
- What's the goal here? Are we discovering the rules of rational decision making or are we merely describing the actual decision making behavior of folks?

Group Exercises

- Ch. 8, p. 96 \#2
- Get a head start on problem set, ask any questions about it

