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Echolocating bats exhibit accurate three-dimensional (3D)

auditory localization to avoid obstacles and intercept prey. The

bat achieves high spatial resolution through a biological sonar

system. Key features of the bat’s sonar system are (1) high

frequency, directional echolocation signals; (2) high frequency

hearing; (3) mobile ears; and (4) measurement of distance from

the time delay between sonar emission and echo reception. The

bat’s sonar receiver is a standard mammalian auditory system

that computes azimuth from inter-aural differences and

elevation from spectral filtering by the ear [1–3]. Target range is

computed from echo arrival time [4,5], and the bat auditory

system contains neurons that show echo delay-tuned

responses to pulse-echo pairs [6]. Ultimately, information about

sound source azimuth, elevation and range converge to create a

unified representation of 3D space.
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Introduction
Echolocating bats have evolved a high-resolution 3D

acoustic imaging system, which they exploit to forage,

avoid obstacles and orient in complete darkness. Bats

transmit brief, intense, ultrasound signals and process

information contained in the returning echoes to deter-

mine the position, size and shape of reflecting objects [7,8].

The acoustic features of sonar signals used to ensonify the

surroundings, including the call repetition rate, spectro-

temporal profile, and sonar beam aim [9], directly influence

the information available to the bat’s acoustic imaging

system [5] (see inset for terminology). The sonar beam

aim is particularly important, because the direction in

which the bat transmits its signal ultimately determines

the region in space from which the bat receives echo

information. Previous research has shown that bats use

higher frequency, narrow sonar beams when approaching a

target from a distance, and then increase the width of the

sonar beam, by decreasing the frequency, as they prepare

to intercept a target [10�]. Moreover, because of the

directionality of high frequency sounds, bats can use the

spectral profile of returning echoes to segregate on-axis

from off-axis echoes [11]: on-axis echoes are broader in

bandwidth and include the more directional, high frequen-

cies of the sonar vocalizations; whereas off-axis echoes are

low-pass filtered. In this way, the directionality of the

outgoing sonar beam serves to filter and separate target

and clutter echoes. The bat’s auditory representation of

the environment is then used to guide adaptive motor

behaviors, including pinna adjustments, head aim, flight

path, and the features of subsequent sonar vocalizations

(e.g. [7,12]). Here we review behavioral and neurophysio-

logical data that contribute to our understanding of 3D

spatial imaging by echolocation.
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The bat’s sonar imaging system is built from a ‘standard’

mammalian auditory system [13,14] and operates with

many of the same cues used by other species to localize

sound. Binaural cues for sound localization provide infor-

mation about the azimuthal position of an acoustic target

(Figure 1a) [2]. Monaural cues may contribute to assign-

ing a sound source location in azimuth, and are essential

for determining the elevation of a sound source

(Figure 1b) [1,15]. Contributing to the head related

transfer function (HRTF) is the bat’s external ear (pin-

na-tragus), which modifies the spectrum of echoes that is

used by the bat to estimate target elevation [3,16,17].

Interaural spectral cues are thought to provide additional

information for determining target angle in the vertical

plane [1,18]. Lastly, bats can segregate on-axis from
Figure 1
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off-axis target echoes (reject clutter) through directional

filtering of ultrasound echoes (Figure 1c) [11].

Bats stand out from non-echolocating mammals in their

ability to represent 3D auditory space from the arrival

time of echoes to determine an object’s range (Figures 1d

and 2a). Specifically, bats have evolved neural circuitry to

estimate target distance from the time delay between

sonar emissions and returning echoes [4,19], which, to-

gether with binaural (azimuth) and spectral (elevation)

cues, renders a 3D representation of auditory source

locations. Importantly, the bat’s sonar imaging system

operates on feedback between orienting behaviors (sonar

vocalizations, head and pinna movements) and 3D audi-

tory localization.
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Ranging performance of echolocating bats. (a) Behavioral setup for distance discrimination task using two-alternative-forced-choice (2 AFC)

paradigm. (b) Behavioral performances of big brown bats in the distance discrimination task. Bats show very similar behavioral performances

when tested with real objects placed at difference distances and with virtual targets simulating the time-delay differences between the real

objects. (c) Behavioral setup for jitter discrimination task using 2 AFC paradigm. During both types of behavioral tests (a, c), a bat’s sonar

vocalizations are recorded by a microphone (m), digitally delayed, and then a modified copy of the sonar vocalization, that is, the simulated echo,

is delivered back to the bat from one of the two loudspeakers (s). The pulse-echo delay is controlled precisely by the digital delay. (d, e, f)

Behavioral performances of big brown bats in the jitter discrimination tasks. Bats are capable of discriminating jittered time-delay not only in the

microsecond level (e), but also in the nanosecond level (d). Moreover, the behavioral performances change in a way as would be predicted by the

amplitude-latency trading phenomenon when the amplitude of the jittered echo is enhanced or attenuated (f). This figure is re-plotted from [4,27].
The external ear
Animals that specialize in hearing for survival behaviors

often show adaptations of the peripheral auditory sys-

tem for sound localization [20,21]. For many mammals,

external ears (pinnae) serve to amplify sound and

enhance auditory localization cues [22]. In some mam-

mals, mobile pinnae allow for dynamic sampling of

spatial acoustic information [23]. In the bat, movements

of the ears can direct reception to a selected region of

the acoustic field to improve sonar detection and

resolution  [24]. In the horseshoe bat (Rhinolophus),
for instance, the pinnae oscillate front to back out of

phase [25], and these movements contribute to vertical

localization [3].
Current Opinion in Neurobiology 2016, 41:78–86 
Sonar ranging
In contrast to humans and most other mammalian

species, echolocating bats exhibit an extraordinary ca-

pacity to estimate sound source distance, or a target’s

range [4,7]. Empirical studies demonstrate that echo-

locating bats can accurately discriminate between the

range of two targets on the order of one centimeter

(Figure 2c), which is the accuracy required to intercept

small insect prey in flight [4,8,26]. Strikingly, some

behavioral studies of the big brown bat’s ranging per-

formance demonstrate range jitter discrimination of �1

microsecond, corresponding to a change in distance of

�0.17 mm (Figure 2e,f). What cues do echolocating

bats use to achieve such remarkable accuracy?
www.sciencedirect.com
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The bat’s use of pulse-echo delay (P/E delay) to estimate

target distance was first demonstrated experimentally by

Simmons [4], who reported that the big brown bat’s range

discrimination performance was comparable for physical

targets and virtual targets, simulated by delayed play-

backs of the bat’s sonar emissions. With virtual targets,

visual cues are eliminated, and pulse-echo delays can be

precisely adjusted to measure a bat’s distance discrimi-

nation performance (Figure 2b,d).

Compelling evidence that bats rely on echo delay to

estimate target distance comes from a study that

exploited amplitude-latency trading. In big brown bats,

attenuation of sound amplitude delays the neural re-

sponse latency by 13–18 ms/dB. Notably, in both a range

discrimination task (Figure 2a) and range jitter discrimi-

nation task (Figure 2c), changes in echo amplitude affect

the distance estimation of big brown bats in predictable

ways (Figure 2f) [27,28]. Behaviorally, it has been dem-

onstrated that sonar ranging in big brown bats is robust to

changes in echo amplitude with changes in target dis-

tance through an echo gain control mechanism. At target

distances less than 1.5 m, middle ear muscle contractions,

combined with a reduction in sonar emission level at short

ranges and neural attenuation, serve to offset distance-

dependent changes in echo level and thus reduce ampli-

tude influences on perceived target distance [29,30].

Neural mechanisms of 3D auditory
localization
Auditory periphery

Spatial localization by sonar requires high frequency

hearing to enable detection and localization of sounds

with wavelengths short enough to return echoes from

small objects. The mechanical properties of the basilar

membrane of bats lay the foundation for ultrasonic hear-

ing [31]. For example, the greater horseshoe bat, Rhino-
lophus ferrumequinum, produces a constant frequency (CF)

sonar vocalization at around 83 kHz, and this species’

basilar membrane reveals an enlarged region that

responds to the CF component of its echolocation signal

[32,33]. This over representation of biologically relevant

sound frequencies in the greater horseshoe bat, as well as

in other CF bats, is preserved from the auditory periphery

through the ascending auditory pathway [34].

Representation of sound source azimuth and
elevation
The cochlear nucleus receives inputs from primary audi-

tory nerve fibers innervating the cochlea and projects to

the superior olivary nuclei, which are divided into medial

and lateral subdivisions (MSO and LSO, respectively)

[14]. The mammalian MSO in most species contains

neurons that are selective to inter-aural time differences

(ITD), which contribute to azimuthal localization of

sound sources [35]. Animals that rely heavily on ITD

to estimate sound source azimuth have a comparatively
www.sciencedirect.com 
large MSO [36]. It is noteworthy that the morphology and

innervation of the MSO varies across bat species, with the

mustached bat showing only monaural innervation [37],

and the MSO appears to be entirely absent in the rufous

horseshoe bat [38]. Research from these two species

suggests that the MSO is not always involved in binaural

computation of sound source azimuth in bats.

Neurons that respond selectively to inter-aural level dif-

ferences (ILD’s), and contribute to the coding of sound

source azimuth, are found throughout the auditory system

of mammals, including bats. Studies of the Mexican free-

tailed bat (Tadarida brasiliensis mexicana) have demonstrat-

ed ILD processing at several stages of the auditory path-

way [39]. ILD sensitive neurons in the LSO, for example,

are also sensitive to the overall intensity of the sounds,

such that raising the amplitude of sound in both ears

results in shorter auditory response latencies in LSO

neurons [39]. A population of neurons in the midbrain

inferior colliculus (IC) receive input from the LSO, but

respond with a nearly constant latency to sounds across a

range of sound levels, up to 40 dB [40]. This tolerance

allows IC neurons to reliably code for azimuth, irrespec-

tive of the amplitude of the sound source. Research on the

IC of Mexican free-tailed bats identified a mechanism by

which inter-aural sound level differences increase inter-

aural timing differences, due to amplitude-latency trading
[40]. Specifically, each 1 dB change in the sound level

shifts the response latency of single IC neurons on average

by �47 ms. This suggest that sound level differences are

converted into timing differences, which then amplify

binaural disparities used to localize sound sources [40].

Previous research has also shown that the bat’s adaptive

orienting behaviors alter auditory representations in the

IC, with the spatial tuning profiles of IC neurons influ-

enced by the positions of the pinnae [41]. Responses of IC

neurons were initially characterized with the ears at a

resting position, and then reassessed at several different

positions. Interestingly, not only did the position of the

contralateral ear affect the spatial pattern of auditory

responses, but the position of the ipsilateral ear also

changed auditory responses. These results suggest that

the bat can alter responses of spatially selective auditory

neurons by adjusting pinna position, and that binaural

interactions across the two ears can influence azimuthal

coding.

The IC projects to the auditory thalamus, which then

projects to auditory cortex (AC). In the AC of the pallid

bat, ILD is represented topographically [42]. Data show

in this species that an increasing proportion of auditory

cortex is activated as the sound source moves from

ipsilateral to contralateral locations in auditory space

[43], suggesting that sound source azimuth is not encoded

by a single locus of activity in AC, but instead by a

distributed, population response. This contrasts with
Current Opinion in Neurobiology 2016, 41:78–86
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LSO, where ILD is represented focally and influenced by

overall sound intensity [39,44], and in IC where a popu-

lation of neurons involved in space coding show stable

latencies across a range of sound amplitudes [39].

Studies of the auditory cortex of the big brown bat report

that the frequency, amplitude, and spatial location of a

sound source interact to influence cortical responses [45].

Distributed coding strategies such as these are also more

resistant to variability in activity at the single neuron level

because responses are averaged across many neurons [46].

The echolocating bat is tasked with extracting invariant

representations of the acoustic scene using noisy informa-

tion about the frequency, amplitude, and location of the

sound source. By combining signals related to the different

acoustic parameters, relevant spatial acoustic information

can be extracted from background noise and amplified [45].

Representation of target range
There is no doubt that echolocating bats show remarkable

performance in acoustic target ranging, with an acuity of

about 1 cm [4]. The question is: what are the neural

mechanisms underlying such remarkable sonar ranging?

In the auditory system of echolocating bats, there are

neurons suitable for coding target range. Early in the

auditory pathway in the ventral nucleus of lateral lemniscus

(VNLL), and upstream in the inferior colliculus, are neu-

rons whose responses are precisely locked to the onset of

sound stimuli and remain stable over a large range of sound

frequencies and/or intensities [47,48]. These neurons can

code the precise timing of both sonar pulses and echoes,

and thus could contribute to the computation of echo delay.

Neurons directly implicated in target ranging show the

response property of pulse echo delay-tuning (i.e. P/E

delay tuning). P/E delay-tuned neurons have been char-

acterized at multiple levels of the auditory system of

echolocating bats, including the inferior colliculus, the

superior colliculus, the medial geniculate body, and the

auditory cortex [6,49–51]. P/E delay-tuned neurons show

facilitated responses to pairs of sounds, separated by a

restricted range of delays that mimic the signals the bat

would use to estimate the distance to a target (Figure 2). It

is noteworthy that the current neurophysiological data

indicate that response profiles of single P/E delay-tuned

neurons are too broad to support the high resolution

ranging accuracy reported in the literature (�1 cm or

58 ms of echo delay), let alone the submicrosecond time

delay discrimination reported from range jitter discrimina-

tion tests (<1 mm or <1 ms). As proposed by Suga and

colleagues [52], a population of P/E delay-tuned neurons

may distinguish delays as small as 2.4–4 ms, but how the

brain encodes submicrosecond time delays remains un-

known.

Some indications of how neurons in bat AC may code for

such small time delays come from recent work examining
Current Opinion in Neurobiology 2016, 41:78–86 
the influence of behavioral adjustments in sonar vocal

amplitude on cortical P/E delay tuning. Research on

the mustached bat demonstrated that this bat adjusts

the amplitude of the outgoing sonar vocalization in order

to keep the amplitude of the returning echo constant

(e.g. high amplitude vocalizations for larger target dis-

tances) [53�]. Researchers postulate that the bat’s call

amplitude adjustments align to the response properties

of cortical P/E delay tuned neurons. This study, albeit

conducted in anesthetized and passively listening bats,

suggests how interactions between the bat’s adaptive

sonar behaviors and cortical representations could enable

increased acuity in range coding of targets in the environ-

ment. A related neurophysiological study of the AC of the

anesthetized and passively listening lesser spear-nosed bat

investigated cortical responses to virtual echo flow. When

bats were presented with virtual dynamic echo environ-

ments, the cortical representation of closer-range targets

increased as the passing distance of a virtual target echo

decreased [54�]. Another recent study has directly com-

pared the response properties of cortical P/E delay tuned

neurons in the Seba’s short-tailed bat, Carollia perspicillata,

stimulated with natural echolocation call sequences and

isolated pulse-echo pairs [55��]. This study showed that

the cortical P/E delay-tuned neurons are more selective to

target distance information when they are stimulated with

natural echolocation sequences. These studies demon-

strate the importance of simulating natural echo stimuli

to investigate auditory localization processes.

A survey of the studies on sonar ranging in bats reveals

that the majority of neurophysiological data on echo

delay-tuned neurons have been collected from the mus-

tached bat, while the majority of behavioral data on target

distance discrimination have been collected from the big

brown bat. These two species are not only from two

different families, but also contrast greatly in their sonar

signal features, raising questions about links between

neural and behavioral data. Moreover, except for one

study [56], neurophysiological studies of echo delay-

tuned neurons in the bat auditory system have been

collected from animals that were passively listening to

simulated pulse-echo pairs. To bridge this gap, future

studies would benefit from neural recording experiments

that engage behaving bats in biologically-relevant, dy-

namically orienting tasks.

Representation of sound source location in
three dimensions
Ultimately, the bat interacts with a three-dimensional

(3D) world, and as such, auditory localization must in-

volve the combination of cues for azimuth, elevation, and

range [5,26]. One structure where 3D representations

have been characterized is in the superior colliculus

(SC) [50], a layered structure in the mammalian midbrain.

The SC integrates visual, auditory, and somatosensory

cues about stimulus location to guide species-specific
www.sciencedirect.com
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orienting commands. The bat is an audio-vocal specialist,

and as such, 3D auditory representations inform motor

commands for spatially-dependent sonar vocalizations,

head, and ear movements [57]. Projections from the lower

brainstem (e.g. nucleus of the central acoustic tract; [14]),
Figure 3
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IC and AC project to the bat SC (IC, [58]; AC, [59]). In the

sensory layers of the bat SC, neurons show 3D spatial

tuning profiles [50], demonstrating that information about

azimuth, elevation, and range is combined. This 3D

representation of auditory space is then used to guide
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adaptive motor commands for species-specific orienting

behaviors [57,60].

Circuits involved in auditory localization
Auditory localization does not arise through computations

in any single brain region, but instead involves flexible

circuits throughout the auditory pathway. For example,

research on the topographic representation of echo delay in

the bat auditory cortex has been shown to be flexible

[61��]. This flexibility allows the locus of cortical activation

for a particular target distance/echo delay to shift, changing

the network properties of the cortex. Previous research has

also shown that functional units in the cortex extract a

related set of acoustic parameters from an echo stream [62],

and by having a flexible topographic representation of

target distance/echo delay, different information streams

can interact (see Figure 3 for topographic relationship

between frequency and location encoding).
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Beyond neural circuits within a single brain region, inter-

actions across various levels of the auditory pathway

contribute to sound localization processes. And while

cortical regions receive their input from brainstem, mid-

brain and thalamic structures of the ascending auditory

pathway, it is important to keep in mind that descending

projections also contribute to the processing of acoustic

signals (Figure 3; ascending projections in red, descending

projections in green). Research by Suga and colleagues

has, for example, directly investigated the influence of AC

activity on response properties of IC neurons, demonstrat-

ing that AC affects both the frequency and spatial tuning

of IC neurons [63]. AC was both inactivated and excited,

revealing opposing effects upon IC neurons. Pharmaco-

logical inactivation of restricted regions of the bat AC

resulted in reduced and longer latency responses in IC;

whereas, focal electrical activation of bat AC increased

neural firing rate and shortened the response latency of IC
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neurons. These data are shown in Figure 4, along with

complementary data demonstrating cortical influences on

IC target range tuning [64]. AC also sends projections to

the SC in the bat [59], providing another descending

pathway through which the cortex can modulate activity

in other midbrain regions. Future studies involving simul-

taneous neural recordings in more than one of these brain

regions would contribute greatly to our understanding of

how recurrent feedback contributes to sound localization.

Conclusions
The echolocating bat is an auditory specialist that loca-

lizes sonar objects in 3D space. We propose that distrib-

uted coding within and across the auditory pathway

supports high-resolution sonar imaging in a noisy echo

environment. In this review we have highlighted the

contributions of neurons in the IC, AC, and SC to the

representation of 3D acoustic space, and we propose that

future work focused on circuits within and across these

brain regions, in freely behaving animals, will shed light

on feedback processes that enable echo scene represen-

tation. This line of investigation would not only inform

our understanding of sonar imaging in bats but natural

sound processing in other animals.
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