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Sensory-guided behaviors require the transformation of sensory information into task-specific motor commands. Prior research on
sensorimotor integration has emphasized visuomotor processes in the context of simplified orienting movements in controlled labora-
tory tasks rather than an animal’s more complete, natural behavioral repertoire. Here, we conducted a series of neural recording
experiments in the midbrain superior colliculus (SC) of echolocating bats engaged in a sonar target-tracking task that invoked dynamic
active sensing behaviors. We hypothesized that SC activity in freely behaving animals would reveal dynamic shifts in neural firing
patterns within and across sensory, sensorimotor, and premotor layers. We recorded neural activity in the SC of freely echolocating bats
(three females and one male) and replicated the general trends reported in other species with sensory responses in the dorsal divisions
and premotor activity in ventral divisions of the SC. However, within this coarse functional organization, we discovered that sensory and
motor neurons are comingled within layers throughout the volume of the bat SC. In addition, as the bat increased pulse rate adaptively to
increase resolution of the target location with closing distance, the activity of sensory and vocal premotor neurons changed such that
auditory response times decreased, and vocal premotor lead times shortened. This finding demonstrates that SC activity can be modified
dynamically in concert with adaptive behaviors and suggests that an integrated functional organization within SC laminae supports rapid
and local integration of sensory and motor signals for natural, adaptive behaviors.
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Introduction
As animals operate in the natural world, sensory information
guides behaviors on both short and long time-scales. Sensori-

motor integration supports a variety of goal-directed actions,
including saccades to a visual target (Wurtz and Goldberg,
1971; McIlwain et al., 1991) or reaching for an object (Werner et
al., 1997; Stuphorn et al., 1999, 2000), as well as more complex
sequences of adaptive behaviors such as tracking and intercepting
prey (Furigo et al., 2010; Moss and Surlykke, 2010; Wagner et al.,
2013) and avoiding predators (Brandão et al., 1994; Fanselow,
1994; Kavaliers and Choleris, 2001; Comoli et al., 2012; Maior et
al., 2012). To investigate the neural underpinnings of sensorimo-
tor integration in a dynamic and natural behavioral context, we
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Significance Statement

Natural sensory-guided behaviors involve the rapid integration of information from the environment to direct flexible motor
actions. The vast majority of research on sensorimotor integration has used artificial stimuli and simplified behaviors, leaving
open questions about nervous system function in the context of natural tasks. Our work investigated mechanisms of dynamic
sensorimotor feedback control by analyzing patterns of neural activity in the midbrain superior colliculus (SC) of an echolocating
bat tracking and intercepting moving prey. Recordings revealed that sensory and motor neurons comingle within laminae of the
SC to support rapid sensorimotor integration. Further, we discovered that neural activity in the bat SC changes with dynamic
adaptations in the animal’s echolocation behavior.
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recorded neural activity chronically in the superior colliculus
(SC) of an echolocating bat engaged in a sonar target-tracking
task.

A wealth of data suggests that the midbrain SC plays an im-
portant role in sensorimotor integration. Across species, the
functional organization of the SC reflects the importance of a
particular sensory modality to an animal’s natural behaviors.
Early work stressed the representation of retinotopic visual space
for eye movements as a model for collicular function (Schiller
and Koerner, 1971; Cynader and Berman, 1972; Goldberg and
Wurtz, 1972). Comparative data have documented the role of the
SC in the saccadic eye movement system of primates (Sparks,
1986), in gaze-control orientation behaviors in cats and barn
owls (Knudsen, 1982; Middlebrooks and Knudsen, 1984; du Lac
and Knudsen, 1990; Munoz et al., 1991a), and in prey capture
behaviors in pit vipers and frogs (Hartline et al., 1978; Grobstein,
1988). Neurophysiological studies of the primate and bat mid-
brain SC implicate this structure in auditory localization (Jay and
Sparks, 1987; Valentine and Moss, 1997; Lee and Groh, 2012).
Additional work in the bat has demonstrated premotor commands
for sonar vocalizations, head movements, and adjustments of the
pinnae (Valentine et al., 2002; Sinha and Moss, 2007) that are con-
sistent with the notion that the SC supports species-specific ori-
enting behaviors.

Biological sonar operates through tight coupling between
sensing and action. Bats produce sounds that return echoes from
objects in the environment, yielding acoustic cues for 3D local-
ization (Griffin, 1958) The bat computes target azimuth from
spectrotemporal differences of echoes at the two ears, elevation
from echo spectrum, and distance from the time delay between
sonar call and echo arrival (for review, see Wohlgemuth et al.,
2016a). The spatial information that a bat extracts from echo
features, then drives adaptive adjustments in vocal parameters,
and changes in sonar vocalizations influence echo features avail-
able to the bat’s sonar imaging system (Moss and Surlykke, 2010).
The millisecond temporal precision of sensory and motor events
for echolocation, coupled with the bat’s adaptive sonar behav-
iors, provides a powerful system with which to investigate senso-
rimotor signaling in natural tasks.

In broad strokes, the canonical SC functional organization
shows that neurons in dorsal layers respond largely to visual stim-
uli (Cynader and Berman, 1972; McIlwain, 1983; Berson and
Stein, 1995), whereas intermediate layers show unimodal and
multimodal sensory responses, and sensorimotor activity (May,
2006). In the more ventral layers, neurons are active before ori-
enting movements of the body (Wurtz and Goldberg, 1971; Rou-
coux and Crommelinck, 1976; Ma et al., 1990; Peck, 1990). These
results were primarily identified in visually guided primates and
cats, and comparative studies in other species have reported more
mixing of sensory and motor neurons across the dorsal–ventral
axis of the SC (May, 2006). Does this organizational plan also
hold for animals that rely largely on hearing to guide natural
behaviors? How do natural adaptive motor behaviors influence
sensorimotor signaling? We hypothesize that dynamic orienting,
in which an animal must execute a complex sequence of sensori-
motor behaviors (e.g., target tracking and interception), reveals a
more integrated functional organization within and across lami-
nae of the SC, in which local pools of neurons facilitate rapid
sensorimotor integration.

Here, we exploited bat sonar orientation to characterize audi-
tory and vocal premotor activity across the SC laminae in animals
actively engaged in dynamic sensorimotor behaviors for prey
tracking and interception. We discovered that activity patterns of

sensory and vocal premotor neurons in the SC were modulated
by the natural echolocation behaviors of the bat. Furthermore,
both sensory and vocal premotor neurons could be characterized
throughout all SC layers, providing evidence for an integrated
functional organization, which supports rapid sensorimotor sig-
naling for adaptive orienting behaviors.

Materials and Methods
Animals and behavioral training. Four wild-caught big brown bats (Epte-
sicus fuscus, three females and one male) served as subjects in this study.
The bats were collected in the state of Maryland under a permit issued by
the Department of Natural Resources and were housed in animal vivaria
at the University of Maryland–College Park and Johns Hopkins Univer-
sity. All procedures used were approved by the Institutional Animal Care
and Use Committees at the University of Maryland and Johns Hopkins
University, where this research was conducted.

The behavioral paradigm in the current experiment was described in
detail in a previous report (Wohlgemuth et al., 2016b). Briefly, the bats
were initially trained to associate a sound stimulus with the presentation
of a food reward (mealworms). Once this contingency was acquired, the
presentation of the food reward gradually involved greater distances
traveled by the target until the bats learned to track the target from a
distance of 4 m. The target’s motion was controlled via a computer that
interfaced with a rotary servo-motor (Aerotech Ensemble MP10 motor
controller connected to a BMS60 servo motor). A loop of monofilament
line was suspended on a set of four pulleys and wound around the rotary
motor (Fig. 1A). A bundle of mealworms was then tethered to the mono-
filament line and, by driving the rotary motor, the velocity, acceleration,
and direction of target travel were controlled experimentally.

The lighting in the room prevented the bats from using vision so that
they instead had to rely on sonar to track the movement of the target
(Hope and Bhatnagar, 1979). The target moved along the range axis, with
no change in azimuth or elevation (see Fig. 1B, top, for example target
motion and example vocalizations). The bats made adaptive modifica-
tions to their sonar vocalizations that were typical of a free-flying bat
tracking a target closing in distance (Moss and Surlykke, 2010; Kothari et
al., 2014; Wohlgemuth et al., 2016a), demonstrating decreases in pulse
interval and pulse duration with decreasing target distance (Fig. 1C).

Surgical methods and physiological recordings. Once the bats learned the
behavioral task, a 16-channel silicon probe affixed to a microdrive was
chronically implanted into the SC. The silicon probe had 4 shanks with a
4 � 4 grid of recording sites. Recording sites were separated by 100 �m
on each shank and 100 �m between shanks. The microdrive was advanced
manually through the layers of the SC during the experiment at 25 �m
intervals, allowing us to finely sample SC activity at different locations
along the dorsal–ventral axis. Data were collected from the SC of the four
bats at 56 unique recording locations. With 16 available sites and 56
different recording locations, there were 896 unique recording locations
sampled (i.e., 56 � 16 � 896), but not every site yielded neural activity.
Neural data were collected with a Plexon Omniplex acquisition system;
recordings of the bat’s sonar vocalizations were made with a National
Instruments M-series A/D board. The target motion was controlled us-
ing custom MATLAB (The MathWorks) software routines that addition-
ally generated a TTL pulse for time synchrony across hardware systems.

Histological verification of recording sites. At the conclusion of each
experiment, the bats were perfused with 4% paraformaldehyde. The
brains were then removed from the skull and submerged in a solution of
4% paraformaldehyde with 30% sucrose for cryoprotection. Once the
brains were cryoprotected, they were embedded in Optimal cutting tem-
perature compound, frozen, and 50 �m coronal sections were cut on a
cryostat. The sections were then mounted on slides and stained with
cresyl violet to image the location of the silicon probe tracts. Delineation
of the SC layers was confirmed by cross-referencing with previous histo-
logical reconstructions of the midbrain (Covey et al., 1987; May, 2006;
Big Brown Bat Stereotaxis Brain Atlas, courtesy of E. Covey, University of
Washington).

Experimental design and statistical analysis. In the four bats, neural
activity was sampled from multiple locations along the dorsal–ventral
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axis (Bat A, 21 recording locations; Bat B, 18 recording locations; Bat C,
11 recording locations; and Bat D, six recording locations). While
chronic recordings were taken in the SC (digitized at 40 kHz), the bat’s
sonar vocalizations were recorded with an ultrasonic microphone sam-
pled at 250 kHz and the position of the target was sampled at 1 kHz.

Once neural and behavioral data were collected, analysis was per-
formed to relate the animal’s adaptive sonar call production and echo
reception to changes in the activity of SC neurons. First, the wideband
neural traces were filtered between 600 and 3000 Hz to identify and sort
action potentials from single neurons. This was performed through a
wavelet-based clustering algorithm (Quiroga et al., 2004). The clustering
was run on each channel from the silicon probe (i.e., across 16 channels),
identifying 268 neurons for Bat A, 176 neurons for Bat B, 51 neurons for
Bat C, and 31 neurons for Bat D, totaling 526 neurons. A concurrent step
in the analysis quantified the bat’s echolocation behavior in the target
tracking task. Recordings of the bat’s vocalizations were analyzed to iden-
tify the onsets and offsets of each sonar pulse, corrected for the distance
the microphone was placed in front of the bat. Across all recording ses-
sions, there were between 15 and 54 target-tracking trials for each of
the bats, totaling 34 –1662 individual sonar vocalizations per record-
ing session.

Once the onsets of sonar vocalizations were identified, time-aligned
windows of SC activity were extracted from the recorded neural data for
all neurons held for at least 100 vocalizations. We then determined
whether SC activity increased around the time of sonar vocalizations by
first measuring the baseline firing rate for each neuron when the bat was
not actively tracking the target (i.e., during the intertrial periods). The
neural activity was summed across 2 ms bins for this analysis. Our defi-
nition of an increase in neural activity was a firing rate �3 SDs above the
baseline firing rate for at least 10 ms. This criterion was based upon past
studies of SC activity in the bat in which a threshold of 2 SDs above
baseline firing rates was used (Sinha and Moss, 2007). We chose 3 SDs to
be more conservative in our determination of reliable increases in SC
activity. Of the 526 total neurons recorded, 242 showed an increase in
firing rate �3 SDs above the mean baseline firing rate in a window
starting 50 ms before sonar vocal onset and extending until 50 ms after
sonar vocal onset. We then determined when the SC activity peaked with
respect to sonar vocal onset. If the peak occurred before sonar vocal
onset, then the neuron was classified as vocal premotor; if the peak in
activity occurred after sonar vocal onset, then the neuron was classified as
sensory (auditory); and if there were peaks before and after sonar vocal
onset, then the neuron was classified as sensorimotor (Fig. 2).
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Figure 1. Experimental setup. A, Bat is trained to track a moving prey item from a stationary position. The prey item is suspended from a loop of monofilament wire that is connected to a rotary
stepper motor that drives the wire around a set of four pulleys. The movement of the target can be controlled experimentally. While the bat tracks the moving target, ultrasonic microphones record
sonar vocalizations and echoes, motion capture cameras record movements of the bat, and a 16-channel silicon probe records from the SC. B, Top, Movement of the target for one trial in which the
target travels back and forth in front of the bat before eventually arriving at the animal. Middle, Oscillogram of vocalizations produced by the bat while tracking the moving target. Bottom, Raw
neural recording (band-pass 600 –3000 Hz) in the SC from a bat that was tracking the moving target. Bottom, Larger view of the highlighted region neural trace (left) and 100 randomly selected
spikes showing spike consistency (right). C, Top, Sonar pulse duration as a function of target distance. Bottom, Sonar pulse interval as a function of target distance. Distances are binned
into 10 cm bins.
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After each active neuron was classified as sensory, sensorimotor, or
vocal premotor, we determined the corresponding depth of recording
site. We then constructed histograms of the range of depths for each class
of neuron and ran a two-tailed t test to determine whether the average
recording depths of sensory, sensorimotor, and vocal premotor neurons
were significantly different. Next, to more closely analyze the relationship
between the depth of a recording site and the timing of neural activity
with respect to sonar vocalizations/echoes, we converted spike raster
plots into heat maps, the color of which indicates the firing rate of the
neuron. This was performed by determining instantaneous firing rates
over 2 ms bins for SC activity occurring in a 100 ms window centered at
sonar vocal onset. This firing rate was then mapped onto a color scale in
which blue indicated the lowest firing rate and gold indicated the highest
firing rate. Heat maps for each neuron (within a bat) were then arranged
in order of increasing recording depth to examine changes in sensory and
vocal premotor activity as a function of the dorsal–ventral position of the
recording.

Next, we combined data from recorded neurons across bats to provide
a more comprehensive analysis of changes in sensory and vocal premotor
activity across the dorsal–ventral axis of the SC. To summarize these data
in a figure, we first determined the spiking probability in 2 ms bins across
a 100 ms window centered at sonar vocal onset. Spike probability was

used for this analysis instead of spike rate to provide a normalized mea-
sure of activity across neurons. The spike probabilities of all 242 neurons
were then arranged in order of increasing recording depth. Because there
was some overlap in the recording depths across bats, we binned the
range of recording depths (from 0 –1200 �m) into 25 �m bins and aver-
aged the activity of neurons within each bin. This analysis resulted in
a matrix of data in which the X-dimension represented the time axis and
the Y-dimension represented the recording depth for all neurons. These
data were then smoothed with a 2D Gaussian. The X-dimension of the
Gaussian was 5 ms in width with a 2 ms SD. The Y-dimension of the
Gaussian was 50 �m in width with a 10 �m SD. The smoothed data were
then plotted as a surface heat plot.

To analyze how the bat’s adaptive behaviors were tied to the timing of
sensory responses (i.e., echo responses), and the lead time of vocal pre-
motor activity, we first measured the pulse interval (PI) of all sonar
vocalizations. The PI is defined as the time from the onset of one vocal-
ization to the onset of the next vocalization. The entire range of vocaliza-
tion intervals across bats approximately fell into three categories, short
PIs of �25 ms, middle PIs of 30 – 60 ms, and long PIs of 75–250 ms.

We next calculated the latencies of auditory responses to echoes and
vocal premotor lead times to sonar vocal onset. The time of echo arrival
was calculated by first determining the target distance at the time of each
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Figure 2. Sensory and motor activity in the SC. A, Top, Raster and firing rate plot of activity if a single SC neuron demonstrating a sensory or auditory response. For both the raster plot and
peristimulus time histogram, activity is aligned to the onset of sonar vocalizations at zero. Tick marks in the raster plot show the time of spiking with respect to vocal onset, with 100 unique
vocalizations stacked vertically. For this neuron, activity occurs after sonar vocal onset when the echo arrives and is therefore an auditory responsive neuron. The firing rate plot displays the mean �
SE of the firing rate of the neuron, also aligned to sonar vocal onset. Bottom, Example of another SC neuron with a sensory response to echo arrival. B, Top, Raster and firing rate plot for an SC neuron
that is active before sonar vocal onset (the zero time point). This neuron is active �20 ms before vocal onset and is therefore categorized as premotor. Bottom, Another example of a neuron with
an increase in activity before sonar vocal onset. C, Top, Raster plot and firing rate plot of a neuron with both vocal premotor activity and a sensory response after sonar vocal onset. This neuron is
therefore classified as sensorimotor. Bottom, Another example of a sensorimotor neuron.
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sonar vocal onset, multiplying the target distance by 2 (the sonar signal
travels from the bat to the target, and then back to the bat from the
target), and calculating when the echo arrived at the bat, assuming a
speed of sound in air of 344 m/s. The latency of auditory responses was
then defined as the time from echo arrival to the first spike. This latency
was calculated for all sensory neurons that were categorized through the
methods described above. The lead time of vocal premotor activity was
the time interval from sonar vocal onset to the first spike backwards in
time (premotor spikes occur before sonar vocalizations). These lead
times were calculated for all vocal premotor neurons that were catego-
rized as described previously. We then sorted all lead times by the PI of
the sonar vocalizations. We only included activity from neurons with at
least 50 vocalizations in each of the short, middle, and long PI categories.
Using a two-tailed test, we then tested whether the average sensory laten-
cies and vocal premotor lead times were significantly different across
short, middle, and long PI vocalizations.

Results
Behavior and SC recordings
Four big brown bats (E. fuscus) were trained under low-level,
long-wavelength lighting to track a moving prey item from a
stationary position by echolocation (see Fig. 1A for the exper-
iment setup). A 16-channel silicon probe mounted on a micro-
drive was then used to record chronically from the SC while the
bats performed this target-tracking task. This resulted in record-
ings at 56 different sites in the four bats, totaling 526 neurons at
recording depths ranging from 100 –1200 �m (Covey et al., 1987;
Wohlgemuth and Moss, 2016).

Echolocation is an active sensing system that permits discrete
and selective sampling of acoustic information from the environ-
ment (Griffin, 1958; Ulanovsky and Moss, 2008; Moss and Sur-
lykke, 2010). Therefore, we analyzed changes in SC activity with
respect to the sonar vocal behavior of the bat. Among the 526
neurons we studied, 242 showed a significant increase in activity
before and/or after the onset of the bat’s sonar vocalizations (see
Materials and Methods for selection criteria) and the other 284
neurons showed no significant change in activity around sonar
vocal onset or echo arrival.

Functional classification of SC neuron activity
Neurons with sensory-related activity in the bat SC show an in-
crease in activity related to sonar echo arrival, and responses
therefore occur after the bat vocalizes when echoes return to the
ears. Two example neurons exhibiting sensory (auditory) evoked
activity are shown in Figure 2A. The top two panels of Figure 2A
display a raster and average firing rate plot of vocal aligned activ-
ity for a single neuron. In this example neuron, an increase in
activity occurs at �18 ms after the onset of the sonar vocalization,
when sonar echoes are returning to the bat. A similar response
property is presented for a second example auditory neuron in
the bottom two panels of Figure 2A, where there is a peak in
activity �22 ms after sonar vocal onset at the time of echo arrival.

Vocal premotor signals in the bat SC are implicated in the
production of sonar vocalizations and thus occur before vocal
onset. Two example neurons demonstrating vocal premotor ac-
tivity are shown in Figure 2B. In the top two panels (raster and
firing rate plot), a vocal premotor neuron shows a burst of activ-
ity �20 ms before sonar vocal onset is shown. The bottom two
panels of Figure 2B display a vocal premotor neuron with a
shorter vocal premotor lead time (�10 ms).

The third category of SC neurons are the sensorimotor neu-
rons—those displaying both sensory and vocal premotor activity.
Two example sensorimotor neurons are presented in Figure 2C
(top and bottom), each showing a burst of activity before and

after sonar vocal onset. In total, 79 neurons were sensory and
responded to sonar echoes, 83 neurons fired a vocal premotor
burst before sonar vocalizations, and 80 neurons showed both
sensory and vocal premotor activity and were therefore classified
as sensorimotor. As is shown in Figure 2, sensory activity in the
SC was broadly responsive to returning echoes and premotor
neurons generally active before sonar vocalizations, in agreement
with the broadly tuned SC neurons found in past work in visual
mammals (McIlwain and Buser, 1968).

Functional changes in SC activity across the
dorsal–ventral axis
Our recording technique allowed us to collect single neuron ac-
tivity across the laminae of the SC throughout the course of the
experiment. In doing so, we reconstructed the locations of sen-
sory, sensorimotor, and motor neurons along the dorsal–ventral
axis of the bat SC. Shown in Figure 3 is the distribution of record-
ing depths for each category of neuron (sensory in blue, premotor
in green, and sensorimotor in red). We found that, in general,
sensory neurons are located at the most dorsal positions of the bat
SC, whereas sensorimotor and motor neurons are found at the
deepest locations (all pairwise comparisons of mean depths are
significantly different; see details in Fig. 3 legend). However, we
also identified auditory and vocal premotor neurons throughout
the dorsal–ventral axis (Fig. 3, sensory neurons in blue, vocal
premotor neurons in green). Sensorimotor neurons also span a
large range of recording depths across the dorsal–ventral extent
of the SC (Fig. 3, sensorimotor neurons in red).

To analyze more precisely the distribution of sensorimotor
activity across the dorsal–ventral extent of the SC, we prepared
histological sections of the bat brain to determine where along
the dorsal–ventral axis the recordings were collected. Shown in
Figure 3B are three serial coronal sections from the SC of Bat A.
Indicated in red are the locations of the lesions from the silicon
probe tract and in black are the boundaries of the SC. We at-
tempted to identify laminar subdivisions by referring to previous
histological reconstructions in the bat and other species (Covey et
al., 1987; May, 2006; Big Brown Bat Stereotaxis Brain Atlas, cour-
tesy of E. Covey, University of Washington). From this histolog-
ical reconstruction, we suggest that recordings made at depths
�300 �m were in the stratum griseum superficiale (SGS) layers
of the SC; recordings between 300 and 800 �m were in the stra-
tum griseum intermediale (SGI) layers; and recordings made at
locations �800 �m were either in the stratum album interme-
diale (SAI) or stratum griseum profundum (SGP). We would
like to note that comparative functional homologies of neuro-
anatomical divisions are not straightforward (Butler and Hodos,
2005) and our use of the nomenclature SGS, SGI, and SGP is
intended to aid readers who are familiar with SC studies of visu-
ally dominant mammals.

Because our findings show that neurons with sensory and/or
vocal premotor activity are distributed across layers in the in the
bat SC, we analyzed neural activity carefully along a dorsal–ven-
tral recording column within an experiment. An example of this
analysis is shown in Figure 4, which displays recordings from one
specific channel: channel 3 of the 16-channel silicon probe tracked
through different recording depths. This analysis first involved
identifying neural activity tied to the bat’s echolocation behav-
iors. As in previous analyses and again shown in Figure 4A, we
extracted windows of SC activity aligned to the onsets of the bat’s
sonar vocalizations and created raster plots (Fig. 4A, left) and
firing rate plots (Fig. 4A, middle) of neural activity aligned to
sonar vocal onset. The vocal-aligned mean firing rate (50 ms
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before sonar vocal onset and 50 ms after sonar vocal onset) was
then converted into a heat plot for each isolated neuron (Fig. 4A,
right, yellow is maximum rate, blue is minimum rate, white line is
vocal onset). Shown in Figure 4A is the spiking activity of one
neuron on one recording channel (channel 3). As the silicon
probe was advanced to a new location at the conclusion of each
recording session, many different single neurons were isolated on
channel 3 over days (Fig. 4B). The vocal-aligned activity patterns
of all neurons recorded on channel 3 are plotted with respect to
their recording depth in Figure 4B (left, diagram of channel 3
through depths of the SC; middle, recording depths; right, vocal-
aligned activity heat plot; the example neuron in Fig. 4A is iden-
tified with an asterisk). By displaying sonar vocal-aligned neural
activity in this way, patterns of activity throughout the dorsal–
ventral axis are visible. In the example shown in Figure 4, SC
activity from channel 3 at all depths was mostly auditory, show-
ing an increase in spiking activity in response to the returning
target echo (Fig. 4B, right, increase in activity after white line
indicating vocal onset), with a few sites showing vocal premotor

activity before vocal onset along this columnar penetration
throughout the SC. Note that there are also changes in the timing
of neural activity with respect to sonar vocal onset across SC
recording depths, with sharper temporal responses at intermedi-
ate sites.

Because the silicon probe used in our experiments has a con-
sistent geometry (Fig. 4B, left, 100 �m spacing between individ-
ual sites on a shank and 100 �m spacing between shanks), it is
possible to construct a more comprehensive overview of SC ac-
tivity by analyzing activity across the channels of a single shank at
different recording depths. Shown in Figure 5 are two different
reconstructions of all SC neurons recorded on single shanks of
the silicon probe during separate experiments. Figure 5A displays
all recorded SC neurons recorded on shank 1 from Bat A that
have an increase in activity tied to sonar vocal onset (see Materials
and Methods for the statistical criteria used). In this single shank
penetration, SC activity is mostly auditory in dorsal locations
(Fig. 5A, right, increase in activity after sonar vocal onset at more
superficial recording sites), whereas neurons at ventral locations
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are largely vocal premotor (Fig. 5A, right, shows an increase in
activity before sonar vocal onset at deeper recording sites). However,
this figure also shows that auditory responses are found in neurons at
deeper locations in the SC and vocal premotor activity in neurons at
more superficial locations, suggesting that the mapping of sensory
and vocal premotor activity across the layers of the bat SC is more
distributed than reported in previous studies of other mammalian
species (Sparks and Hartwich-Young, 1989; May, 2006). This same
trend is seen in the example shown in Figure 5B, which displays
neural activity collected on shank 2 from Bat B tracked through
different recording depths. Data recorded from shank 2 show more
vocal premotor activity at dorsal sites than is seen in Figure 5A, but,
similar to the example in Figure 5A, sensory and vocal premotor
neurons are found throughout most recording depths.

The data shown in Figure 4 illustrate that vocal-aligned SC
activity changes as a function of recording depth at one site as the

probe was advanced, whereas Figure 5 shows changes in SC ac-
tivity across dorsal–ventral sites on one probe shank; that is, four
sites on one shank throughout recording depths. By combining
data across all isolated neural activity at all recording depths, we
constructed a summary of SC functional activity along the dor-
sal–ventral axis (n � 164 unique recording sites at 41 different
depths). Figure 6 reconstructs the mapping of sensory, vocal pre-
motor, and sensorimotor activity through all dorsal–ventral SC
recording sites by combining data across all silicon probe chan-
nels over the course of experiments in four animals. To construct
this surface plot, spiking probability for each SC neuron aligned
to sonar vocal onset was arranged according to recording depth
and then convolved with a 2D Gaussian. The height of the peaks
in the surface plot represents the probability of spiking at any
given depth location in the SC with respect to sonar vocal onset
(indicated with a white line). As in Figures 4 and 5, auditory
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activity occurs after sonar vocal onset (in-
dicated in time with a blue rear wall of the
figure) and vocal premotor activity pre-
cedes sonar vocalizations (indicated in
time with a green rear wall in the figure).
There is a general trend of sensory evoked
activity at dorsal and intermediate loca-
tions and vocal premotor activity in ven-
tral layers. This is illustrated by yellow
peaks in the auditory region of the surface
plot at shallow depths and yellow peaks in
the vocal premotor region at deeper loca-
tions. Interestingly and importantly, au-
ditory evoked activity appears at ventral
locations, as indicated by the increased
surface plot elevation after sonar vocal on-
set, as well as vocal premotor activity at
more dorsal recording sites, as indicated
by the increased surface plot elevation be-
fore sonar vocal onset at more superficial
recording locations. These analyses show
that there is a comingling of sensory, sen-
sorimotor, and premotor signals across
the dorsal–ventral extent of the bat SC.
The local clusters of sensory, sensorimotor,
and premotor neurons within laminae of
the bat SC suggest a functional organization
to support signaling between different
classes of neurons for sensory-guided
orientation.

Dynamic changes in sensory and motor
activity with adaptive behaviors
For the bat, sensorimotor integration must
be rapid to keep pace with the millisecond
precision of echo processing and distance-
dependent adjustments in call timing. We
hypothesize that, when sensorimotor pro-
cessing demands are high, that is, when
sonar calls and echoes occur in rapid
succession, the activity of sensory and pre-
motor neurons in the SC is modulated to
accommodate processing demands of
rapid sensory and motor events. We there-
fore investigated whether changes in the
rate of the bat’s vocal production alter the
timing of sensory and vocal premotor
neuron activity. As illustrated in Figure 1,
the bat decreases PI (the time between the
onset of one pulse to the onset of the next
pulse) as the target approaches. Shown in
Figure 7A is the PI distribution of calls
produced by the bats in the current study.
This distribution is trimodal, so we cate-
gorized vocalization intervals into short
PIs (�25 ms), middle PIs (30 – 60 ms),
and long PIs (75–250 ms) and examined changes in sensory and
vocal premotor activity in single neurons across these three PI
categories. For the sensory neurons shown in Figure 7B, there was
a significant decrease in the latency between echo arrival and
spike timing when bats produced calls in the shortest PI category
(i.e., �25 ms), compared with middle and long PI categories.
Figure 7B, left and right, show distributions of spike latencies

with respect to echo arrival for two example sensory neurons;
short PI shown in blue, middle PI in gray, and long PI in black.
There is a significant decrease in spike latency for short PI vocal-
izations (p � 0.001 for left example, p � 0.002 for right example,
permutation test).

We extended this analysis to the entire population of neurons
studied and tested whether auditory neurons show changes in

Figure 5. SC activity throughout recording depths for one shank of the silicon probe for two different bats. A, Left, Recording
depths for each site shown. Right, Heat map of vocal-aligned SC activity across all recording depths for one shank of the silicon
probe (shank 1, Bat A). B, Left, Recording depths for each site shown. Right, Heat map of vocal-aligned SC activity across all
recording depths for one shank of the silicon probe (shank 2, Bat B).
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echo-evoked spike latencies across the three PI categories in
which at least 50 vocalizations were produced in each PI category
(n � 32 neurons). Across sensory neurons, we found a significant
decrease in latency from echo arrival time to spike time for echoes
returned after short PI vocalizations (Fig. 7C, p � 0.0002, two-
tailed t test). We performed a similar analysis for vocal premotor
neurons and shown in Figure 7D are the lead times from spike to
pulse onset for two example vocal premotor neurons. Similar to
sensory neurons, vocal premotor neurons showed a significant
decrease in spike lead time of single neurons to pulse onset for
short PI vocalizations. Figure 7D, left and right, show distribu-
tions of spike lead times with respect to pulse onset for two ex-
ample vocal premotor neurons (short PI shown in green, middle
PI in gray, and long PI in black; significant decrease in spike
latencies for short PI vocalizations, p � 0.001 for left example
neuron, p � 0.02 right example, permutation test). Across all
vocal premotor neurons recorded, there was a significant de-
crease in lead time from spike to pulse onset for the vocalizations
produced at short PIs (Fig. 7E, p � 0.0005, two-tailed t test, n �
29 neurons). These results demonstrate that the timing of both
sensory and vocal premotor activity is influenced by the rate at
which bats produce echolocation calls and process information
carried by echo returns.

Discussion
Sensorimotor processing is integral to a wide range of natural
behaviors,yet research to date has emphasized the neural under-
pinnings of simplified visuomotor behaviors under controlled
conditions (Sparks and Hartwich-Young, 1989; Gandhi and Kat-
nani, 2011; Krauzlis et al., 2013). To extend this line of investiga-
tion to dynamic audiomotor integration in adaptive orienting
behaviors, we characterized neural activity in the midbrain SC of
echolocating bats engaged in a natural target-tracking task. We
hypothesized that the SC would exhibit integrated laminar activ-
ity of sensory, sensorimotor, and vocal premotor neurons to sup-
port rapid audiomotor integration.

Although the functional organization of the SC is broadly
conserved across mammals, there are differences in the number
and size of layers, which are influenced by the dominant sensory
modality used by an animal for spatial orientation (May, 2006).
The upper layer in primates, the SGS is devoted to visual process-
ing (May, 2006), reflecting this animal’s reliance on visual orient-
ing. The SGS is further divided into upper and lower sublaminae
(i.e. upper stratum griseum superficiale and lower stratum gri-
seum superficiale, or uSGS and lSGS, respectively) in the monkey
and into three divisions in the cat, with a layer below the uSGS
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and lSGS, stratum opticum containing mostly fibers originating
from the retina (May, 2006). In this study, we refer to the most
dorsal region of the bat SC as the SGS based on anatomical loca-
tion, but recognize that this nomenclature deviates from the ca-
nonical functional characterization of superficial layer neurons as
visual. Past work in bats shows species differences in visual input
to superficial layers. In the omnivorous pale spear-nosed bat,
Phyllostomus discoler, neurons in the superficial SC responded to
visual stimulation, were topographically organized, and in regis-
ter with an auditory space map in deeper layers (Hoffmann et al.,
2016). A study of the insectivorous bat Pteronotus parnellii revealed a
very sparse retinal input layer and, indeed, it may be that intermedi-
ate layers of the bat SC invade the most superficial regions in species
that rely primarily on hearing to orient themselves (Covey et al.,
1987). Consistent with this view are neurophysiological recordings
from the SC of insectivorous echolocating bats, which show robust
auditory activity in the most dorsal layers (Jen et al., 1984; Poussin
and Schlegel, 1984; Shimozawa et al., 1984; Wong, 1984; Valentine
and Moss, 1997). However, neuroanatomical comparisons across
species warrant caution (Butler and Hodos, 2005).

The intermediate layers of the SC or SGI are unimodal, mul-
timodal, and sensorimotor in primate, cat, and rodent (May,
2006). The SGI is further divided into two or three subdivisions,
depending upon the convention. The upper SGI (uSGI) contains
cell bodies, whereas the lower division(s) contains fewer cell bod-
ies and fibers of passage running along the rostral– caudal dimen-
sion. Sensory representations in SGI include visual, auditory, and
somatosensory neurons (Meredith and Stein, 1986; May, 2006)
and visual SGI neurons show both sensory and premotor activity
(Mays and Sparks, 1980), with some variations across species. In
addition, neurons in the SGI display facilitated responses to mul-
timodal stimuli (Meredith and Stein, 1986), suggesting a poten-
tial interaction between sensory neurons in these laminae of the
SC. Our data show auditory, audiomotor, and vocal premotor
neurons in intermediate layers of the bat SC, implying that inter-
actions may occur among neurons of different functional classes
as the bat engages in adaptive spatial orienting behaviors.

Below the SGI is the SAI, which contains fibers of passage and
is considered to be the most ventral portion of the intermediate
zone. The adjacent ventral layer contains more cell bodies and is
termed SGP layer (May, 2006). Recordings from the SGP in the
primate SC show neurons with premotor fields for saccadic eye
movements (Sparks, 1986; Sparks and Hartwich-Young, 1989; Mu-
noz et al., 1991b). Previous work also reports visual, auditory, so-
matosensory, and multisensory neurons in ventral SC across species
(Wise and Irvine, 1983, 1985; Jen et al., 1984; Shimozawa et al., 1984;
Wallace et al., 1996; Hoffmann et al., 2016). At ventral SC locations
in our study, vocal premotor neurons were active before sonar
vocalizations, consistent with earlier studies of the bat (Sinha
and Moss, 2007).

The majority of our recordings were taken at depths �400
�m, which we identify as intermediate and deep layers. At inter-
mediate depths, in the SGI layers, we found a mix of sensory,
sensorimotor, and vocal premotor neurons, which is in agree-
ment with previous reports in other animals (May, 2006). The
most ventral recording sites, which may be homologous to the
SAI and SGP layers, contained a preponderance of sensorimotor
and vocal premotor neurons. The largest increase in vocal pre-
motor activity was at depths �800 �m (Fig. 7), within the tradi-
tionally defined motor layers of the SC (Ma et al., 1990; May,
2006).

Previous multiunit recordings from the SC of big brown bats
revealed two bursts of activity preceding each sonar vocalization:

one burst at short lead time and locked to vocal onset and a
second burst at a longer and variable lead time (Sinha and Moss,
2007). These prior results raise the question of whether activity
before vocalizations in the bat SC influences sonar call parame-
ters or serves as efference motor signals. Sinha and Moss (2007)
propose that the long lead time vocal premotor activity is impli-
cated in shaping sonar call features, whereas the precisely timed
short-lead premotor burst marks the time of sonar emission for
echo delay measurement. In our single unit recordings, we mostly
identified increased activity before sonar vocalizations at variable
lead times (Fig. 7). We therefore cannot conclude that the single
unit vocal premotor activity in our study represents an efference
signal of call onset time.

What is important, and currently unknown, is the connectiv-
ity between sensory and premotor neurons in the bat SC. Prior
anatomical work in visual mammals demonstrated that intrala-
minar connectivity patterns differ across SC layers (Isa, 2002;
May, 2006; Isa and Hall, 2009; Vokoun et al., 2011; Bayguinov et
al., 2015). Superficial layers have larger inhibitory networks that
enable surround suppression (Mize, 1988; Behan and Appell,
1992). More ventral layers, however, show a mixture of inhibi-
tory and excitatory connections within layers (McIlwain, 1982;
Munoz and Istvan, 1998). Intralaminar organization may differ
in the bat, but we hypothesize that neurons in the same layers are
also functionally connected and that the colocalization of sensory
and premotor neurons within layers facilitates local interactions.
Testing this hypothesis in bats and other animals would contribute
to broader comparative analyses that would help to differentiate
between species-specific specializations and general mechanisms.

Ultimately, an animal must integrate sensory information from
the environment to select appropriate actions. Prior work on the SC
demonstrates interactions within the same subregions, that alter ac-
tivity in a variety of ways (Meredith and Stein, 1986; Wallace et al.,
1996; Stein, 1998). For instance, studies of the intermediate layers
of the SC have shown that a neuron can be either inhibited or
facilitated by multimodal stimulation depending on the timing of
sensory inputs through each channel (Meredith and Stein, 1983;
King and Palmer, 1985). This suggests a mechanism by which
streams of information can activate SC neurons differentially. In
addition, auditory neurons in the primate SC show shifts in spa-
tial tuning with eye position (Jay and Sparks, 1984; Groh et al.,
2001), revealing multimodal–sensorimotor interactions. We posit
that interactions between pools of local neurons with different func-
tional properties in the bat SC enable the dynamic audiomotor inte-
gration intrinsic to echolocation.

How might comingling of sensory and premotor neurons
within laminae enable sensorimotor processing for natural be-
haviors? To provide a possible answer, we analyzed natural vari-
ations in echolocation call parameters with respect to changes in
SC sensory and vocal premotor signaling. As a bat tracks prey,
vocal rate increases with decreasing target distance (Griffin,
1958). This adaptive vocal behavior increases echo sample rate
and can therefore increase sensory resolution (Ulanovsky and
Moss, 2008). We analyzed the activity of SC sensory and vocal
premotor neurons with respect to changes in sonar temporal
patterning and found significant changes in SC activity when the
bat produced vocalizations at the highest rates (i.e., the shortest
PIs). When the bat produced vocalizations at rates �40 calls/s,
response latencies of sensory neurons and spike lead time to vocal
onset of vocal premotor neurons were significantly shorter. These
results show that both sensory and vocal premotor neurons change
activity patterns when the bat increases its sonar sample rate before
prey capture.
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There are several mechanisms that could be responsible for
the shortened echo response latencies and vocal premotor lead
times during high call rates. For example, sensory latencies could
be reduced through mechanisms similar to forward suppression,
as described previously in both the cortex (Beetz et al., 2016) and
midbrain (Voytenko and Galazyuk, 2010; Tang et al., 2015) of
bats. In this scheme, global inhibition shapes responses such that
the brain responds only to a salient stimulus. In the inferior col-
liculus and auditory cortex of bats, forward suppression could
sharpen the selectivity of auditory responses to the temporal fea-
tures of natural echolocation stimuli (Sanderson and Simmons,
2002, 2005). In our data, forward suppression would allow for
faster and more precise response times in auditory neurons.

In vocal premotor neurons, it is possible that another mechanism
drives the decrease in premotor lead times with increasing call rate.
Prior studies in the SC have demonstrated decreases in saccadic re-
action times in primates by “priming” the system through sub-
threshold microstimulation (Carello and Krauzlis, 2004; Müller et
al., 2005). Our results complement this finding, showing that a nat-
ural source of SC priming, high call rates and increased echo returns,
shortens the lead time of vocal premotor neurons.

When bats produce echolocation calls at relatively high rates,
the activity levels of both sensory and vocal premotor neurons
often increase. This could provide a functional substrate for
shortened spike latencies; i.e. increases in sensory activity can
drive more global suppression and/or lateral inhibition leading to
sharpened responses, while increases in baseline motor activity
can act to prime the system for shorter lead time premotor sig-
nals. It is possible that both of these mechanisms are at play for
sensory and motor neurons, but, importantly, our findings show
that local pools of sensory and premotor neurons have the spatial
proximity to communicate quickly and keep pace with sensorimo-
tor processing demands. These findings lead us to propose that the
functional organization of the bat SC supports local and rapid inte-
gration of behaviorally modulated sensory and premotor signals
for acoustic orientation by sonar.

In conclusion, we have characterized neural activity through-
out the dorsal–ventral axis of the SC in an echolocating bat en-
gaged in a dynamic and natural target-tracking task. Our results
revealed a distribution of sensory, sensorimotor, and premotor
neurons within laminae, which leads us to hypothesize that local
pools of sensory and premotor neurons interact to mediate adap-
tive sensorimotor behaviors. Furthermore, we discovered that
adaptive echolocation behavior evokes changes in sensory and
premotor signaling in the bat SC, which may arise through local
loops of sensorimotor signaling. Future comparative studies of
SC activity in other species engaged in natural and dynamic ori-
enting tasks will provide important data to test this hypothesis.
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