
ContentsContents

 Azure Resource Manager Documentation
 Overview

 What is Resource Manager?
 Quickstarts

 Create templates - portal
 Create templates - VS Code
 Create templates - Visual Studio

 Tutorials
 Utilize template reference
 Create multiple instances
 Set resource deployment order
 Use conditions
 Integrate Key Vault
 Create linked templates
 Deploy VM extensions
 Deploy SQL extensions
 Secure artifacts
 Continuous integration with Azure Pipelines
 Use safe deployment practices
 Use health check in Deployment Manager
 Troubleshoot template deployment

 Samples
 Resource Manager templates
 Code samples

 Concepts
 Template file structure
 Template best practices
 Templates for cloud consistency
 Deployment modes

file:///T:/hysj/azure-resource-manager/index.yml
https://azure.microsoft.com/resources/samples/

 Resource deletion
 Deployment Manager

 Overview
 Health check

 Resource Manager and classic deployment
 Azure common security attributes

 How to
 Create templates

 Create template
 Create resource groups and resources at subscription
 Define resource dependencies
 Modularize templates
 Manage secrets
 Create multiple instances
 Use template extensions
 Update resources

 Deploy templates
 Deploy - portal
 Deploy - CLI
 Deploy - PowerShell
 Deploy - REST API
 Secure templates with SAS token

 Use the Azure CLI
 Use Azure PowerShell

 Deploy to multiple resource groups or subscriptions
 CI/CD

 VS project with pipelines
 Export template
 Move

 Move resources
 Resource support
 Troubleshoot move

https://docs.microsoft.com/azure/architecture/building-blocks/extending-templates/update-resource

 Move guidance for services
 App Service
 Azure DevOps
 Classic deployment
 Recovery Services
 Virtual Machines
 Virtual Networks

 Tags
 Tag resources
 Tag support

 Manage
 Manage resource groups

 Use the Azure portal
 Use the Azure CLI
 Use Azure PowerShell

 Manage resources
 Use the Azure portal
 Use the Azure CLI
 Use Azure PowerShell

 Lock resources
 Authentication API to access subscriptions
 Create EA subscriptions
 Grant access to create EA subscriptions
 Authenticate across tenants

 Audit changes
 View activity logs
 View deployment operations

 Troubleshoot deployments
 Troubleshoot deployment errors
 AccountNameInvalid
 InvalidTemplate
 Linux deployment issues

https://docs.microsoft.com/azure/devops/organizations/billing/change-azure-subscription

 NoRegisteredProviderFound
 NotFound
 ParentResourceNotFound
 Provisioning and allocation issues for Linux
 Provisioning and allocation issues for Windows
 RequestDisallowedByPolicy
 ReservedResourceName
 ResourceQuotaExceeded
 SkuNotAvailable
 Windows deployment issues

 Resource providers and types
 Throttling requests
 Track asynchronous operations

 Reference
 Template reference
 Template functions

 All functions
 Array and object functions
 Comparison functions
 Deployment functions
 Logical functions
 Numeric functions
 Resource functions
 String functions

 Complete mode deletion
 Resource providers by service
 REST - Resource Manager
 REST - Deployment Manager
 Azure PowerShell
 Azure CLI
 .NET
 Java

https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/rest/api/resources/
https://docs.microsoft.com/rest/api/deploymentmanager/
https://docs.microsoft.com/powershell/module/az.resources
https://docs.microsoft.com/cli/azure/resource
https://docs.microsoft.com/dotnet/api/microsoft.azure.management.resourcemanager
https://docs.microsoft.com/java/api/com.microsoft.azure.management.resources

 Python
 Resources

 Azure Roadmap
 Pricing calculator
 Service updates
 Stack Overflow
 Manage personal data
 Videos

https://docs.microsoft.com/python/api/overview/azure/resources
https://azure.microsoft.com/roadmap/
https://azure.microsoft.com/pricing/calculator/
https://azure.microsoft.com/updates/
https://stackoverflow.com/questions/tagged/azure-resource-manager
https://azure.microsoft.com/documentation/videos/index/

Azure Resource Manager overview
6/18/2019 • 12 minutes to read • Edit Online

Terminology

Azure Resource Manager is the deployment and management service for Azure. It provides a consistent
management layer that enables you to create, update, and delete resources in your Azure subscription. You can
use its access control, auditing, and tagging features to secure and organize your resources after deployment.

When you take actions through the portal, PowerShell, Azure CLI, REST APIs, or client SDKs, the Azure
Resource Manager API handles your request. Because all requests are handled through the same API, you see
consistent results and capabilities in all the different tools. All capabilities that are available in the portal are also
available through PowerShell, Azure CLI, REST APIs, and client SDKs. Functionality initially released through
APIs will be represented in the portal within 180 days of initial release.

The following image shows how all the tools interact with the Azure Resource Manager API. The API passes
requests to the Resource Manager service, which authenticates and authorizes the requests. Resource Manager
then routes the requests to the appropriate service.

If you're new to Azure Resource Manager, there are some terms you might not be familiar with.

resource - A manageable item that is available through Azure. Virtual machines, storage accounts, web apps,
databases, and virtual networks are examples of resources.
resource group - A container that holds related resources for an Azure solution. The resource group
includes those resources that you want to manage as a group. You decide how to allocate resources to
resource groups based on what makes the most sense for your organization. See Resource groups.
resource provider - A service that supplies Azure resources. For example, a common resource provider is
Microsoft.Compute, which supplies the virtual machine resource. Microsoft.Storage is another common
resource provider. See Resource providers.
Resource Manager template - A JavaScript Object Notation (JSON) file that defines one or more
resources to deploy to a resource group or subscription. The template can be used to deploy the resources
consistently and repeatedly. See Template deployment.
declarative syntax - Syntax that lets you state "Here is what I intend to create" without having to write the
sequence of programming commands to create it. The Resource Manager template is an example of
declarative syntax. In the file, you define the properties for the infrastructure to deploy to Azure.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-overview.md

The benefits of using Resource Manager

Understand scope

Guidance

Resource Manager provides several benefits:

You can deploy, manage, and monitor all the resources for your solution as a group, rather than handling
these resources individually.
You can repeatedly deploy your solution throughout the development lifecycle and have confidence your
resources are deployed in a consistent state.
You can manage your infrastructure through declarative templates rather than scripts.
You can define the dependencies between resources so they're deployed in the correct order.
You can apply access control to all services in your resource group because Role-Based Access Control
(RBAC) is natively integrated into the management platform.
You can apply tags to resources to logically organize all the resources in your subscription.
You can clarify your organization's billing by viewing costs for a group of resources sharing the same tag.

Azure provides four levels of scope: management groups, subscriptions, resource groups, and resources. The
following image shows an example of these layers.

You apply management settings at any of these levels of scope. The level you select determines how widely the
setting is applied. Lower levels inherit settings from higher levels. For example, when you apply a policy to the
subscription, the policy is applied to all resource groups and resources in your subscription. When you apply a
policy on the resource group, that policy is applied the resource group and all its resources. However, another
resource group doesn't have that policy assignment.

You can deploy templates to management groups, subscriptions, or resource groups.

The following suggestions help you take full advantage of Resource Manager when working with your
solutions.

Define and deploy your infrastructure through the declarative syntax in Resource Manager templates, rather
than through imperative commands.
Define all deployment and configuration steps in the template. You should have no manual steps for setting
up your solution.
Run imperative commands to manage your resources, such as to start or stop an app or machine.
Arrange resources with the same lifecycle in a resource group. Use tags for all other organizing of resources.

For guidance on how enterprises can use Resource Manager to effectively manage subscriptions, see Azure
enterprise scaffold - prescriptive subscription governance.

https://docs.microsoft.com/en-us/azure/governance/management-groups/index
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/azure/architecture/cloud-adoption-guide/subscription-governance?toc=%2fazure%2fazure-resource-manager%2ftoc.json

Resource groups

Resource providers

Template deployment

For recommendations on creating Resource Manager templates, see Azure Resource Manager template best
practices.

There are some important factors to consider when defining your resource group:

All the resources in your group should share the same lifecycle. You deploy, update, and delete them
together. If one resource, such as a database server, needs to exist on a different deployment cycle it should
be in another resource group.
Each resource can only exist in one resource group.
You can add or remove a resource to a resource group at any time.
You can move a resource from one resource group to another group. For more information, see Move
resources to new resource group or subscription.
A resource group can contain resources that are located in different regions.
A resource group can be used to scope access control for administrative actions.
A resource can interact with resources in other resource groups. This interaction is common when the two
resources are related but don't share the same lifecycle (for example, web apps connecting to a database).

When creating a resource group, you need to provide a location for that resource group. You may be wondering,
"Why does a resource group need a location? And, if the resources can have different locations than the
resource group, why does the resource group location matter at all?" The resource group stores metadata about
the resources. Therefore, when you specify a location for the resource group, you're specifying where that
metadata is stored. For compliance reasons, you may need to ensure that your data is stored in a particular
region.

If the resource group's region is temporarily unavailable, you can't update resources in the resource group
because the metadata is unavailable. The resources in other regions will still function as expected, but you can't
update them. For more information about building reliable applications, see Designing reliable Azure
applications.

Each resource provider offers a set of resources and operations for working with those resources. For example,
if you want to store keys and secrets, you work with the Microsoft.KeyVault resource provider. This resource
provider offers a resource type called vaults for creating the key vault.

The name of a resource type is in the format: {resource-provider}/{resource-type}. The resource type for a
key vault is Microsoft.KeyVault/vaults.

Before getting started with deploying your resources, you should gain an understanding of the available
resource providers. Knowing the names of resource providers and resources helps you define resources you
want to deploy to Azure. Also, you need to know the valid locations and API versions for each resource type. For
more information, see Resource providers and types.

For all the operations offered by resource providers, see the Azure REST APIs.

With Resource Manager, you can create a template (in JSON format) that defines the infrastructure and
configuration of your Azure solution. By using a template, you can repeatedly deploy your solution throughout
its lifecycle and have confidence your resources are deployed in a consistent state.

To learn about the format of the template and how you construct it, see Understand the structure and syntax of
Azure Resource Manager Templates. To view the JSON syntax for resources types, see Define resources in

https://docs.microsoft.com/en-us/azure/azure-resource-manager/template-best-practices
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-move-resources
https://docs.microsoft.com/azure/architecture/reliability/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services
https://docs.microsoft.com/rest/api/azure/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authoring-templates
https://docs.microsoft.com/azure/templates/

"resources": [
 {
 "apiVersion": "2016-01-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "mystorageaccount",
 "location": "westus",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {
 }
 }
]

PUT
https://management.azure.com/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Mic
rosoft.Storage/storageAccounts/mystorageaccount?api-version=2016-01-01
REQUEST BODY
{
 "location": "westus",
 "properties": {
 }
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage"
}

Azure Resource Manager templates.

Resource Manager processes the template like any other request. It parses the template and converts its syntax
into REST API operations for the appropriate resource providers. For example, when Resource Manager
receives a template with the following resource definition:

It converts the definition to the following REST API operation, which is sent to the Microsoft.Storage resource
provider :

How you define templates and resource groups is entirely up to you and how you want to manage your
solution. For example, you can deploy your three tier application through a single template to a single resource
group.

But, you don't have to define your entire infrastructure in a single template. Often, it makes sense to divide your
deployment requirements into a set of targeted, purpose-specific templates. You can easily reuse these
templates for different solutions. To deploy a particular solution, you create a master template that links all the
required templates. The following image shows how to deploy a three tier solution through a parent template
that includes three nested templates.

If you envision your tiers having separate lifecycles, you can deploy your three tiers to separate resource groups.
Notice the resources can still be linked to resources in other resource groups.

For information about nested templates, see Using linked templates with Azure Resource Manager.

Azure Resource Manager analyzes dependencies to ensure resources are created in the correct order. If one
resource relies on a value from another resource (such as a virtual machine needing a storage account for
disks), you set a dependency. For more information, see Defining dependencies in Azure Resource Manager
templates.

You can also use the template for updates to the infrastructure. For example, you can add a resource to your
solution and add configuration rules for the resources that are already deployed. If the template defines a
resource that already exists, Resource Manager updates the existing resource instead of creating a new one.

Resource Manager provides extensions for scenarios when you need additional operations such as installing
particular software that isn't included in the setup. If you're already using a configuration management service,
like DSC, Chef or Puppet, you can continue working with that service by using extensions. For information
about virtual machine extensions, see About virtual machine extensions and features.

When you create a solution from the portal, the solution automatically includes a deployment template. You
don't have to create your template from scratch because you can start with the template for your solution and
customize it to meet your specific needs. For a sample, see Quickstart: Create and deploy Azure Resource
Manager templates by using the Azure portal. You can also retrieve a template for an existing resource group by
either exporting the current state of the resource group, or viewing the template used for a particular
deployment. Viewing the exported template is a helpful way to learn about the template syntax.

Finally, the template becomes part of the source code for your app. You can check it in to your source code
repository and update it as your app evolves. You can edit the template through Visual Studio.

After defining your template, you're ready to deploy the resources to Azure. To deploy the resources, see:

Deploy resources with Resource Manager templates and Azure PowerShell
Deploy resources with Resource Manager templates and Azure CLI
Deploy resources with Resource Manager templates and Azure portal
Deploy resources with Resource Manager templates and Resource Manager REST API

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-linked-templates
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-define-dependencies
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-features
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-quickstart-create-templates-use-the-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/manage-resource-groups-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-deploy
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-deploy-cli
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-deploy-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-deploy-rest

Safe deployment practices

Resiliency of Azure Resource Manager

Quickstarts and tutorials

When deploying a complex service to Azure, you might need to deploy your service to multiple regions, and
check its health before proceeding to the next step. Use Azure Deployment Manager to coordinate a staged
rollout of the service. By staging the rollout of your service, you can find potential problems before it has been
deployed to all regions. If you don't need these precautions, the deployment operations in the preceding section
are the better option.

Deployment Manager is currently in public preview.

The Azure Resource Manager service is designed for resiliency and continuous availability. Resource Manager
and control plane operations (requests sent to management.azure.com) in the REST API are:

Distributed across regions. Some services are regional.

Distributed across Availability Zones (as well regions) in locations that have multiple Availability Zones.

Not dependent on a single logical data center.

Never taken down for maintenance activities.

This resiliency applies to services that receive requests through Resource Manager. For example, Key Vault
benefits from this resiliency.

Use the following quickstarts and tutorials to learn how to develop resource manager templates:

TITLE DESCRIPTION

Use the Azure portal Generate a template using the portal, and understand
the process of editing and deploying the template.

Use Visual Studio Code Use Visual Studio Code to create and edit templates, and
how to use the Azure Cloud shell to deploy templates.

Use Visual Studio Use Visual Studio to create, edit, and deploy templates.

TITLE DESCRIPTION

Utilize template reference Utilize the template reference documentation to develop
templates. In the tutorial, you find the storage account
schema, and use the information to create an encrypted
storage account.

Create multiple instances Create multiple instances of Azure resources. In the
tutorial, you create multiple instances of storage account.

Quickstarts

Tutorials

https://docs.microsoft.com/en-us/azure/azure-resource-manager/deployment-manager-overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-quickstart-create-templates-use-the-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-quickstart-create-templates-use-visual-studio-code
https://docs.microsoft.com/en-us/azure/azure-resource-manager/vs-azure-tools-resource-groups-deployment-projects-create-deploy
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-encrypted-storage-accounts
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-multiple-instances

Next steps

Set resource deployment order Define resource dependencies. In the tutorial, you create
a virtual network, a virtual machine, and the dependent
Azure resources. You learn how the dependencies are
defined.

Use conditions Deploy resources based on some parameter values. In
the tutorial, you define a template to create a new
storage account or use an existing storage account
based on the value of a parameter.

Integrate key vault Retrieve secrets/passwords from Azure Key Vault. In the
tutorial, you create a virtual machine. The virtual
machine administrator password is retrieved from a Key
Vault.

Create linked templates Modularize templates, and call other templates from a
template. In the tutorial, you create a virtual network, a
virtual machine, and the dependent resources. The
dependent storage account is defined in a linked
template.

Deploy virtual machine extensions Perform post-deployment tasks by using extensions. In
the tutorial, you deploy a customer script extension to
install web server on the virtual machine.

Deploy SQL extensions Perform post-deployment tasks by using extensions. In
the tutorial, you deploy a customer script extension to
install web server on the virtual machine.

Secure artifacts Secure the artifacts needed to complete the
deployments. In the tutorial, you learn how to secure the
artifact used in the Deploy SQL extensions tutorial.

Use safe deployment practices Use Azure Deployment manager.

Tutorial: Troubleshoot Resource Manager template
deployments

Troubleshoot template deployment issues.

TITLE DESCRIPTION

These tutorials can be used individually, or as a series to learn the major Resource Manager template
development concepts.

In this article, you learned how to use Azure Resource Manager for deployment, management, and access
control of resources on Azure. Proceed to the next article to learn how to create your first Azure Resource
Manager template.

Quickstart: Create and deploy Azure Resource Manager templates by using the Azure portal

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-templates-with-dependent-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-use-conditions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-use-key-vault
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-linked-templates
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-deploy-vm-extensions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-deploy-sql-extensions-bacpac
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-secure-artifacts
https://docs.microsoft.com/en-us/azure/azure-resource-manager/deployment-manager-tutorial
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-troubleshoot
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-quickstart-create-templates-use-the-portal

Quickstart: Create and deploy Azure Resource
Manager templates by using the Azure portal
6/12/2019 • 6 minutes to read • Edit Online

Generate a template using the portal

Learn how to generate a Resource Manager template using the Azure portal, and the process of editing and
deploying the template from the portal. Resource Manager templates are JSON files that define the resources you
need to deploy for your solution. To understand the concepts associated with deploying and managing your Azure
solutions, see Azure Resource Manager overview.

After completing the tutorial, you deploy an Azure Storage account. The same process can be used to deploy other
Azure resources.

If you don't have an Azure subscription, create a free account before you begin.

Creating a Resource Manager template from scratch is not an easy task, especially if you are new to Azure
deployment and you are not familiar with the JSON format. Using the Azure portal, you can configure a resource,
for example an Azure Storage account. Before you deploy the resource, you can export your configuration into a
Resource Manager template. You can save the template and reuse it in the future.

Many experienced template developers use this method to generate templates when they try to deploy Azure
resources that they are not familiar with. For more information about exporting templates by using the portal, see
Export resource groups to templates. The other way to find a working template is from Azure Quickstart templates.

1. Sign in to the Azure portal.

2. Select Create a resource > Storage > Storage account - blob, file, table, queue.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-quickstart-create-templates-use-the-portal.md
https://azure.microsoft.com/free/
https://azure.microsoft.com/resources/templates/
https://portal.azure.com

NAME VALUE

Resource group Select Create new, and specify a resource group name of
your choice. On the screenshot, the resource group name
is mystorage1016rg. Resource group is a container for
Azure resources. Resource group makes it easier to
manage Azure resources.

Name Give your storage account a unique name. The storage
account name must be unique across all of Azure, and it
contain only lowercase letters and numbers. Name must
be between 3 and 24 characters. If you get an error
message saying "The storage account name
'mystorage1016' is already taken", try using <your
name>storage<Today's date in MMDD>, for example
johndolestorage1016. For more information, see Naming
rules and restrictions.

3. Enter the following information:

You can use the default values for the rest of the properties.

https://docs.microsoft.com/azure/architecture/best-practices/naming-conventions#naming-rules-and-restrictions

NOTENOTE
Some of the exported templates require some edits before you can deploy them.

4. Select Review + create on the bottom of the screen. Do not select Create in the next step.

5. Select Download a template for automation on the bottom of the screen. The portal shows the
generated template:

The main pane shows the template. It is a JSON file with six top-level elements - schema , contentVersion ,
parameters , variables , resources , and output . For more information, see Understand the structure and

syntax of Azure Resource Manager Templates

There are six parameters defined. One of them is called storageAccountName. The second highlighted
part on the previous screenshot shows how to reference this parameter in the template. In the next section,
you edit the template to use a generated name for the storage account.

In the template, one Azure resource is defined. The type is Microsoft.Storage/storageAccounts . Take a look
of how the resource is defined, and the definition structure.

6. Select Download from the top of the screen.

7. Open the downloaded zip file, and then save template.json to your computer. In the next section, you use a
template deployment tool to edit the template.

8. Select the Parameter tab to see the values you provided for the parameters. Write down these values, you
need them in the next section when you deploy the template.

Edit and deploy the template

IMPORTANTIMPORTANT

Using both the template file and the parameters file, you can create a resource, in this tutorial, an Azure
storage account.

The Azure portal can be used to perform some basic template editing. In this quickstart, you use a portal tool
called Template Deployment. Template Deployment is used in this tutorial so you can complete the whole tutorial
using one interface - the Azure portal. To edit a more complex template, consider using Visual Studio Code, which
provides richer edit functionalities.

Template Deployment provides an interface for testing simple templates. It is not recommended to use this feature in
production. Instead, store your templates in an Azure storage account, or a source code repository like GitHub.

Azure requires that each Azure service has a unique name. The deployment could fail if you entered a storage
account name that already exists. To avoid this issue, you modify the template to use a template function call
uniquestring() to generate a unique storage account name.

1. In the Azure portal, select Create a resource.

2. In Search the Marketplace, type template deployment, and then press ENTER.

3. Select Template deployment.

4. Select Create.

5. Select Build your own template in the editor.

6. Select Load file, and then follow the instructions to load template.json you downloaded in the last section.

7. Make the following three changes to the template:

"storageAccountName": "[concat(uniqueString(subscription().subscriptionId), 'storage')]"

Remove the storageAccountName parameter as shown in the previous screenshot.

Add one variable called storageAccountName as shown in the previous screenshot:

Two template functions are used here: concat() and uniqueString() .

NAME VALUE

Resource group Select the resource group name you created in the last
section.

Location Select a location for the storage account. For example,
Central US.

"name": "[variables('storageAccountName')]",

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string"
 },
 "accountType": {
 "type": "string"
 },
 "kind": {
 "type": "string"
 },
 "accessTier": {
 "type": "string"
 },
 "supportsHttpsTrafficOnly": {
 "type": "bool"
 }
 },
 "variables": {
 "storageAccountName": "[concat(uniqueString(subscription().subscriptionId), 'storage')]"
 },
 "resources": [
 {
 "name": "[variables('storageAccountName')]",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2018-07-01",
 "location": "[parameters('location')]",
 "properties": {
 "accessTier": "[parameters('accessTier')]",
 "supportsHttpsTrafficOnly": "[parameters('supportsHttpsTrafficOnly')]"
 },
 "dependsOn": [],
 "sku": {
 "name": "[parameters('accountType')]"
 },
 "kind": "[parameters('kind')]"
 }
],
 "outputs": {}
}

Update the name element of the Microsoft.Storage/storageAccounts resource to use the newly
defined variable instead of the parameter :

The final template shall look like:

8. Select Save.

9. Enter the following values:

Account Type Enter Standard_LRS for this quickstart.

Kind Enter StorageV2 for this quickstart.

Access Tier Enter Hot for this quickstart.

Https Traffic Only Enabled Select true for this quickstart.

I agree to the terms and conditions stated above (select)

NAME VALUE

Here is a screenshot of a sample deployment:

10. Select Purchase.

11. Select the bell icon (notifications) from the top of the screen to see the deployment status. You shall see
Deployment in progress. Wait until the deployment is completed.

Clean up resources

Next steps

12. Select Go to resource group from the notification pane. You shall see a screen similar to:

You can see the deployment status was successful, and there is only one storage account in the resource
group. The storage account name is a unique string generated by the template. To learn more about using
Azure storage accounts, see Quickstart: Upload, download, and list blobs using the Azure portal.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. In the Azure portal, select Resource group on the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see the storage account in the resource group.
4. Select Delete resource group in the top menu.

In this tutorial, you learned how to generate a template from the Azure portal, and how to deploy the template
using the portal. The template used in this Quickstart is a simple template with one Azure resource. When the
template is complex, it is easier to use Visual Studio Code or Visual Studio to develop the template. The next
quickstart also shows you how to deploy templates using Azure PowerShell and Azure Command-line Interface
(CLI).

Create templates by using Visual Studio Code

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

Quickstart: Create Azure Resource Manager
templates by using Visual Studio Code
3/4/2019 • 4 minutes to read • Edit Online

Prerequisites

Open a Quickstart template

Learn how to use Visual Studio code and the Azure Resource Manager Tools extension to create and edit Azure
Resource Manager templates. You can create Resource Manager templates in Visual Studio Code without the
extension, but the extension provides autocomplete options that simplify template development. To understand
the concepts associated with deploying and managing your Azure solutions, see Azure Resource Manager
overview.

In this tutorial, you deploy a storage account:

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

Visual Studio Code.

Resource Manager Tools extension. To install, use these steps:

1. Open Visual Studio Code.
2. Press CTRL+SHIFT+X to open the Extensions pane
3. Search for Azure Resource Manager Tools, and then select Install.
4. Select Reload to finish the extension installation.

Instead of creating a template from scratch, you open a template from Azure Quickstart Templates. Azure
QuickStart Templates is a repository for Resource Manager templates.

The template used in this quickstart is called Create a standard storage account. The template defines an Azure
Storage account resource.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-
create/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-quickstart-create-templates-use-visual-studio-code.md
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://azure.microsoft.com/resources/templates/
https://azure.microsoft.com/resources/templates/101-storage-account-create/

Edit the template

Deploy the template

NOTENOTE

4. Select File>Save As to save the file as azuredeploy.json to your local computer.

To experience how to edit a template using Visual Studio Code, you add one more element into the outputs

section to show the storage URI.

"storageUri": {
 "type": "string",
 "value": "[reference(variables('storageAccountName')).primaryEndpoints.blob]"
}

"outputs": {
 "storageAccountName": {
 "type": "string",
 "value": "[variables('storageAccountName')]"
 },
 "storageUri": {
 "type": "string",
 "value": "[reference(variables('storageAccountName')).primaryEndpoints.blob]"
 }
}

1. Add one more output to the exported template:

When you are done, the outputs section looks like:

If you copied and pasted the code inside Visual Studio Code, try to retype the value element to experience
the IntelliSense capability of the Resource Manager Tools extension.

2. Select File>Save to save the file.

There are many methods for deploying templates. Azure Cloud shell is used in this quickstart. The cloud shell
supports both Azure CLI and Azure PowerShell. Use the tab selector to choose between CLI and PowerShell.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

1. Sign in to the Azure Cloud shell

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://shell.azure.com

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the location (i.e. centralus):" &&
read location &&
az group create --name $resourceGroupName --location "$location" &&
az group deployment create --resource-group $resourceGroupName --template-file "$HOME/azuredeploy.json"

2. Choose your preferred environment by selecting either PowerShell or Bash(CLI) on the upper left corner.
Restarting the shell is required when you switch.

CLI
PowerShell

3. Select Upload/download files, and then select Upload.

CLI
PowerShell

Select the file you saved in the previous section. The default name is azuredeploy.json. The template file
must be accessible from the shell.

You can optionally use the ls command and the cat command to verify the file is uploaded successfully.

CLI
PowerShell

4. From the Cloud shell, run the following commands. Select the tab to show the PowerShell code or the CLI
code.

CLI
PowerShell

Update the template file name if you save the file to a name other than azuredeploy.json.

The following screenshot shows a sample deployment:

CLI
PowerShell

Clean up resources

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the Storage Account name:" &&
read storageAccountName &&
az storage account show --resource-group $resourceGroupName --name $storageAccountName

The storage account name and the storage URL in the outputs section are highlighted on the screenshot.
You need the storage account name in the next step.

5. Run the following CLI or PowerShell command to list the newly created storage account:

CLI
PowerShell

To learn more about using Azure storage accounts, see Quickstart: Upload, download, and list blobs using the
Azure portal.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal

Next steps

2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

The main focus of this quickstart is to use Visual Studio Code to edit an existing template from Azure Quickstart
templates. You also learned how to deploy the template using either CLI or PowerShell from the Azure Cloud
shell. The templates from Azure Quickstart templates might not give you everything you need. The next tutorial
shows you how to find the information from template reference so you can create an encrypted Azure Storage
account.

Create an encrypted storage account

Creating and deploying Azure resource groups
through Visual Studio
6/21/2019 • 10 minutes to read • Edit Online

Create Azure Resource Group project

With Visual Studio, you can create a project that deploys your infrastructure and code to Azure. For example, you
can deploy the web host, web site, and code for the web site. Visual Studio provides many different starter
templates for deploying common scenarios. In this article, you deploy a web app.

This article shows how to use Visual Studio 2019 or later with the Azure development and ASP.NET workloads
installed. If you use Visual Studio 2017, your experience is largely the same.

In this section, you create an Azure Resource Group project with a Web app template.

1. In Visual Studio, choose File, New, and Project. Select the Azure Resource Group project template and
Next.

2. Give your project a name. The other default settings are probably fine, but review them to make they work
for your environment. When done, select Create.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/vs-azure-tools-resource-groups-deployment-projects-create-deploy.md
https://docs.microsoft.com/visualstudio/install/install-visual-studio?view=vs-2019

3. Choose the template that you want to deploy to Azure Resource Manager. Notice there are many different
options based on the type of project you wish to deploy. For this article, choose the Web app template and
OK.

Customize Resource Manager template

FILE NAME DESCRIPTION

Deploy-AzureResourceGroup.ps1 A PowerShell script that runs PowerShell commands to
deploy to Azure Resource Manager. Visual Studio uses this
PowerShell script to deploy your template.

WebSite.json The Resource Manager template that defines the
infrastructure you want deploy to Azure, and the
parameters you can provide during deployment. It also
defines the dependencies between the resources so
Resource Manager deploys the resources in the correct
order.

WebSite.parameters.json A parameters file that has values needed by the template.
You pass in parameter values to customize each
deployment.

The template you pick is just a starting point; you can add and remove resources to fulfill your scenario.

4. Visual Studio creates a resource group deployment project for the web app. To see the files for your project,
look at the node in the deployment project.

Since you chose the Web app template, you see the following files:

All resource group deployment projects have these basic files. Other projects may have additional files to
support other functionality.

You can customize a deployment project by modifying the Resource Manager template that describes the
resources you want to deploy. To learn about the elements of the Resource Manager template, see Authoring
Azure Resource Manager templates.

1. To work on your template, open WebSite.json.

2. The Visual Studio editor provides tools to assist you with editing the Resource Manager template. The
JSON Outline window makes it easy to see the elements defined in your template.

3. Select an element in the outline to go to that part of the template.

4. You can add a resource by either selecting the Add Resource button at the top of the JSON Outline
window, or by right-clicking resources and selecting Add New Resource.

5. Select Storage Account and give it a name. Provide a name that is no more than 11 characters, and only
contains numbers and lower-case letters.

6. Notice that not only was the resource added, but also a parameter for the type storage account, and a
variable for the name of the storage account.

7. The parameter for the type of storage account is pre-defined with allowed types and a default type. You can
leave these values or edit them for your scenario. If you don't want anyone to deploy a Premium_LRS

Deploy project to Azure

"demoaccountType": {
 "type": "string",
 "defaultValue": "Standard_LRS",
 "allowedValues": [
 "Standard_LRS",
 "Standard_ZRS",
 "Standard_GRS",
 "Standard_RAGRS"
]
}

"properties": {
 "name": "[parameters('hostingPlanName')]",
 "numberOfWorkers": 1
}

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanName": {
 "value": "demoHostPlan"
 }
 }
}

storage account through this template, remove it from the allowed types.

8. Visual Studio also provides intellisense to help you understand the properties that are available when
editing the template. For example, to edit the properties for your App Service plan, navigate to the
HostingPlan resource, and add a value for the properties. Notice that intellisense shows the available
values and provides a description of that value.

You can set numberOfWorkers to 1, and save the file.

9. Open the WebSite.parameters.json file. You use the parameters file to pass in values during deployment
that customize the resource being deployed. Give the hosting plan a name, and save the file.

You're now ready to deploy your project to a resource group.

Az module scriptAz module script

.\Deploy-AzTemplate.ps1 -ArtifactStagingDirectory . -Location centralus -TemplateFile WebSite.json -
TemplateParametersFile WebSite.parameters.json

AzureRM module scriptAzureRM module script

By default, the PowerShell script (Deploy-AzureResourceGroup.ps1) in the project uses the AzureRM module. If
you still have the AzureRM module installed and want to continue using it, you can use this default script. With this
script, you can use the Visual Studio interface to deploy your solution.

However, if you've migrated to the new Az module, you need to add a new script to your project. To add a script
that uses the Az module, copy the Deploy-AzTemplate.ps1 script and add it to your project. To use this script for
deployment, you must run it from a PowerShell console, rather than using Visual Studio's deployment interface.

Both approaches are shown in this article. This article refers to the default script as the AzureRM module script,
and the new script as the Az module script.

For the Az module script, open a PowerShell console and run:

For the AzureRM module script, use Visual Studio:

1. On the shortcut menu of the deployment project node, choose Deploy > New.

2. The Deploy to Resource Group dialog box appears. In the Resource group dropdown box, choose an
existing resource group or create a new one. Select Deploy.

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://github.com/Azure/azure-quickstart-templates/blob/master/Deploy-AzTemplate.ps1

View deployed resources

Add code to project

18:00:58 - Successfully deployed template 'website.json' to resource group 'ExampleAppDeploy'.

3. In the Output windows, you see the status of the deployment. When the deployment has finished, the last
message indicates a successful deployment with something similar to:

Let's check the results.

1. In a browser, open the Azure portal and sign in to your account. To see the resource group, select Resource
groups and the resource group you deployed to.

2. You see all the deployed resources. Notice that the name of the storage account isn't exactly what you
specified when adding that resource. The storage account must be unique. The template automatically adds
a string of characters to the name you provided to create a unique name.

At this point, you've deployed the infrastructure for your app, but there's no actual code deployed with the project.

1. Add a project to your Visual Studio solution. Right-click the solution, and select Add > New Project.

https://portal.azure.com/

2. Add an ASP.NET Core Web Application.

3. Give your web app a name, and select Create.

4. Select Web Application and Create.

5. After Visual Studio creates your web app, you see both projects in the solution.

6. Now, you need to make sure your resource group project is aware of the new project. Go back to your
resource group project (ExampleAppDeploy). Right-click References and select Add Reference.

7. Select the web app project that you created.

By adding a reference, you link the web app project to the resource group project, and automatically sets
some properties. You see these properties in the Properties window for the reference. The Include File
Path has the path where the package is created. Note the folder (ExampleApp) and file (package.zip). You
need to know these values because you provide them as parameters when deploying the app.

8. Go back to your template (WebSite.json) and add a resource to the template.

9. This time select Web Deploy for Web Apps.

Save your template.

Deploy code with infrastructure

Az module scriptAz module script

"packageUri": "[concat(parameters('_artifactsLocation'), parameters('ExampleAppPackageFolder'), '/',
parameters('ExampleAppPackageFileName'), parameters('_artifactsLocationSasToken'))]",

.\Deploy-AzTemplate.ps1 -ArtifactStagingDirectory .\bin\Debug\staging\ExampleAppDeploy -Location centralus -
TemplateFile WebSite.json -TemplateParametersFile WebSite.parameters.json -UploadArtifacts -StorageAccountName
<storage-account-name>

AzureRM module scriptAzureRM module script

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanName": {
 "value": "demoHostPlan"
 },
 "ExampleAppPackageFolder": {
 "value": "ExampleApp"
 },
 "ExampleAppPackageFileName": {
 "value": "package.zip"
 }
 }
}

10. There are some new parameters in your template. They were added in the previous step. You don't need to
provide values for _artifactsLocation or _artifactsLocationSasToken because those values are
automatically generated. However, you have to set the folder and file name to the path that contains the
deployment package. The names of these parameters end with PackageFolder and PackageFileName.
The first part of the name is the name of the Web Deploy resource you added. In this article, they're named
ExampleAppPackageFolder and ExampleAppPackageFileName.

Open Website.parameters.json and set those parameters to the values you saw in the reference
properties. Set ExampleAppPackageFolder to the name of the folder. Set
ExampleAppPackageFileName to the name of the zip file.

Because you added code to the project, your deployment is a little different this time. During deployment, you
stage artifacts for your project to a place that Resource Manager can access. The artifacts are staged to a storage
account.

There's one small change you need to make to your template if you're using the Az module script. This script adds
a slash to the artifacts location but your template doesn't expect that slash. Open WebSite.json and find the
properties for the MSDeploy extension. It has a property named packageUri. Remove the slash between the
artifacts location and the package folder.

It should look like:

Notice in the preceding example there is no '/', between parameters('_artifactsLocation') and
parameters('ExampleAppPackageFolder').

Rebuild the project. Building the project makes sure the files you need to deploy are added to the staging folder.

Now, open a PowerShell console and run:

View web app

For the AzureRM module script, use Visual Studio:

1. To redeploy, choose Deploy, and the resource group you deployed earlier.

2. Select the storage account you deployed with this resource group for the Artifact storage account.

1. After the deployment has finished, select your web app in the portal. Select the URL to browse to the site.

Add operations dashboard

2. Notice that you've successfully deployed the default ASP.NET app.

You aren't limited to only the resources that are available through the Visual Studio interface. You can customize
your deployment by adding a custom resource to your template. To show adding a resource, you add an
operational dashboard to manage the resource you deployed.

 ,{
 "properties": {
 "lenses": {
 "0": {
 "order": 0,
 "parts": {
 "0": {
 "position": {
 "x": 0,
 "y": 0,
 "colSpan": 4,
 "rowSpan": 6
 },
 "metadata": {
 "inputs": [
 {
 "name": "resourceGroup",
 "isOptional": true
 },
 {
 "name": "id",
 "value": "[resourceGroup().id]",
 "isOptional": true
 }
],
 "type": "Extension/HubsExtension/PartType/ResourceGroupMapPinnedPart"
 }
 },
 "1": {
 "position": {
 "x": 4,
 "y": 0,
 "rowSpan": 3,
 "colSpan": 4

1. Open the WebSite.json file and add the following JSON after the storage account resource but before the
closing] of the resources section.

 "colSpan": 4
 },
 "metadata": {
 "inputs": [],
 "type": "Extension[azure]/HubsExtension/PartType/MarkdownPart",
 "settings": {
 "content": {
 "settings": {
 "content": "__Customizations__\n\nUse this dashboard to create and share the
operational views of services critical to the application performing. To customize simply pin components
to the dashboard and then publish when you're done. Others will see your changes when you publish and
share the dashboard.\n\nYou can customize this text too. It supports plain text, __Markdown__, and even
limited HTML like images and links that open in a new tab.\n",
 "title": "Operations",
 "subtitle": "[resourceGroup().name]"
 }
 }
 }
 }
 }
 }
 }
 },
 "metadata": {
 "model": {
 "timeRange": {
 "value": {
 "relative": {
 "duration": 24,
 "timeUnit": 1
 }
 },
 "type": "MsPortalFx.Composition.Configuration.ValueTypes.TimeRange"
 }
 }
 }
 },
 "apiVersion": "2015-08-01-preview",
 "name": "[concat('ARM-',resourceGroup().name)]",
 "type": "Microsoft.Portal/dashboards",
 "location": "[resourceGroup().location]",
 "tags": {
 "hidden-title": "[concat('OPS-',resourceGroup().name)]"
 }
 }

2. Redeploy your project.

3. After deployment has finished, view your dashboard in the portal. Select Dashboard and pick the one you
deployed.

Clean up resources

Next steps

4. You see the customized dashboard.

You can manage access to the dashboard by using RBAC groups. You can also customize the dashboard's
appearance after it's deployed. However, if you redeploy the resource group, the dashboard is reset to its default
state in your template. For more information about creating dashboards, see Programmatically create Azure
Dashboards.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource groups from the left menu.

2. Select the resource group name.

3. Select Delete resource group from the top menu.

In this quickstart, you learned how to create and deploy templates using Visual Studio. The next tutorial shows you
how to find the information from template reference so you can create an encrypted Azure Storage account.

Create an encrypted storage account

https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-dashboards-create-programmatically

Tutorial: Utilize the Azure Resource Manager
template reference
3/12/2019 • 3 minutes to read • Edit Online

Prerequisites

Open a Quickstart template

Learn how to find the template schema information, and use the information to create Azure Resource Manager
templates.

In this tutorial, you use a base template from Azure Quickstart templates. Using template reference
documentation, you customize the template to create an encrypted Storage account.

This tutorial covers the following tasks:

Open a Quickstart template
Understand the template
Find the template reference
Edit the template
Deploy the template

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

Visual Studio Code with Resource Manager Tools extension.

Azure QuickStart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template used in this quickstart is called Create a
standard storage account. The template defines an Azure Storage account resource.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-
create/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

4. Select File>Save As to save the file as azuredeploy.json to your local computer.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-create-encrypted-storage-accounts.md
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://azure.microsoft.com/resources/templates/
https://azure.microsoft.com/resources/templates/101-storage-account-create/

Understand the schema

Find the template reference

1. From VS Code, collapse the template to the root level. You have the simplest structure with the following
elements:

$schema: specify the location of the JSON schema file that describes the version of the template
language.
contentVersion: specify any value for this element to document significant changes in your template.
parameters: specify the values that are provided when deployment is executed to customize resource
deployment.
variables: specify the values that are used as JSON fragments in the template to simplify template
language expressions.
resources: specify the resource types that are deployed or updated in a resource group.
outputs: specify the values that are returned after deployment.

2. Expand resources. There is a Microsoft.Storage/storageAccounts resource defined. The template creates a
non-encrypted Storage account.

1. Browse to Azure Template reference.

2. In the Filter by title box, enter storage accounts.

3. Select Reference/Template reference/Storage/<Version>/Storage Accounts as shown in the
following screenshot:

https://docs.microsoft.com/azure/templates/

"encryption": {
 "services": {
 "blob": {
 "enabled": boolean
 },
 "file": {
 "enabled": boolean
 }
 },
 "keySource": "string",
 "keyvaultproperties": {
 "keyname": "string",
 "keyversion": "string",
 "keyvaulturi": "string"
 }
},

If you don't know which version to choose, use the latest version.

4. Find the encryption-related definition information.

On the same web page, the following description confirms the encryption object is used to create an
encrypted storage account.

Edit the template

"encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
}

And there are two ways for managing the encryption key. You can use Microsoft-managed encryption keys
with Storage Service Encryption, or you can use your own encryption keys. To keep this tutorial simple, you
use the Microsoft.Storage option, so you don't have to create an Azure Key Vault.

Your encryption object shall look like:

From Visual Studio Code, modify the template so that the resources element looks like:

Deploy the template

Clean up resources

Refer to the Deploy the template section in the Visual Studio Code quickstart for the deployment procedure.

The following screenshot shows the CLI command for listing the newly created storage account, which indicates
encryption has been enabled for the blob storage.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.

Next steps

4. Select Delete resource group from the top menu.

In this tutorial, you learned how to use template reference to customize an existing template. To learn how to
create multiple storage account instances, see:

Create multiple instances

Tutorial: Create multiple resource instances with
Resource Manager templates
4/7/2019 • 3 minutes to read • Edit Online

Prerequisites

Open a Quickstart template

Edit the template

Learn how to iterate in your Azure Resource Manager template to create multiple instances of an Azure resource.
In this tutorial, you modify a template to create three storage account instances.

This tutorial covers the following tasks:

Open a QuickStart template
Edit the template
Deploy the template

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

Visual Studio Code with Resource Manager Tools extension.

Azure QuickStart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template used in this quickstart is called Create a
standard storage account. The template defines an Azure Storage account resource.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-
create/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

4. There is a 'Microsoft.Storage/storageAccounts' resource defined in the template. Compare the template to
the template reference. It is helpful to get some basic understanding of the template before customizing it.

5. Select File>Save As to save the file as azuredeploy.json to your local computer.

The existing template creates one storage account. You customize the template to create three storage accounts.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-create-multiple-instances.md
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://azure.microsoft.com/resources/templates/
https://azure.microsoft.com/resources/templates/101-storage-account-create/
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts

From Visual Studio Code, make the following four changes:

1. Add a copy element to the storage account resource definition. In the copy element, you specify the number of
iterations and a variable for this loop. The count value must be a positive integer and can't exceed 800.

2. The copyIndex() function returns the current iteration in the loop. You use the index as the name prefix.
copyIndex() is zero-based. To offset the index value, you can pass a value in the copyIndex() function. For

example, copyIndex(1).
3. Delete the variables element, because it is not used anymore.
4. Delete the outputs element. It is no longer needed.

The completed template looks like:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountType": {
 "type": "string",
 "defaultValue": "Standard_LRS",
 "allowedValues": [
 "Standard_LRS",
 "Standard_GRS",
 "Standard_ZRS",
 "Premium_LRS"
],
 "metadata": {
 "description": "Storage Account type"
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "Location for all resources."
 }
 }
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat(copyIndex(),'storage', uniqueString(resourceGroup().id))]",
 "apiVersion": "2018-02-01",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[parameters('storageAccountType')]"
 },
 "kind": "Storage",
 "properties": {},
 "copy": {
 "name": "storagecopy",
 "count": 3
 }
 }
]
}

Deploy the template

NOTENOTE

For more information about creating multiple instances, see Deploy multiple instances of a resource or property in
Azure Resource Manager Templates

Refer to the Deploy the template section in the Visual Studio Code quickstart for the deployment procedure.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To list all three storage accounts, omit the --name parameter:

Azure CLI
PowerShell

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
az storage account list --resource-group $resourceGroupName

Clean up resources

Next steps

Compare the storage account names with the name definition in the template.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

In this tutorial, you learned how to create multiple storage account instances. In the next tutorial, you develop a
template with multiple resources and multiple resource types. Some of the resources have dependent resources.

Create dependent resources

Tutorial: Create Azure Resource Manager templates
with dependent resources
3/15/2019 • 5 minutes to read • Edit Online

Prerequisites

Learn how to create an Azure Resource Manager template to deploy multiple resources and configure the
deployment order. After you create the template, you deploy the template using the Cloud shell from the Azure
portal.

In this tutorial, you create a storage account, a virtual machine, a virtual network, and some other dependent
resources. Some of the resources cannot be deployed until another resource exists. For example, you can't create
the virtual machine until its storage account and network interface exist. You define this relationship by making
one resource as dependent on the other resources. Resource Manager evaluates the dependencies between
resources, and deploys them in their dependent order. When resources aren't dependent on each other, Resource
Manager deploys them in parallel. For more information, see Define the order for deploying resources in Azure
Resource Manager Templates.

This tutorial covers the following tasks:

Open a QuickStart template
Explore the template
Deploy the template

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

openssl rand -base64 32

Visual Studio Code with the Resource Manager Tools extension. See Install the extension .

To increase security, use a generated password for the virtual machine administrator account. Here is a
sample for generating a password:

Azure Key Vault is designed to safeguard cryptographic keys and other secrets. For more information, see
Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment. We also recommend you

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-create-templates-with-dependent-resources.md
https://azure.microsoft.com/free/
https://code.visualstudio.com/

Open a Quickstart template

Explore the template

to update your password every three months.

Azure QuickStart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template used in this tutorial is called Deploy a
simple Windows VM.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-vm-simple-
windows/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

4. Select File>Save As to save a copy of the file to your local computer with the name azuredeploy.json.

When you explore the template in this section, try to answer these questions:

How many Azure resources defined in this template?
One of the resources is an Azure storage account. Does the definition look like the one used in the last
tutorial?
Can you find the template references for the resources defined in this template?
Can you find the dependencies of the resources?

1. From Visual Studio Code, collapse the elements until you only see the first-level elements and the second-
level elements inside resources:

There are five resources defined by the template:

Microsoft.Storage/storageAccounts . See the template reference.

Microsoft.Network/publicIPAddresses . See the template reference.

https://azure.microsoft.com/resources/templates/101-vm-simple-windows/
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts
https://docs.microsoft.com/azure/templates/microsoft.network/publicipaddresses

Microsoft.Network/virtualNetworks . See the template reference.

Microsoft.Network/networkInterfaces . See the template reference.

Microsoft.Compute/virtualMachines . See the template reference.

It is helpful to get some basic understanding of the template before customizing it.

2. Expand the first resource. It is a storage account. Compare the resource definition to the template
reference.

3. Expand the second resource. The resource type is Microsoft.Network/publicIPAddresses . Compare the
resource definition to the template reference.

4. Expand the fourth resource. The resource type is Microsoft.Network/networkInterfaces :

https://docs.microsoft.com/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/azure/templates/microsoft.compute/virtualmachines
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts
https://docs.microsoft.com/azure/templates/microsoft.network/publicipaddresses

The dependsOn element enables you to define one resource as a dependent on one or more resources.
The resource depends on two other resources:

Microsoft.Network/publicIPAddresses

Microsoft.Network/virtualNetworks

5. Expand the fifth resource. This resource is a virtual machine. It depends on two other resources:

Microsoft.Storage/storageAccounts

Microsoft.Network/networkInterfaces

The following diagram illustrates the resources and the dependency information for this template:

By specifying the dependencies, Resource Manager efficiently deploys the solution. It deploys the storage
account, public IP address, and virtual network in parallel because they have no dependencies. After the public IP
address and virtual network are deployed, the network interface is created. When all other resources are
deployed, Resource Manager deploys the virtual machine.

 Deploy the template

NOTENOTE
This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

There are many methods for deploying templates. In this tutorial, you use Cloud Shell from the Azure portal.

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$adminUsername = Read-Host -Prompt "Enter the virtual machine admin username"
$adminPassword = Read-Host -Prompt "Enter the admin password" -AsSecureString
$dnsLabelPrefix = Read-Host -Prompt "Enter the DNS label prefix"

New-AzResourceGroup -Name $resourceGroupName -Location "$location"
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -adminUsername $adminUsername `
 -adminPassword $adminPassword `
 -dnsLabelPrefix $dnsLabelPrefix `
 -TemplateFile "$HOME/azuredeploy.json"

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
Get-AzVM -Name SimpleWinVM -ResourceGroupName $resourceGroupName

1. Sign in to the Cloud Shell.

2. Select PowerShell from the upper left corner of the Cloud shell, and then select Confirm. You use
PowerShell in this tutorial.

3. Select Upload file from the Cloud shell:

4. Select the template you saved earlier in the tutorial. The default name is azuredeploy.json. If you have a
file with the same file name, the old file is overwritten without any notification.

You can optionally use the ls $HOME command and the cat $HOME/azuredeploy.json command to
verify the files areis uploaded successfully.

5. From the Cloud shell, run the following PowerShell commands. To increase security, use a generated
password for the virtual machine administrator account. See Prerequisites.

6. Run the following PowerShell command to list the newly created virtual machine:

The virtual machine name is hard-coded as SimpleWinVM inside the template.

7. RDP to the virtual machine to verify the virtual machine has been created successfully.

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://shell.azure.com

Clean up resources

Next steps

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

In this tutorial, you developed and deployed a template to create a virtual machine, a virtual network, and the
dependent resources. To learn how to deploy Azure resources based on conditions, see:

Use conditions

Tutorial: Use condition in Azure Resource Manager
templates
5/29/2019 • 4 minutes to read • Edit Online

Prerequisites

Learn how to deploy Azure resources based on conditions.

In the Set resource deployment order tutorial, you create a virtual machine, a virtual network, and some other
dependent resources including a storage account. Instead of creating a new storage account every time, you let
people choose between creating a new storage account and using an existing storage account. To accomplish this
goal, you define an additional parameter. If the value of the parameter is "new", a new storage account is created.
Otherwise, an existing storage account with the name provided is used.

This tutorial covers the following tasks:

Open a QuickStart template
Modify the template
Deploy the template
Clean up resources

This tutorial only covers a basic scenario of using conditions. For more information, see:

Template file structure: Condition.
Conditionally deploy a resource in an Azure Resource Manager template.
Template function: If.
Comparison functions for Azure Resource Manager templates

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

Visual Studio Code with Resource Manager Tools extension.

To increase security, use a generated password for the virtual machine administrator account. Here is a
sample for generating a password:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-use-conditions.md
https://docs.microsoft.com/azure/architecture/building-blocks/extending-templates/conditional-deploy
https://azure.microsoft.com/free/
https://code.visualstudio.com/

Open a Quickstart template

Modify the template

openssl rand -base64 32

Azure Key Vault is designed to safeguard cryptographic keys and other secrets. For more information, see
Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment. We also recommend you to
update your password every three months.

Azure QuickStart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template used in this tutorial is called Deploy a
simple Windows VM.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-vm-simple-
windows/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

4. There are five resources defined by the template:

Microsoft.Storage/storageAccounts . See the template reference.

Microsoft.Network/publicIPAddresses . See the template reference.

Microsoft.Network/virtualNetworks . See the template reference.

Microsoft.Network/networkInterfaces . See the template reference.

Microsoft.Compute/virtualMachines . See the template reference.

It is helpful to get some basic understanding of the template before customizing it.

5. Select File>Save As to save a copy of the file to your local computer with the name azuredeploy.json.

Make two changes to the existing template:

Add a storage account name parameter. Users can specify either a new storage account name or an existing
storage account name.
Add a new parameter called newOrExisting. The deployment uses this parameter to determine where to
create a new storage account or use an existing storage account.

Here is the procedure to make the changes:

1. Open azuredeploy.json in Visual Studio Code.

2. Replace the three variables('storageAccountName') with parameters('storageAccountName') in the
whole template.

3. Remove the following variable definition:

https://azure.microsoft.com/resources/templates/101-vm-simple-windows/
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts
https://docs.microsoft.com/azure/templates/microsoft.network/publicipaddresses
https://docs.microsoft.com/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/azure/templates/microsoft.compute/virtualmachines

"storageAccountName": {
 "type": "string"
},
"newOrExisting": {
 "type": "string",
 "allowedValues": [
 "new",
 "existing"
]
},

"condition": "[equals(parameters('newOrExisting'),'new')]",

4. Add the following two parameters to the template:

The updated parameters definition looks like:

5. Add the following line to the beginning of the storage account definition.

The condition checks the value of a parameter called newOrExisting. If the parameter value is new, the
deployment creates the storage account.

The updated storage account definition looks like:

Deploy the template

$resourceGroupName = Read-Host -Prompt "Enter the resource group name"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"
$newOrExisting = Read-Host -Prompt "Create new or use existing (Enter new or existing)"
$location = Read-Host -Prompt "Enter the Azure location (i.e. centralus)"
$vmAdmin = Read-Host -Prompt "Enter the admin username"
$vmPassword = Read-Host -Prompt "Enter the admin password" -AsSecureString
$dnsLabelPrefix = Read-Host -Prompt "Enter the DNS Label prefix"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -adminUsername $vmAdmin `
 -adminPassword $vmPassword `
 -dnsLabelPrefix $dnsLabelPrefix `
 -storageAccountName $storageAccountName `
 -newOrExisting $newOrExisting `
 -TemplateFile "$HOME/azuredeploy.json"

NOTENOTE

Clean up resources

"storageUri": "[concat('https://', parameters('storageAccountName'), '.blob.core.windows.net')]"

6. Update the storageUri property of the virtual machine resource definition with the following value:

This change is necessary when you use an existing storage account under a different resource group.

7. Save the changes.

Follow the instructions in Deploy the template to open the Cloud shell and upload the revised template, and then
run the follow PowerShell script to deploy the template.

The deployment fails if newOrExisting is new, but the storage account with the storage account name specified already
exists.

Try making another deployment with newOrExisting set to "existing" and specify an exiting storage account. To
create a storage account beforehand, see Create a storage account.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource

https://docs.microsoft.com/en-us/azure/storage/common/storage-quickstart-create-account

$resourceGroupName = Read-Host -Prompt "Enter the same resource group name you used in the last procedure"
Remove-AzResourceGroup -Name $resourceGroupName

Next steps

group. To delete the resource group, select Try it to open the Cloud shell. To paste the PowerShell script, right-click
the shell pane, and then select Paste.

In this tutorial, you developed a template that allows users to choose between creating a new storage account and
using an existing storage account. To learn how to retrieve secrets from Azure Key Vault, and use the secrets as
passwords in the template deployment, see:

Integrate Key Vault in template deployment

Tutorial: Integrate Azure Key Vault in your Resource
Manager template deployment
6/26/2019 • 6 minutes to read • Edit Online

NOTENOTE

Prerequisites

Learn how to retrieve secrets from an Azure key vault and pass the secrets as parameters when you deploy Azure
Resource Manager. The parameter value is never exposed, because you reference only its key vault ID. For more
information, see Use Azure Key Vault to pass secure parameter value during deployment.

In the Set resource deployment order tutorial, you create a virtual machine (VM). You need to provide the VM
administrator username and password. Instead of providing the password, you can pre-store the password in an
Azure key vault and then customize the template to retrieve the password from the key vault during the
deployment.

This tutorial covers the following tasks:

Prepare a key vault
Open a quickstart template
Edit the parameters file
Deploy the template
Validate the deployment
Clean up resources

If you don't have an Azure subscription, create a free account before you begin.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-use-key-vault.md
https://azure.microsoft.com/free/
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Prepare a key vault

NOTENOTE

$projectName = Read-Host -Prompt "Enter a project name that is used for generating resource names"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$upn = Read-Host -Prompt "Enter your user principal name (email address) used to sign in to Azure"
$secretValue = Read-Host -Prompt "Enter the virtual machine administrator password" -AsSecureString

$resourceGroupName = "${projectName}rg"
$keyVaultName = $projectName
$adUserId = (Get-AzADUser -UserPrincipalName $upn).Id
$templateUri = "https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/tutorials-use-key-
vault/CreateKeyVault.json"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment -ResourceGroupName $resourceGroupName -TemplateUri $templateUri -keyVaultName
$keyVaultName -adUserId $adUserId -secretValue $secretValue

To complete this article, you need:

openssl rand -base64 32

Visual Studio Code with the Resource Manager Tools extension.

To increase security, use a generated password for the VM administrator account. Here's a sample for
generating a password:

Verify that the generated password meets the VM password requirements. Each Azure service has specific
password requirements. For the VM password requirements, see What are the password requirements
when you create a VM?.

In this section, you create a key vault and add a secret to it, so that you can retrieve the secret when you deploy
your template. There are many ways to create a key vault. In this tutorial, you use Azure PowerShell to deploy a
Resource Manager template. This template does the following:

Creates a key vault with the enabledForTemplateDeployment property enabled. This property must be true
before the template deployment process can access the secrets that are defined in the key vault.
Adds a secret to the key vault. The secret stores the VM administrator password.

As the user who's deploying the virtual machine template, if you're not the Owner of or a Contributor to the key vault, the
Owner or a Contributor must grant you access to the Microsoft.KeyVault/vaults/deploy/action permission for the key
vault. For more information, see Use Azure Key Vault to pass a secure parameter value during deployment.

To run the following Azure PowerShell script, select Try it to open Azure Cloud Shell. To paste the script, right-
click the shell pane, and then select Paste.

https://code.visualstudio.com/
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/faq
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/tutorials-use-key-vault/CreateKeyVault.json

IMPORTANTIMPORTANT

/subscriptions/<SubscriptionID>/resourceGroups/mykeyvaultdeploymentrg/providers/Microsoft.KeyVault/vaults/<Ke
yVaultName>

(Get-AzKeyVaultSecret -vaultName $keyVaultName -name "vmAdminPassword").SecretValueText

Open a quickstart template

The resource group name is the project name, but with rg appended to it. To make it easier to clean up the resources
that you created in this tutorial, use the same project name and resource group name when you deploy the next
template.
The default name for the secret is vmAdminPassword. It's hardcoded in the template.
To enable the template to retrieve the secret, you must enable an access policy called "Enable access to Azure Resource
Manager for template deployment" for the key vault. This policy is enabled in the template. For more information about
the access policy, see Deploy key vaults and secrets.

The template has one output value, called keyVaultId. Write down the ID value for later use, when you deploy the
virtual machine. The resource ID format is:

When you copy and paste the ID, it might be broken into multiple lines. Merge the lines and trim the extra spaces.

To validate the deployment, run the following PowerShell command in the same shell pane to retrieve the secret
in clear text. The command works only in the same shell session, because it uses the variable $keyVaultName,
which is defined in the preceding PowerShell script.

Now you've prepared a key vault and a secret. The following sections show you how to customize an existing
template to retrieve the secret during the deployment.

Azure Quickstart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template that's used in this tutorial is called Deploy
a simple Windows VM.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-vm-simple-
windows/azuredeploy.json

1. In Visual Studio Code, select File > Open File.

2. In the File name box, paste the following URL:

3. Select Open to open the file. The scenario is the same as the one that's used in Tutorial: Create Azure
Resource Manager templates with dependent resources. The template defines five resources:

Microsoft.Storage/storageAccounts . See the template reference.
Microsoft.Network/publicIPAddresses . See the template reference.
Microsoft.Network/virtualNetworks . See the template reference.
Microsoft.Network/networkInterfaces . See the template reference.
Microsoft.Compute/virtualMachines . See the template reference.

It's helpful to have some basic understanding of the template before you customize it.

4. Select File > Save As, and then save a copy of the file to your local computer with the name
azuredeploy.json.

https://azure.microsoft.com/resources/templates/101-vm-simple-windows/
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts
https://docs.microsoft.com/azure/templates/microsoft.network/publicipaddresses
https://docs.microsoft.com/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/azure/templates/microsoft.compute/virtualmachines

Edit the parameters file

Deploy the template

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-vm-simple-
windows/azuredeploy.parameters.json

5. Repeat steps 1-3 to open the following URL, and then save the file as azuredeploy.parameters.json.

You don't need to make any changes to the template file.

"adminPassword": {
 "reference": {
 "keyVault": {
 "id":
"/subscriptions/<SubscriptionID>/resourceGroups/mykeyvaultdeploymentrg/providers/Microsoft.KeyVault/vau
lts/<KeyVaultName>"
 },
 "secretName": "vmAdminPassword"
 }
},

IMPORTANTIMPORTANT

1. In Visual Studio Code, open azuredeploy.parameters.json if it's not already open.

2. Update the adminPassword parameter to:

Replace the value for id with the resource ID of the key vault that you created in the previous procedure.

3. Update the following values:

adminUsername: The name of the virtual machine administrator account.
dnsLabelPrefix: Name the dnsLabelPrefix value.

For examples of names, see the preceding image.

4. Save the changes.

Follow the instructions in Deploy the template. Upload both azuredeploy.json and azuredeploy.parameters.json to
Cloud Shell, and then use the following PowerShell script to deploy the template:

$projectName = Read-Host -Prompt "Enter the same project name that is used for creating the key vault"
$location = Read-Host -Prompt "Enter the same location that is used for creating the key vault (i.e.
centralus)"
$resourceGroupName = "${projectName}rg"

New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateFile "$HOME/azuredeploy.json" `
 -TemplateParameterFile "$HOME/azuredeploy.parameters.json"

Validate the deployment

Clean up resources

$projectName = Read-Host -Prompt "Enter the same project name that is used for creating the key vault"
$resourceGroupName = "${projectName}rg"

Remove-AzResourceGroup -Name $resourceGroupName

Next steps

When you deploy the template, use the same resource group that you used in the key vault. This approach makes
it easier for you to clean up the resources, because you need to delete only one resource group instead of two.

After you've successfully deployed the virtual machine, test the sign-in credentials by using the password that's
stored in the key vault.

1. Open the Azure portal.

2. Select Resource groups > <YourResourceGroupName> > simpleWinVM.

3. Select connect at the top.

4. Select Download RDP File, and then follow the instructions to sign in to the virtual machine by using the
password that's stored in the key vault.

When you no longer need your Azure resources, clean up the resources that you deployed by deleting the
resource group.

In this tutorial, you retrieved a secret from your Azure key vault. You then used the secret in your template
deployment. To learn how to create linked templates, see:

Create linked templates

https://portal.azure.com

Tutorial: Create linked Azure Resource Manager
templates
5/23/2019 • 8 minutes to read • Edit Online

NOTENOTE

Prerequisites

Learn how to create linked Azure Resource Manager templates. Using linked templates, you can have one
template call another template. It is great for modularizing templates. In this tutorial, you use the same template
used in Tutorial: Create Azure Resource Manager templates with dependent resources, which creates a virtual
machine, a virtual network, and other dependent resource including a storage account. You separate the storage
account resource creation to a linked template.

Calling a linked template is like making a function call. You also learn how to pass parameter values to the linked
template, and how to get "return values" from the linked template.

This tutorial covers the following tasks:

Open a QuickStart template
Create the linked template
Upload the linked template
Link to the linked template
Configure dependency
Deploy the template
Additional practices

For more information, see Use linked and nested templates when deploying Azure resources.

If you don't have an Azure subscription, create a free account before you begin.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To complete this article, you need:

openssl rand -base64 32

Visual Studio Code with Resource Manager Tools extension.

To increase security, use a generated password for the virtual machine administrator account. Here is a
sample for generating a password:

Azure Key Vault is designed to safeguard cryptographic keys and other secrets. For more information, see
Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment. We also recommend you to
update your password every three months.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-create-linked-templates.md
https://azure.microsoft.com/free/
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://code.visualstudio.com/

Open a Quickstart template

Create the linked template

Azure QuickStart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template used in this tutorial is called Deploy a
simple Windows VM. This is the same template used in Tutorial: Create Azure Resource Manager templates with
dependent resources. You save two copies of the same template to be used as:

The main template: create all the resources except the storage account.
The linked template: create the storage account.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-vm-simple-
windows/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

4. There are five resources defined by the template:

Microsoft.Storage/storageAccounts

Microsoft.Network/publicIPAddresses

Microsoft.Network/virtualNetworks

Microsoft.Network/networkInterfaces

Microsoft.Compute/virtualMachines

It is helpful to get some basic understanding of the template schema before customizing the
template.

5. Select File>Save As to save a copy of the file to your local computer with the name azuredeploy.json.

6. Select File>Save As to create another copy of the file with the name linkedTemplate.json.

The linked template creates a storage account. The linked template can be used as a standalone template to create
a storage account. In this tutorial, the linked template takes two parameters, and passes a value back to the main
template. This "return" value is defined in the outputs element.

1. Open linkedTemplate.json in Visual Studio Code if the file is not opened.

2. Make the following changes:

"storageAccountName":{
 "type": "string",
 "metadata": {
 "description": "Azure Storage account name."
 }
},

Remove all the parameters other than location.

Add a parameter called storageAccountName.

The storage account name and location are passed from the main template to the linked template as

https://azure.microsoft.com/resources/templates/101-vm-simple-windows/
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts
https://docs.microsoft.com/azure/templates/microsoft.network/publicipaddresses
https://docs.microsoft.com/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/azure/templates/microsoft.compute/virtualmachines

 "name": "[parameters('storageAccountName')]",

"outputs": {
 "storageUri": {
 "type": "string",
 "value": "[reference(parameters('storageAccountName')).primaryEndpoints.blob]"
 }
}

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountName": {
 "type": "string",
 "metadata": {
 "description": "Azure Storage account name."
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "Location for all resources."
 }
 }
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[parameters('storageAccountName')]",
 "location": "[parameters('location')]",
 "apiVersion": "2018-07-01",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 }
],
 "outputs": {
 "storageUri": {
 "type": "string",
 "value": "[reference(parameters('storageAccountName')).primaryEndpoints.blob]"
 }
 }
}

parameters.

Remove the variables element, and all the variable definitions.

Remove all the resources other than the storage account. You remove a total of four resources.

Update the value of the name element of the storage account resource to:

Update the outputs element, so it looks like:

storageUri is required by the virtual machine resource definition in the main template. You pass the
value back to the main template as an output value.

When you are done, the template shall look like:

 Upload the linked template

NOTENOTE

3. Save the changes.

The main template and the linked template need to be accessible from where you run the deployment. In this
tutorial, you use the Cloud shell deployment method as you used in Tutorial: Create Azure Resource Manager
templates with dependent resources. The main template (azuredeploy.json) is uploaded to the shell. The linked
template (linkedTemplate.json) must be shared somewhere securely. The following PowerShell script creates an
Azure Storage account, uploads the template to the Storage account, and then generates a SAS token to grant
limited access to the template file. To simplify the tutorial, the script downloads a completed linked template from
a shared location. If you want to use the linked template you created, you can use the Cloud shell to upload your
linked template, and then modify the script to use your own linked template.

The script limits the SAS token to be used within eight hours. If you need more time to complete this tutorial, increase the
expiry time.

https://shell.azure.com

$projectNamePrefix = Read-Host -Prompt "Enter a project name:" # This name is used to generate names for
Azure resources, such as storage account name.
$location = Read-Host -Prompt "Enter a location (i.e. centralus)"

$resourceGroupName = $projectNamePrefix + "rg"
$storageAccountName = $projectNamePrefix + "store"
$containerName = "linkedtemplates" # The name of the Blob container to be created.

$linkedTemplateURL = "https://armtutorials.blob.core.windows.net/linkedtemplates/linkedStorageAccount.json" #
A completed linked template used in this tutorial.
$fileName = "linkedStorageAccount.json" # A file name used for downloading and uploading the linked template.

Download the tutorial linked template
Invoke-WebRequest -Uri $linkedTemplateURL -OutFile "$home/$fileName"

Create a resource group
New-AzResourceGroup -Name $resourceGroupName -Location $location

Create a storage account
$storageAccount = New-AzStorageAccount `
 -ResourceGroupName $resourceGroupName `
 -Name $storageAccountName `
 -Location $location `
 -SkuName "Standard_LRS"

$context = $storageAccount.Context

Create a container
New-AzStorageContainer -Name $containerName -Context $context

Upload the linked template
Set-AzStorageBlobContent `
 -Container $containerName `
 -File "$home/$fileName" `
 -Blob $fileName `
 -Context $context

Generate a SAS token
$templateURI = New-AzStorageBlobSASToken `
 -Context $context `
 -Container $containerName `
 -Blob $fileName `
 -Permission r `
 -ExpiryTime (Get-Date).AddHours(8.0) `
 -FullUri

echo "You need the following values later in the tutorial:"
echo "Resource Group Name: $resourceGroupName"
echo "Linked template URI with SAS token: $templateURI"

Call the linked template

1. Select the Try It green button to open the Azure cloud shell pane.
2. Select Copy to copy the PowerShell script.
3. Right-click anywhere inside the shell pane (the navy blue part), and then select Paste.
4. Make a note of the two values (Resource Group Name and Linked template URI) at the end of the shell pane.

You need the values later in the tutorial.
5. Select Exit focus mode to close the shell pane.

In practice, you generate a SAS token when you deploy the main template, and give the SAS token expiry a
smaller window to make it more secure. For more information, see Provide SAS token during deployment.

The main template is called azuredeploy.json.

 Configure dependency

{
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "apiVersion": "2018-07-01",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
},

{
 "name": "linkedTemplate",
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri":"https://armtutorials.blob.core.windows.net/linkedtemplates/linkedStorageAccount.json"
 },
 "parameters": {
 "storageAccountName":{"value": "[variables('storageAccountName')]"},
 "location":{"value": "[parameters('location')]"}
 }
 }
},

1. Open azuredeploy.json in Visual Studio Code if it is not opened.

2. Delete the storage account resource definition from the template:

3. Add the following json snippet to the place where you had the storage account definition:

Pay attention to these details:

A Microsoft.Resources/deployments resource in the main template is used to link to another template.
The deployments resource has a name called linkedTemplate . This name is used for configuring
dependency.
You can only use Incremental deployment mode when calling linked templates.
templateLink/uri contains the linked template URI. Update the value to the URI you get when you

upload the linked template (the one with a SAS token).
Use parameters to pass values from the main template to the linked template.

4. Make sure you have updated the value of the uri element to the value you got when you upload the
linked template (the one with a SAS token). In practice, you want to supply the URI with a parameter.

5. Save the revised template

Recall from Tutorial: Create Azure Resource Manager templates with dependent resources, the virtual machine
resource depends on the storage account:

Because the storage account is defined in the linked template now, you must update the following two elements of
the Microsoft.Compute/virtualMachines resource.

"outputs": {
 "storageUri": {
 "type": "string",
 "value": "[reference(parameters('storageAccountName')).primaryEndpoints.blob]"
 }
}

Reconfigure the dependOn element. The storage account definition is moved to the linked template.

Reconfigure the properties/diagnosticsProfile/bootDiagnostics/storageUri element. In Create the linked
template, you added an output value:

This value is required by the main template.

1. Open azuredeploy.json in Visual Studio Code if it is not opened.

2. Expand the virtual machine resource definition, update dependsOn as shown in the following screenshot:

Deploy the template

Clean up resources

Additional practice

linkedTemplate is the name of the deployments resource.

3. Update properties/diagnosticsProfile/bootDiagnostics/storageUri as shown in the previous
screenshot.

4. Save the revised template.

Refer to the Deploy the template section for the deployment procedure. Use the same resource group name as the
storage account for storing the linked template. It makes it easier to clean up resources in the next section. To
increase security, use a generated password for the virtual machine administrator account. See Prerequisites.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

To improve the project, make the following additional changes to the completed project:

Next steps

1. Modify the main template (azuredeploy.json) so that it takes the linked template URI value via a parameter.
2. Instead of generating a SAS token when you upload the linked template, generate the token when you deploy

the main template. For more information, see Provide SAS token during deployment.

In this tutorial, you modularized a template into a main template and a linked template. To learn how to use virtual
machine extensions to perform post deployment tasks, see:

Deploy virtual machine extensions

Tutorial: Deploy virtual machine extensions with
Azure Resource Manager templates
3/15/2019 • 3 minutes to read • Edit Online

Prerequisites

Prepare a PowerShell script

Install-WindowsFeature -name Web-Server -IncludeManagementTools

Open a quickstart template

Learn how to use Azure virtual machine extensions to perform post-deployment configuration and automation
tasks on Azure VMs. Many different VM extensions are available for use with Azure VMs. In this tutorial, you
deploy a Custom Script extension from an Azure Resource Manager template to run a PowerShell script on a
Windows VM. The script installs Web Server on the VM.

This tutorial covers the following tasks:

Prepare a PowerShell script
Open a quickstart template
Edit the template
Deploy the template
Verify the deployment

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

openssl rand -base64 32

Visual Studio Code with the Resource Manager Tools extension. See Install the extension.

To increase security, use a generated password for the virtual machine administrator account. Here is a
sample for generating a password:

Azure Key Vault is designed to safeguard cryptographic keys and other secrets. For more information, see
Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment. We also recommend that
you update your password every three months.

A PowerShell script with the following content is shared from an Azure storage account with public access:

If you choose to publish the file to your own location, you must update the fileUri element in the template later
in the tutorial.

Azure Quickstart Templates is a repository for Resource Manager templates. Instead of creating a template from
scratch, you can find a sample template and customize it. The template used in this tutorial is called Deploy a
simple Windows VM.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-deploy-vm-extensions.md
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/features-windows
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://armtutorials.blob.core.windows.net/usescriptextensions/installWebServer.ps1
https://azure.microsoft.com/resources/templates/101-vm-simple-windows/

Edit the template

{
 "apiVersion": "2018-06-01",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "[concat(variables('vmName'),'/', 'InstallWebServer')]",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/',variables('vmName'))]"
],
 "properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.7",
 "autoUpgradeMinorVersion":true,
 "settings": {
 "fileUris": [
 "https://armtutorials.blob.core.windows.net/usescriptextensions/installWebServer.ps1"
],
 "commandToExecute": "powershell.exe -ExecutionPolicy Unrestricted -File installWebServer.ps1"
 }
 }
}

Deploy the template

1. In Visual Studio Code, select File > Open File.

2. In the File name box, paste the following URL: https://raw.githubusercontent.com/Azure/azure-quickstart-
templates/master/101-vm-simple-windows/azuredeploy.json

3. To open the file, select Open.
The template defines five resources:

Microsoft.Storage/storageAccounts. See the template reference.

Microsoft.Network/publicIPAddresses. See the template reference.

Microsoft.Network/virtualNetworks. See the template reference.

Microsoft.Network/networkInterfaces. See the template reference.

Microsoft.Compute/virtualMachines. See the template reference.

It's helpful to get some basic understanding of the template before you customize it.

4. Save a copy of the file to your local computer with the name azuredeploy.json by selecting File > Save As.

Add a virtual machine extension resource to the existing template with the following content:

For more information about this resource definition, see the extension reference. The following are some
important elements:

name: Because the extension resource is a child resource of the virtual machine object, the name must have
the virtual machine name prefix. See Child resources.
dependsOn: Create the extension resource after you've created the virtual machine.
fileUris: The locations where the script files are stored. If you choose not to use the provided location, you
need to update the values.
commandToExecute: This command invokes the script.

For the deployment procedure, see the "Deploy the template" section of Tutorial: Create Azure Resource Manager

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-vm-simple-windows/azuredeploy.json
https://docs.microsoft.com/azure/templates/Microsoft.Storage/storageAccounts
https://docs.microsoft.com/azure/templates/microsoft.network/publicipaddresses
https://docs.microsoft.com/azure/templates/microsoft.network/virtualnetworks
https://docs.microsoft.com/azure/templates/microsoft.network/networkinterfaces
https://docs.microsoft.com/azure/templates/microsoft.compute/virtualmachines
https://docs.microsoft.com/azure/templates/microsoft.compute/virtualmachines/extensions

Verify the deployment

Clean up resources

Next steps

templates with dependent resources. We recommended that you use a generated password for the virtual
machine administrator account. See this article's Prerequisites section.

1. In the Azure portal, select the VM.
2. In the VM overview, copy the IP address by selecting Click to copy, and then paste it in a browser tab.

The default Internet Information Services (IIS) welcome page opens:

When you no longer need the Azure resources you deployed, clean them up by deleting the resource group.

1. In the Azure portal, in the left pane, select Resource group.
2. In the Filter by name box, enter the resource group name.
3. Select the resource group name.

Six resources are displayed in the resource group.
4. In the top menu, select Delete resource group.

In this tutorial, you deployed a virtual machine and a virtual machine extension. The extension installed the IIS
web server on the virtual machine. To learn how to use the Azure SQL Database extension to import a BACPAC
file, see:

Deploy SQL extensions

Tutorial: Import SQL BACPAC files with Azure
Resource Manager templates
4/8/2019 • 4 minutes to read • Edit Online

Prerequisites

Prepare a BACPAC file

Open a Quickstart template

Learn how to use Azure SQL Database extensions to import a BACPAC file with Azure Resource Manager
templates. Deployment artifacts are any files, in addition to the main template file that are needed to complete a
deployment. The BACPAC file is an artifact. In this tutorial, you create a template to deploy an Azure SQL Server, a
SQL Database, and import a BACPAC file. For information about deploying Azure virtual machine extensions
using Azure Resource Manager templates, see # Tutorial: Deploy virtual machine extensions with Azure Resource
Manager templates.

This tutorial covers the following tasks:

Prepare a BACPAC file
Open a Quickstart template
Edit the template
Deploy the template
Verify the deployment

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

openssl rand -base64 32

Visual Studio Code with the Resource Manager Tools extension. See Install the extension .

To increase security, use a generated password for the SQL Server administrator account. Here is a sample
for generating a password:

Azure Key Vault is designed to safeguard cryptographic keys and other secrets. For more information, see
Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment. We also recommend you to
update your password every three months.

A BACPAC file is shared on an Azure Storage account with the public access. To create your own, see Export an
Azure SQL database to a BACPAC file. If you choose to publish the file to your own location, you must update the
template later in the tutorial.

The template used in this tutorial is stored in an Azure Storage account.

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-deploy-sql-extensions-bacpac.md
https://azure.microsoft.com/free/
https://code.visualstudio.com/
https://armtutorials.blob.core.windows.net/sqlextensionbacpac/SQLDatabaseExtension.bacpac
https://docs.microsoft.com/en-us/azure/sql-database/sql-database-export
https://armtutorials.blob.core.windows.net/createsql/azuredeploy.json

Edit the template

https://armtutorials.blob.core.windows.net/createsql/azuredeploy.json

3. Select Open to open the file.

There are three resources defined in the template:

Microsoft.Sql/servers . See the template reference.

Microsoft.SQL/servers/securityAlertPolicies . See the template reference.

Microsoft.SQL.servers/databases . See the template reference.

It is helpful to get some basic understanding of the template before customizing it.

4. Select File>Save As to save a copy of the file to your local computer with the name azuredeploy.json.

Add two additional resources to the template.

{
 "type": "firewallrules",
 "name": "AllowAllAzureIps",
 "location": "[parameters('location')]",
 "apiVersion": "2015-05-01-preview",
 "dependsOn": [
 "[variables('databaseServerName')]"
],
 "properties": {
 "startIpAddress": "0.0.0.0",
 "endIpAddress": "0.0.0.0"
 }
}

To allow the SQL database extension to import BACPAC files, you need to allow access to Azure services.
Add the following JSON to the SQL server definition:

The template shall look like:

https://docs.microsoft.com/azure/templates/microsoft.sql/servers
https://docs.microsoft.com/azure/templates/microsoft.sql/servers/securityalertpolicies
https://docs.microsoft.com/azure/templates/microsoft.sql/servers/databases

"resources": [
 {
 "name": "Import",
 "type": "extensions",
 "apiVersion": "2014-04-01",
 "dependsOn": [
 "[resourceId('Microsoft.Sql/servers/databases', variables('databaseServerName'),
variables('databaseName'))]"
],
 "properties": {
 "storageKeyType": "SharedAccessKey",
 "storageKey": "?",
 "storageUri":
"https://armtutorials.blob.core.windows.net/sqlextensionbacpac/SQLDatabaseExtension.bacpac",
 "administratorLogin": "[variables('databaseServerAdminLogin')]",
 "administratorLoginPassword": "[variables('databaseServerAdminLoginPassword')]",
 "operationMode": "Import",
 }
 }
]

Add a SQL Database extension resource to the database definition with the following JSON:

The template shall look like:

Deploy the template

NOTENOTE

To understand the resource definition, see the SQL Database extension reference. The following are some
important elements:

dependsOn: The extension resource must be created after the SQL database has been created.
storageKeyType: The type of the storage key to use. The value can be either StorageAccessKey or
SharedAccessKey . Because the provided BACPAC file is shared on an Azure Storage account with public

access, `SharedAccessKey' is used here.
storageKey: The storage key to use. If storage key type is SharedAccessKey, it must be preceded with a
"?."
storageUri: The storage uri to use. If you choose not to use the BACPAC file provided, you need to
update the values.
administratorLoginPassword: The password of the SQL administrator. Use a generated password.
See Prerequisites.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

Refer to the Deploy the template section for the deployment procedure. Use the following PowerShell deployment
script instead:

https://docs.microsoft.com/azure/templates/microsoft.sql/servers/databases/extensions
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$adminUsername = Read-Host -Prompt "Enter the SQL admin username"
$adminPassword = Read-Host -Prompt "Enter the admin password" -AsSecureString

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -adminUser $adminUsername `
 -adminPassword $adminPassword `
 -TemplateFile "$HOME/azuredeploy.json"

Verify the deployment

Clean up resources

Next steps

Use a generated password. See Prerequisites.

In the portal, select the SQL database from the newly deployed resource group. Select Query editor (preview),
and then enter the administrator credentials. You shall see two tables imported into the database:

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

In this tutorial, you deployed a SQL Server, a SQL Database, and imported a BACPAC file. The BACPAC file is
stored in an Azure storage account. Anybody with the URL can access the file. To learn how to secure the BACPAC
file (artifact), see

Secure the artifacts

Tutorial: Secure artifacts in Azure Resource Manager
template deployments
6/10/2019 • 7 minutes to read • Edit Online

Prerequisites

Prepare a BACPAC file

Learn how to secure the artifacts used in your Azure Resource Manager templates using Azure Storage account
with shared access signatures (SAS). Deployment artifacts are any files, in addition to the main template file, that
are needed to complete a deployment. For example, in Tutorial: Import SQL BACPAC files with Azure Resource
Manager templates, the main template creates an Azure SQL Database; it also calls a BACPAC file to create tables
and insert data. The BACPAC file is an artifact. The artifact is stored in an Azure storage account with public access.
In this tutorial, you use SAS to grant limited access to the BACPAC file in your own Azure Storage account. For
more information about SAS, see Using shared access signatures (SAS).

To learn how to secure linked template, see Tutorial: Create linked Azure Resource Manager templates.

This tutorial covers the following tasks:

Prepare a BACPAC file
Open an existing template
Edit the template
Deploy the template
Verify the deployment

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

openssl rand -base64 32

Visual Studio Code with the Resource Manager Tools extension. See Install the extension .

Review Tutorial: Import SQL BACPAC files with Azure Resource Manager templates. The template used in
this tutorial is the one developed in that tutorial. A download link of the completed template is provided in
this article.

To increase security, use a generated password for the SQL Server administrator account. Here is a sample
for generating a password:

Azure Key Vault is designed to safeguard cryptographic keys and other secrets. For more information, see
Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment. We also recommend you to
update your password every three months.

In this section, you prepare the BACPAC file so the file is accessible securely when you deploy the Resource
Manager template. There are five procedures in this section:

Download the BACPAC file.
Create an Azure Storage account.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-secure-artifacts.md
https://docs.microsoft.com/en-us/azure/storage/common/storage-dotnet-shared-access-signature-part-1
https://azure.microsoft.com/free/
https://code.visualstudio.com/

Download the BACPAC fileDownload the BACPAC file

Create a storage accountCreate a storage account

Create a Blob containerCreate a Blob container

Create a Storage account Blob container.
Upload the BACPAC file to the container.
Retrieve the SAS token of the BACPAC file.

To automate these steps using a PowerShell script, see the script from Upload the linked template.

Download the BACPAC file, and save the file to your local computer with the same name,
SQLDatabaseExtension.bacpac.

1. Select the following image to open a Resource Manager template in the Azure portal.

2. Enter the following properties:

Subscription: Select your Azure subscription.
Resource Group: Select Create new and give it a name. A resource group is a container for Azure
resources for the management purpose. In this tutorial, you can use the same resource group for the
storage account and the Azure SQL Database. Make a note of this resource group name, you need it
when you create the Azure SQL Database later in the tutorials.
Location: Select a region. For example, Central US.
Storage Account Type: use the default value, which is Standard_LRS.
Location: Use the default value, which is [resourceGroup().location]. That means you use the
resource group location for the storage account.
I agree to the terms and conditions started above: (selected)

3. Select Purchase.

4. Select the notification icon (the bell icon) on the upper right corner of the portal to see the deployment
status.

5. After the storage account is deployed successfully, select Go to resource group from the notification pane
to open the resource group.

A Blob container is needed before you can upload any files.

1. Select the storage account to open it. You shall see only one storage account listed in the resource group.

https://armtutorials.blob.core.windows.net/sqlextensionbacpac/SQLDatabaseExtension.bacpac
https://portal.azure.com/#create/Microsoft.Template/uri/https%3a%2f%2fraw.githubusercontent.com%2fAzure%2fazure-quickstart-templates%2fmaster%2f101-storage-account-create%2fazuredeploy.json

Upload the BACPAC file to the containerUpload the BACPAC file to the container

Generate a SAS tokenGenerate a SAS token

Your storage account name is different from the one shown in the following screenshot.

2. Select the Blobs tile.

3. Select + Container from the top to create a new container.

4. Enter the following values:

Name: enter sqlbacpac.
Public access level: use the default value, Private (no anonymous access).

5. Select OK.

6. Select sqlbacpac to open the newly created container.

1. Select Upload.

2. Enter the following values:

Files: Following the instructions to select the BACPAC file you downloaded earlier. The default name is
SQLDatabaseExtension.bacpac.
Authentication type: Select SAS. SAS is the default value.

3. Select Upload. Once the file is uploaded successfully, the file name shall be listed in the container.

1. Right-click SQLDatabaseExtension.bacpac from the container, and then select Generate SAS.

2. Enter the following values:

Permission: Use the default, Read.
Start and expiry date/time: The default value gives you eight hours to use the SAS token. If you need
more time to complete this tutorial, update Expiry.
Allowed IP addresses: Leave this field blank.
Allowed protocols: use the default value: HTTPS.
Signing key: use the default value: Key 1.

3. Select Generate blob SAS token and URL.

Open an existing template

Edit the template

4. Make a copy of Blob SAS URL. In the middle of the URL is the file name
SQLDatabaseExtension.bacpac. The file name divides the URL into three parts:

Artifact location: https://xxxxxxxxxxxxxx.blob.core.windows.net/sqlbacpac/. Make sure the location
ends with a "/".

BACPAC file name: SQLDatabaseExtension.bacpac.

Artifact location SAS token: Make sure the token precedes with a "?."

You need these three values in Deploy the template.

In this session, you modify the template you created in Tutorial: Import SQL BACPAC files with Azure Resource
Manager templates to call the BACPAC file with a SAS token. The template developed in the SQL extension
tutorial is shared at https://armtutorials.blob.core.windows.net/sqlextensionbacpac/azuredeploy.json.

https://armtutorials.blob.core.windows.net/sqlextensionbacpac/azuredeploy.json

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

3. Select Open to open the file.

There are five resources defined in the template:

Microsoft.Sql/servers . See the template reference.

Microsoft.SQL/servers/securityAlertPolicies . See the template reference.

Microsoft.SQL/servers/filewallRules . See the template reference.

Microsoft.SQL/servers/databases . See the template reference.

Microsoft.SQL/server/databases/extensions . See the template reference.

It is helpful to get some basic understanding of the template before customizing it.

4. Select File>Save As to save a copy of the file to your local computer with the name azuredeploy.json.

Add the following additional parameters:

https://xxxxxxxxxxxxxx.blob.core.windows.net/sqlbacpac/
https://armtutorials.blob.core.windows.net/sqlextensionbacpac/azuredeploy.json
https://docs.microsoft.com/azure/templates/microsoft.sql/2015-05-01-preview/servers
https://docs.microsoft.com/azure/templates/microsoft.sql/2014-04-01/servers/databases/securityalertpolicies
https://docs.microsoft.com/azure/templates/microsoft.sql/2015-05-01-preview/servers/firewallrules
https://docs.microsoft.com/azure/templates/microsoft.sql/servers/databases
https://docs.microsoft.com/azure/templates/microsoft.sql/2014-04-01/servers/databases/extensions

"_artifactsLocation": {
 "type": "string",
 "metadata": {
 "description": "The base URI where artifacts required by this template are located."
 }
},
"_artifactsLocationSasToken": {
 "type": "securestring",
 "metadata": {
 "description": "The sasToken required to access _artifactsLocation."
 },
 "defaultValue": ""
},
"bacpacFileName": {
 "type": "string",
 "defaultValue": "SQLDatabaseExtension.bacpac",
 "metadata": {
 "description": "The bacpac for configure the database and tables."
 }
}

"storageKey": "[parameters('_artifactsLocationSasToken')]",
"storageUri": "[uri(parameters('_artifactsLocation'), parameters('bacpacFileName'))]",

Deploy the template

Update the value of the following two elements:

NOTENOTE

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$adminUsername = Read-Host -Prompt "Enter the virtual machine admin username"
$adminPassword = Read-Host -Prompt "Enter the admin password" -AsSecureString
$artifactsLocation = Read-Host -Prompt "Enter the artifacts location"
$artifactsLocationSasToken = Read-Host -Prompt "Enter the artifacts location SAS token" -AsSecureString
$bacpacFileName = Read-Host -Prompt "Enter the BACPAC file name"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -adminUser $adminUsername `
 -adminPassword $adminPassword `
 -_artifactsLocation $artifactsLocation `
 -_artifactsLocationSasToken $artifactsLocationSasToken `
 -bacpacFileName $bacpacFileName `
 -TemplateFile "$HOME/azuredeploy.json"

Verify the deployment

Clean up resources

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

Refer to the Deploy the template section for the deployment procedure. Use the following PowerShell deployment
script instead:

Use a generated password. See Prerequisites. For the values of _artifactsLocation, _artifactsLocationSasToken and
bacpacFileName, see Generate a SAS token.

In the portal, select the SQL database from the newly deployed resource group. Select Query editor (preview),
and then enter the administrator credentials. You shall see two tables imported into the database:

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Next steps

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

In this tutorial, you deployed a SQL Server, a SQL Database, and imported a BACPAC file using SAS token. To
learn how to create an Azure Pipeline to continuously develop and deploy Resource Manager templates, see

Continuous integration with Azure Pipeline

Tutorial: Continuous integration of Azure Resource
Manager templates with Azure Pipelines
6/12/2019 • 8 minutes to read • Edit Online

NOTENOTE

Prerequisites

Prepare a GitHub repository

Create a GitHub repositoryCreate a GitHub repository

Learn how to use Azure Pipelines to continuously build and deploy Azure Resource Manager template projects.

Azure DevOps provides developer services to support teams to plan work, collaborate on code development, and
build and deploy applications. Developers can work in the cloud using Azure DevOps Services. Azure DevOps
provides an integrated set of features that you can access through your web browser or IDE client. Azure Pipeline
is one of these features. Azure Pipelines is a fully featured continuous integration (CI) and continuous delivery
(CD) service. It works with your preferred Git provider and can deploy to most major cloud services. Then you can
automate the build, testing, and deployment of your code to Microsoft Azure, Google Cloud Platform, or Amazon
Web Services.

This tutorial is designed for Azure Resource Manager template developers who are new Azure DevOps Services
and Azure Pipelines. If you are already familiar with GitHub and DevOps, you can skip to Create a pipeline.

Pick a project name. When you go through the tutorial, replace any of the AzureRmPipeline with your project name.

This tutorial covers the following tasks:

Prepare a GitHub repository
Create an Azure DevOps project
Create an Azure pipeline
Verify the pipeline deployment
Update the template and redeploy
Clean up resources

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

A GitHub account, where you use it to create a repository for your templates. If you don’t have one, you can
create one for free. For more information about using GitHub repositories, see Build GitHub repositories.
Install Git. This tutorial instruction uses Git Bash or Git Shell. For instructions, see Install Git.
An Azure DevOps organization. If you don't have one, you can create one for free. See Create an
organization or project collection.
Visual Studio Code with the Resource Manager Tools extension. See Install the extension .

GitHub is used to store your project source code including Resource Manager templates. For other supported
repositories, see repositories supported by Azure DevOps.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-use-azure-pipelines.md
https://azure.microsoft.com/free/
https://github.com
https://docs.microsoft.com/azure/devops/pipelines/repos/github
https://www.atlassian.com/git/tutorials/install-git
https://docs.microsoft.com/azure/devops/organizations/accounts/create-organization?view=azure-devops
https://code.visualstudio.com/
https://docs.microsoft.com/azure/devops/pipelines/repos/?view=azure-devops#supported-repository-types

Clone the remote repositoryClone the remote repository

If you don’t have a GitHub account, see Prerequisites.

https://github.com/[YourAccountName]/[YourRepositoryName]

1. Sign in to GitHub.

2. Select your account image on the upper right corner, and then select Your repositories.

3. Select New, a green button.

4. In Repository name, enter a repository name. For example, AzureRmPipeline-repo. Remember to
replace any of AzureRmPipeline with your project name. You can select either Public or private for going
through this tutorial. And then select Create repository.

5. Write down the URL. The repository URL is the following format:

This repository is referred to as a remote repository. Each of the developers of the same project can clone his/her
own local repository, and merge the changes to the remote repository.

git clone https://github.com/[YourAccountName]/[YourGitHubRepositoryName]
cd [YourGitHubRepositoryName]
mkdir CreateAzureStorage
cd CreateAzureStorage
pwd

1. Open Git Shell or Git Bash. See Prerequisites.

2. Verify your current folder is github.

3. Run the following command:

Replace [YourAccountName] with your GitHub account name, and replace
[YourGitHubRepositoryName] with your repository name you created in the previous procedure.

The following screenshots shows an example.

https://github.com

Download a Quickstart templateDownload a Quickstart template

Push the template to the remote repositoryPush the template to the remote repository

The CreateAzureStorage folder is the folder where the template is stored. The pwd command shows the folder
path. The path is where you save the template to in the following procedure.

Instead of creating a template, you can download a Quickstart template. This template creates an Azure Storage
account.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-
create/azuredeploy.json

1. Open Visual Studio code. See Prerequisites.

2. Open the template with the following URL:

3. Save the file as azuredeploy.json to the CreateAzureStorage folder. Both the folder name and the file
name are used as they are in the pipeline. If you change these names, you must update the names used in
the pipeline.

The azuredeploy.json has been added to the local repository. Next, you upload the template to the remote
repository.

git add .
git commit -m “Add a new create storage account template.”
git push origin master

1. Open Git Shell or Git Bash, if it is not opened.

2. Change directory to the CreateAzureStorage folder in your local repository.

3. Verify the azuredeploy.json file is in the folder.

4. Run the following command:

You might get a warning about LF. You can ignore the warning. master is the master branch. You typically
create a branch for each update. To simplify the tutorial, you use the master branch directly.

5. Browse to your GitHub repository from a browser. The URL is
https://github.com/[YourAccountName]/[YourGitHubRepository]. You shall see the
CreateAzureStorage folder and Azuredeploy.json inside the folder.

So far, you have created a GitHub repository, and uploaded a template to the repository.

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-create/azuredeploy.json
https://github.com/%5BYourAccountName%5D/%5BYourGitHubRepository%5D

 Create a DevOps project
A DevOps organization is needed before you can proceed to the next procedure. If you don’t have one, see
Prerequisites.

1. Sign in to Azure DevOps.

2. Select a DevOps organization from the left.

3. Select Create project. If you don't have any projects, the create project page is opened automatically.

4. Enter the following values:

Project name: enter a project name. You can use the project name you picked at the very beginning of
the tutorial.
Version control: Select Git. You might need to expand Advanced to see Version control.

Use the default value for the other properties.

5. Select Create project.

Create a service connection that is used to deploy projects to Azure.

1. Select Project settings from the bottom of the left menu.

2. Select Service connections under Pipelines.

3. Select New Service connection, and then select AzureResourceManager.

4. Enter the following values:

Connection name: enter a connection name. For example, AzureRmPipeline-conn. Write down this
name, you need the name when you create your pipeline.

https://dev.azure.com

 Create a pipeline

Scope level: select Subscription.
Subscription: select your subscription.
Resource Group: Leave it blank.
Allow all pipelines to use this connection. (selected)

5. Select OK.

Until now, you have completed the following tasks. If you skip the previous sections because you are familiar with
GitHub and DevOps, you must complete the tasks before you continue.

Create a GitHub repository, and save this template to the CreateAzureStorage folder in the repository.
Create a DevOps project, and create an Azure Resource Manager service connection.

To create a pipeline with a step to deploy a template:

1. Select Pipelines from the left menu.

2. Select New pipeline.

3. From the Connect tab, select GitHub. If asked, enter your GitHub credentials, and then follow the
instructions. If you see the following screen, select Only select repositories, and verify your repository is
in the list before you select Approve & Install.

4. From the Select tab, select your repository. The default name is
[YourAccountName]/[YourGitHubRepositoryName].

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-create/azuredeploy.json

steps:
- task: AzureResourceGroupDeployment@2
 inputs:
 azureSubscription: '[YourServiceConnectionName]'
 action: 'Create Or Update Resource Group'
 resourceGroupName: '[EnterANewResourceGroupName]'
 location: 'Central US'
 templateLocation: 'Linked artifact'
 csmFile: 'CreateAzureStorage/azuredeploy.json'
 deploymentMode: 'Incremental'

5. From the Configure tab, select Starter pipeline. It shows the azure-pipelines.yml pipeline file with two
script steps.

6. Replace the steps section with the following YAML:

It shall look like:

Make the following changes:

azureSubscription: update the value with the service connection created in the previous procedure.
action: the Create Or Update Resource Group action does 2 actions - 1. create a resource group if a
new resource group name is provided; 2. deploy the template specified.
resourceGroupName: specify a new resource group name. For example, AzureRmPipeline-rg.
location: specify the location for the resource group.
templateLocation: when Linked artifact is specified, the task looks for the template file directly from
the connected repository.
csmFile is the path to the template file. You don't need to specify a template parameters file because all
of the parameters defined in the template have default values.

For more information about the task, see Azure Resource Group Deployment task

7. Select Save and run.

8. Select Save and run again. A copy of the YAML file is saved into the connected repository. You can see the

https://docs.microsoft.com/azure/devops/pipelines/tasks/deploy/azure-resource-group-deployment

 Verify the deployment

Update and redeploy

YAML file by browse to your repository.

9. Verify that the pipeline is executed successfully.

1. Sign in to the Azure portal.

2. Open the resource group. The name is what you specified in the pipeline YAML file. You shall see one
storage account created. The storage account name starts with store.

3. Select the storage account name to open it.

4. Select Properties. Notice the SKU is Standard_LRS.

https://portal.azure.com

Clean up resources

Next steps

When you update the template and push the changes to the remote repository, the pipeline automatically updates
the resources, the storage account in this case.

git pull origin master
git add .
git commit -m “Add a new create storage account template.”
git push origin master

1. Open azuredeploy.json from your local repository in Visual Studio Code.

2. Update the defaultValue of storageAccountType to Standard_GRS. See the following screenshot:

3. Save the changes.

4. Push the changes to the remote repository by running the following commands from Git Bash/Shell.

The first command syncs the local repository with the remote repository. Remember the pipeline YAML file
was added to the remote repository.

With the master branch of the remote repository updated, the pipeline is fired again.

To verify the changes, you can check the SKU of the storage account. See Verify the deployment.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name.
4. Select Delete resource group from the top menu.

You might also want to delete the GitHub repository and the Azure DevOps project.

In this tutorial, you create an Azure DevOps pipeline to deploy an Azure Resource Manager template. To learn how
to deploy Azure resources across multiple regions, and how to use safe deployment practices, see

Use Azure Deployment Manager

Tutorial: Use Azure Deployment Manager with
Resource Manager templates (Public preview)
6/18/2019 • 14 minutes to read • Edit Online

IMPORTANTIMPORTANT

NOTENOTE

Prerequisites

Learn how to use Azure Deployment Manager to deploy your applications across multiple regions. If you prefer a
faster approach, Azure Deployment Manager quickstart creates the required configurations in your subscription
and customizes the artifacts to deploy an application across multiple regions. The quickstart performs the same
tasks as it does in this tutorial.

To use Deployment Manager, you need to create two templates:

A topology template: describes the Azure resources the make up your applications and where to deploy
them.
A rollout template: describes the steps to take when deploying your applications.

If your subscription is marked for Canary to test out new Azure features, you can only use Azure Deployment Manager to
deploy to the Canary regions.

This tutorial covers the following tasks:

Understand the scenario
Download the tutorial files
Prepare the artifacts
Create the user-defined managed identity
Create the service topology template
Create the rollout template
Deploy the templates
Verify the deployment
Deploy the newer version
Clean up resources

Additional resources:

The Azure Deployment Manager REST API reference.
Tutorial: Use health check in Azure Deployment Manager.

If you don't have an Azure subscription, create a free account before you begin.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/deployment-manager-tutorial.md
https://github.com/Azure-Samples/adm-quickstart
https://docs.microsoft.com/rest/api/deploymentmanager/
https://azure.microsoft.com/free/
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Understand the scenario

Download the tutorial files

To complete this article, you need:

Install-Module -Name Az.DeploymentManager

Some experience with developing Azure Resource Manager templates.

Azure PowerShell. For more information, see Get started with Azure PowerShell.

Deployment Manager cmdlets. To install these prerelease cmdlets, you need the latest version of
PowerShellGet. To get the latest version, see Installing PowerShellGet. After installing PowerShellGet, close
your PowerShell window. Open a new elevated PowerShell window, and use the following command:

Microsoft Azure Storage Explorer. Azure Storage Explorer is not required, but it makes things easier.

The service topology template describes the Azure resources the make up your service and where to deploy them.
The service topology definition has the following hierarchy:

Service topology
Services

Service units

The following diagram illustrates the service topology used in this tutorial:

There are two services allocated in the west U.S. and the east U.S. locations. Each service has two service units - a
web application frontend and a storage account for the backend. The service unit definitions contain links to the
template and parameter files for creating the web applications and the storage accounts.

1. Download the templates and the artifacts used by this tutorial.
2. Unzip the files to your location computer.

Under the root folder, there are two folders:

ADMTemplates: contains the Deployment Manager templates, that include:
CreateADMServiceTopology.json
CreateADMServiceTopology.Parameters.json

https://docs.microsoft.com/powershell/azure/get-started-azureps
https://docs.microsoft.com/powershell/gallery/installing-psget
https://azure.microsoft.com/features/storage-explorer/
https://armtutorials.blob.core.windows.net/admtutorial/ADMTutorial.zip

 Prepare the artifacts

ArtifactStore: contains both the template artifacts and the binary artifacts. See Prepare the artifacts.

CreateADMRollout.json
CreateADMRollout.Parameters.json

Note there are two sets of templates. One set is the Deployment Manager templates that are used to deploy the
service topology and the rollout; the other set is called from the service units to create web services and storage
accounts.

The ArtifactStore folder from the download contains two folders:

The templates folder : contains the template artifacts. 1.0.0.0 and 1.0.0.1 represent the two versions of the
binary artifacts. Within each version, there is a folder for each service (Service East U.S. and Service West U.S.).
Each service has a pair of template and parameter files for creating a storage account, and another pair for
creating a web application. The web application template calls a compressed package, which contains the web
application files. The compressed file is a binary artifact stored in the binaries folder.
The binaries folder : contains the binary artifacts. 1.0.0.0 and 1.0.0.1 represent the two versions of the binary
artifacts. Within each version, there is one zip file for creating the web application in the west U.S. location, and
the other zip file to create the web application in the east U.S. location.

The two versions (1.0.0.0 and 1.0.0.1) are for the revision deployment. Even though both the template artifacts and
the binary artifacts have two versions, only the binary artifacts are different between the two versions. In practice,
binary artifacts are updated more frequently comparing to template artifacts.

1. Open \ArtifactStore\templates\1.0.0.0\ServiceWUS\CreateStorageAccount.json in a text editor. It is
a basic template for creating a storage account.

2. Open \ArtifactStore\templates\1.0.0.0\ServiceWUS\CreateWebApplication.json.

<html>
 <head>
 <title>Azure Deployment Manager tutorial</title>
 </head>
 <body>
 <p>Hello world from west U.S.!</p>
 <p>Version 1.0.0.0</p>
 </body>
</html>

The template calls a deploy package, which contains the files of the web application. In this tutorial, the
compressed package only contains an index.html file.

3. Open \ArtifactStore\templates\1.0.0.0\ServiceWUS\CreateWebApplicationParameters.json.

The value of deployPackageUri is the path to the deployment package. The parameter contains a
$containerRoot variable. The value of $containerRoot is provided in the rollout template by concatenating
the artifact source SAS location, artifact root, and deployPackageUri.

4. Open \ArtifactStore\binaries\1.0.0.0\helloWorldWebAppWUS.zip\index.html.

The html shows the location and the version information. The binary file in the 1.0.0.1 folder shows
"Version 1.0.0.1". After you deploy the service, you can browse to these pages.

5. Check out other artifact files. It helps you to understand the scenario better.

 Create the user-assigned managed identity

IMPORTANTIMPORTANT

Template artifacts are used by the service topology template, and binary artifacts are used by the rollout template.
Both the topology template and the rollout template define an artifact source Azure resource, which is a resource
used to point Resource Manager to the template and binary artifacts that are used in the deployment. To simplify
the tutorial, one storage account is used to store both the template artifacts and the binary artifacts. Both artifact
sources point to the same storage account.

1. Create an Azure storage account. For the instructions, see Quickstart: Upload, download, and list blobs
using the Azure portal.

2. Create a blob container in the storage account.

3. Copy the two folders (binaries and templates) and the content of the two folders to the blob container.
Microsoft Azure Storage Explorer supports the drag and drop feature.

4. Get the SAS location of the container using the following instructions:

a. From Azure Storage Explorer, navigate to the blob container.
b. Right-click the blob container from the left pane, and then select Get Shared Access Signature.
c. Configure Start time and Expiry time.
d. Select Create.
e. Make a copy of the URL. This URL is needed to populate a field in the two parameter files, topology

parameters file and rollout parameters file.

Later in the tutorial, you deploy a rollout. A user-assigned managed identity is needed to perform the deployment
actions (for example, deploy the web applications and the storage account). This identity must be granted access to
the Azure subscription you're deploying the service to, and have sufficient permission to complete the artifact
deployment.

You need to create a user-assigned managed identity and configure the access control for your subscription.

The user-assigned managed identity must be in the same location as the rollout. Currently, the Deployment Manager
resources, including rollout, can only be created in either Central US or East US 2. However, this is only true for the
Deployment Manager resources (such as the service topology, services, service units, rollout, and steps). Your target
resources can be deployed to any supported Azure region. In this tutorial, for example, the Deployment Manager resources
are deployed to Central US, but the services are deployed to East US and West US. This restriction will be lifted in the future.

1. Sign in to the Azure portal.

2. Create a user-assigned managed identity.

3. From the portal, select Subscriptions from the left menu, and then select your subscription.

4. Select Access control (IAM), and then select Add role assignment.

5. Enter or select the following values:

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-portal
https://go.microsoft.com/fwlink/?LinkId=708343&clcid=0x409
https://portal.azure.com
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/how-to-manage-ua-identity-portal

 Create the service topology template

The parametersThe parameters

Role: give sufficient permission to complete the artifact deployment (the web applications and the
storage accounts). Select Contributor in this tutorial. In practice, you want to restrict the permissions to
the minimum.
Assigned access to: select User Assigned Managed Identity.
Select the user-assigned managed identity you created earlier in the tutorial.

6. Select Save.

Open \ADMTemplates\CreateADMServiceTopology.json.

The template contains the following parameters:

namePrefix: This prefix is used to create the names for the Deployment Manager resources. For example,
using the "jdoe" prefix, the service topology name is jdoeServiceTopology. The resource names are defined in
the variables section of this template.
azureResourcelocation: To simplify the tutorial, all resources share this location unless it is specified
otherwise. Currently, Azure Deployment Manager resources can only be created in either Central US or East
US 2.
artifactSourceSASLocation: The SAS URI to the Blob container where service unit template and parameters
files are stored for deployment. See Prepare the artifacts.
templateArtifactRoot: The offset path from the Blob container where the templates and parameters are
stored. The default value is templates/1.0.0.0. Don't change this value unless you want to change the folder
structure explained in Prepare the artifacts. Relative paths are used in this tutorial. The full path is constructed

The variablesThe variables

The resourcesThe resources

by concatenating artifactSourceSASLocation, templateArtifactRoot, and
templateArtifactSourceRelativePath (or parametersArtifactSourceRelativePath).
targetSubscriptionID : The subscription ID to which the Deployment Manager resources are going to be
deployed and billed. Use your subscription ID in this tutorial.

The variables section defines the names of the resources, the Azure locations for the two services: Service WUS
and Service EUS, and the artifact paths:

Compare the artifact paths with the folder structure that you uploaded to the storage account. Notice the artifact
paths are relative paths. The full path is constructed by concatenating artifactSourceSASLocation,
templateArtifactRoot, and templateArtifactSourceRelativePath (or
parametersArtifactSourceRelativePath).

On the root level, there are two resources defined: an artifact source, and a service topology.

The artifact source definition is:

 Topology parameters fileTopology parameters file

The following screenshot only shows some parts of the service topology, services, and service units definitions:

artifactSourceId is used to associate the artifact source resource to the service topology resource.
dependsOn: All the service topology resources depend on the artifact source resource.
artifacts point to the template artifacts. Relative paths are used here. The full path is constructed by
concatenating artifactSourceSASLocation (defined in the artifact source), artifactRoot (defined in the artifact
source), and templateArtifactSourceRelativePath (or parametersArtifactSourceRelativePath).

You create a parameters file used with the topology template.

1. Open \ADMTemplates\CreateADMServiceTopology.Parameters in Visual Studio Code or any text
editor.

2. Fill the parameter values:

IMPORTANTIMPORTANT

Create the rollout template

The parametersThe parameters

The variablesThe variables

namePrefix: Enter a string with 4-5 characters. This prefix is used to create unique azure resource
names.
azureResourceLocation: If you are not familiar with Azure locations, use centralus in this tutorial.
artifactSourceSASLocation: Enter the SAS URI to the root directory (the Blob container) where
service unit template and parameters files are stored for deployment. See Prepare the artifacts.
templateArtifactRoot: Unless you change the folder structure of the artifacts, use templates/1.0.0.0
in this tutorial.
targetScriptionID : Enter your Azure subscription ID.

The topology template and the rollout template share some common parameters. These parameters must have the same
values. These parameters are: namePrefix, azureResourceLocation, and artifactSourceSASLocation (both artifact
sources share the same storage account in this tutorial).

Open \ADMTemplates\CreateADMRollout.json.

The template contains the following parameters:

namePrefix: This prefix is used to create the names for the Deployment Manager resources. For example,
using the "jdoe" prefix, the rollout name is jdoeRollout. The names are defined in the variables section of the
template.
azureResourcelocation: To simplify the tutorial, all Deployment Manager resources share this location unless
it is specified otherwise. Currently, Azure Deployment Manager resources can only be created in either
Central US or East US 2.
artifactSourceSASLocation: The SAS URI to the root directory (the Blob container) where service unit
template and parameters files are stored for deployment. See Prepare the artifacts.
binaryArtifactRoot: The default value is binaries/1.0.0.0. Don't change this value unless you want to change
the folder structure explained in Prepare the artifacts. Relative paths are used in this tutorial. The full path is
constructed by concatenating artifactSourceSASLocation, binaryArtifactRoot, and the deployPackageUri
specified in the CreateWebApplicationParameters.json. See Prepare the artifacts.
managedIdentityID : The user-assigned managed identity that performs the deployment actions. See Create
the user-assigned managed identity.

The variables section defines the names of the resources. Make sure the service topology name, the service
names, and the service unit names match the names defined in the topology template.

The resourcesThe resources
On the root level, there are three resources defined: an artifact source, a step, and a rollout.

The artifact source definition is identical to the one defined in the topology template. See Create the service
topology template for more information.

The following screenshot shows the wait step definition:

The duration is using the ISO 8601 standard. PT1M (capital letters are required) is an example of a 1-minute wait.

The following screenshot only shows some parts of the rollout definition:

https://en.wikipedia.org/wiki/ISO_8601#Durations

 Rollout parameters fileRollout parameters file

dependsOn: The rollout resource depends on the artifact source resource, and any of the steps defined.
artifactSourceId: used to associate the artifact source resource to the rollout resource.
targetServiceTopologyId: used to associate the service topology resource to the rollout resource.
deploymentTargetId: It is the service unit resource ID of the service topology resource.
preDeploymentSteps and postDeploymentSteps: contains the rollout steps. In the template, a wait step is
called.
dependsOnStepGroups: configure the dependencies between the step groups.

You create a parameters file used with the rollout template.

1. Open \ADMTemplates\CreateADMRollout.Parameters in Visual Studio Code or any text editor.

2. Fill the parameter values:

namePrefix: Enter a string with 4-5 characters. This prefix is used to create unique azure resource
names.

azureResourceLocation: Currently, Azure Deployment Manager resources can only be created in
either Central US or East US 2.

artifactSourceSASLocation: Enter the SAS URI to the root directory (the Blob container) where
service unit template and parameters files are stored for deployment. See Prepare the artifacts.

binaryArtifactRoot: Unless you change the folder structure of the artifacts, use binaries/1.0.0.0 in
this tutorial.

managedIdentityID : Enter the user-assigned managed identity. See Create the user-assigned
managed identity. The syntax is:

IMPORTANTIMPORTANT

Deploy the templates

"/subscriptions/<SubscriptionID>/resourcegroups/<ResourceGroupName>/providers/Microsoft.ManagedI
dentity/userassignedidentities/<ManagedIdentityName>"

The topology template and the rollout template share some common parameters. These parameters must have the same
values. These parameters are: namePrefix, azureResourceLocation, and artifactSourceSASLocation (both artifact
sources share the same storage account in this tutorial).

Azure PowerShell can be used to deploy the templates.

$resourceGroupName = "<Enter a Resource Group Name>"
$location = "Central US"
$filePath = "<Enter the File Path to the Downloaded Tutorial Files>"

Create a resource group
New-AzResourceGroup -Name $resourceGroupName -Location "$location"

Create the service topology
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateFile "$filePath\ADMTemplates\CreateADMServiceTopology.json" `
 -TemplateParameterFile "$filePath\ADMTemplates\CreateADMServiceTopology.Parameters.json"

NOTENOTE

Create the rollout
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateFile "$filePath\ADMTemplates\CreateADMRollout.json" `
 -TemplateParameterFile "$filePath\ADMTemplates\CreateADMRollout.Parameters.json"

1. Run the script to deploy the service topology.

New-AzResourceGroupDeployment is an asynchronous call. The success message only means the deployment has
successfully begun. To verify the deployment, see step 2 and step 4 of this procedure.

2. Verify the service topology and the underlined resources have been created successfully using the Azure
portal:

Show hidden types must be selected to see the resources.

 3. Deploy the rollout template:

Get the rollout status
$rolloutname = "<Enter the Rollout Name>" # "adm0925Rollout" is the rollout name used in this tutorial
Get-AzDeploymentManagerRollout `
 -ResourceGroupName $resourceGroupName `
 -Name $rolloutName `
 -Verbose

4. Check the rollout progress using the following PowerShell script:

The Deployment Manager PowerShell cmdlets must be installed before you can run this cmdlet. See
Prerequisites. The -Verbose switch can be used to see the whole output.

The following sample shows the running status:

VERBOSE:

Status: Succeeded
ArtifactSourceId:
/subscriptions/<AzureSubscriptionID>/resourceGroups/adm0925rg/providers/Microsoft.DeploymentManager/art
ifactSources/adm0925ArtifactSourceRollout
BuildVersion: 1.0.0.0

Operation Info:
 Retry Attempt: 0
 Skip Succeeded: False
 Start Time: 03/05/2019 15:26:13
 End Time: 03/05/2019 15:31:26
 Total Duration: 00:05:12

Service: adm0925ServiceEUS
 TargetLocation: EastUS
 TargetSubscriptionId: <AzureSubscriptionID>

 ServiceUnit: adm0925ServiceEUSStorage
 TargetResourceGroup: adm0925ServiceEUSrg

 Step: Deploy
 Status: Succeeded
 StepGroup: stepGroup3
 Operation Info:
 DeploymentName: 2F535084871E43E7A7A4CE7B45BE06510adm0925ServiceEUSStorage
 CorrelationId: 0b6f030d-7348-48ae-a578-bcd6bcafe78d
 Start Time: 03/05/2019 15:26:32
 End Time: 03/05/2019 15:27:41
 Total Duration: 00:01:08
 Resource Operations:

 Resource Operation 1:
 Name: txq6iwnyq5xle
 Type: Microsoft.Storage/storageAccounts
 ProvisioningState: Succeeded
 StatusCode: OK
 OperationId: 64A6E6EFEF1F7755

...

ResourceGroupName : adm0925rg
BuildVersion : 1.0.0.0
ArtifactSourceId :
/subscriptions/<SubscriptionID>/resourceGroups/adm0925rg/providers/Microsoft.DeploymentManager/artifact
Sources/adm0925ArtifactSourceRollout
TargetServiceTopologyId :
/subscriptions/<SubscriptionID>/resourceGroups/adm0925rg/providers/Microsoft.DeploymentManager/serviceT
opologies/adm0925ServiceTopology
Status : Running
TotalRetryAttempts : 0
OperationInfo : Microsoft.Azure.Commands.DeploymentManager.Models.PSRolloutOperationInfo
Services : {adm0925ServiceEUS, adm0925ServiceWUS}
Name : adm0925Rollout
Type : Microsoft.DeploymentManager/rollouts
Location : centralus
Id :
/subscriptions/<SubscriptionID>/resourcegroups/adm0925rg/providers/Microsoft.DeploymentManager/rollouts
/adm0925Rollout
Tags :

After the rollout is deployed successfully, you shall see two more resource groups created, one for each
service.

Verify the deployment

Deploy the revision

Clean up resources

Next steps

1. Open the Azure portal.
2. Browse to the newly create web applications under the new resource groups created by the rollout

deployment.
3. Open the web application in a web browser. Verify the location and the version on the index.html file.

When you have a new version (1.0.0.1) for the web application. You can use the following procedure to redeploy
the web application.

1. Open CreateADMRollout.Parameters.json.
2. Update binaryArtifactRoot to binaries/1.0.0.1.
3. Redeploy the rollout as instructed in Deploy the templates.
4. Verify the deployment as instructed in Verify the deployment. The web page shall show the 1.0.0.1 version.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.

2. Use the Filter by name field to narrow down the resource groups created in this tutorial. There shall be 3-
4:

<namePrefix>rg: contains the Deployment Manager resources.
<namePrefix>ServiceWUSrg: contains the resources defined by ServiceWUS.
<namePrefix>ServiceEUSrg: contains the resources defined by ServiceEUS.
The resource group for the user-defined managed identity.

3. Select the resource group name.

4. Select Delete resource group from the top menu.

5. Repeat the last two steps to delete other resource groups created by this tutorial.

In this tutorial, you learned how to use Azure Deployment Manager. To integrate health monitoring in Azure
Deployment Manager, see Tutorial: Use health check in Azure Deployment Manager.

https://portal.azure.com

Tutorial: Use health check in Azure Deployment
Manager (Public preview)
7/28/2019 • 9 minutes to read • Edit Online

IMPORTANTIMPORTANT

Prerequisites

Create a health check service simulator

Learn how to integrate health check in Azure Deployment Manager. This tutorial is based of the Use Azure
Deployment Manager with Resource Manager templates tutorial. You must complete that tutorial before you
proceed with this one.

In the rollout template used in Use Azure Deployment Manager with Resource Manager templates, you used a
wait step. In this tutorial, you replace the wait step with a health check step.

If your subscription is marked for Canary to test out new Azure features, you can only use Azure Deployment Manager to
deploy to the Canary regions.

This tutorial covers the following tasks:

Create a health check service simulator
Revise the rollout template
Deploy the topology
Deploy the rollout with unhealthy status
Verify the rollout deployment
Deploy the rollout with healthy status
Verify the rollout deployment
Clean up resources

Additional resources:

The Azure Deployment Manager REST API reference.
An Azure Deployment Manager sample.

If you don't have an Azure subscription, create a free account before you begin.

To complete this article, you need:

Complete Use Azure Deployment Manager with Resource Manager templates.
Download the templates and the artifacts that is used by this tutorial.

In production, you typically use one or more monitoring providers. In order to make health integration as easy as
possible, Microsoft has been working with some of the top service health monitoring companies to provide you
with a simple copy/paste solution to integrate health checks with your deployments. For a list of these companies,
see Health monitoring providers. For the purpose of this tutorial, you create an Azure Function to simulate a
health monitoring service. This function takes a status code, and returns the same code. Your Azure Deployment
Manager template uses the status code to determine how to proceed with the deployment.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/deployment-manager-tutorial-health-check.md
https://docs.microsoft.com/rest/api/deploymentmanager/
https://github.com/Azure-Samples/adm-quickstart
https://azure.microsoft.com/free/
https://armtutorials.blob.core.windows.net/admtutorial/ADMTutorial.zip
https://docs.microsoft.com/azure/azure-functions/

IMPORTANTIMPORTANT

$projectName = Read-Host -Prompt "Enter a project name that is used to generate Azure resource names"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$resourceGroupName = "${projectName}rg"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment -ResourceGroupName $resourceGroupName -TemplateUri
"https://armtutorials.blob.core.windows.net/admtutorial/deploy_hc_azure_function.json" -projectName
$projectName

The following two files are used for deploying the Azure Function. You don't need to download these files to go
through the tutorial.

A Resource Manager template located at
https://armtutorials.blob.core.windows.net/admtutorial/deploy_hc_azure_function.json. You deploy this
template to create an Azure Function.
A zip file of the Azure Function source code,
https://armtutorials.blob.core.windows.net/admtutorial/ADMHCFunction0417.zip. This zip called is called by
the Resource Manager template.

To deploy the Azure function, select Try it to open the Azure Cloud shell, and then paste the following script into
the shell window. To paste the code, right-click the shell window and then select Paste.

projectName in the PowerShell script is used to generate names for the Azure services that are deployed in this tutorial.
Different Azure services have different requirements on the names. To ensure the deployment is successful, choose a name
with less than 12 characters with only lower case letters and numbers. Save a copy of the project name. You use the same
projectName through the tutorial.

To verify and test the Azure function:

1. Open the Azure portal.

2. Open the resource group. The default name is the project name with rg appended.

3. Select the app service from the resource group. The default name of the app service is the project name
with webapp appended.

4. Expand Functions, and then select HttpTrigger1.

https://armtutorials.blob.core.windows.net/admtutorial/deploy_hc_azure_function.json
https://armtutorials.blob.core.windows.net/admtutorial/ADMHCFunction0417.zip
https://portal.azure.com

Revise the rollout template

https://myhc0417webapp.azurewebsites.net/api/healthStatus/{healthStatus}?
code=hc4Y1wY4AqsskAkVw6WLAN1A4E6aB0h3MbQ3YJRF3XtXgHvooaG0aw==

https://myhc0417webapp.azurewebsites.net/api/healthStatus/unhealthy?
code=hc4Y1wY4AqsskAkVw6WLAN1A4E6aB0h3MbQ3YJRF3XtXgHvooaG0aw==
https://myhc0417webapp.azurewebsites.net/api/healthStatus/healthy?
code=hc4Y1wY4AqsskAkVw6WLAN1A4E6aB0h3MbQ3YJRF3XtXgHvooaG0aw==

Status: unhealthy

5. Select </> Get function URL.

6. Select Copy to copy the URL to the clipboard. The URL is similar to:

Replace {healthStatus} in the URL with a status code. In this tutorial, use unhealthy to test the unhealthy
scenario, and use either healthy or warning to test the healthy scenario. Create two URLs, one with the
unhealthy status, and the other with healthy status. For examples:

You need both URLs to completed this tutorial.

7. To test the health monitoring simulator, open the URLs that you created in the last step. The results for the
unhealthy status shall be similar to:

The purpose of this section is to show you how to include a health check step in the rollout template. You don't
have to create your own CreateADMRollout.json file to complete this tutorial. The revised rollout template is
shared in a storage account that is used in the subsequent sections.

1. Open CreateADMRollout.json. This JSON file is a part of the download. See Prerequisites.

2. Add two more parameters:

"healthCheckUrl": {
 "type": "string",
 "metadata": {
 "description": "Specifies the health check URL."
 }
},
"healthCheckAuthAPIKey": {
 "type": "string",
 "metadata": {
 "description": "Specifies the health check Azure Function function authorization key."
 }
}

{
 "type": "Microsoft.DeploymentManager/steps",
 "apiVersion": "2018-09-01-preview",
 "name": "healthCheckStep",
 "location": "[parameters('azureResourceLocation')]",
 "properties": {
 "stepType": "healthCheck",
 "attributes": {
 "waitDuration": "PT0M",
 "maxElasticDuration": "PT0M",
 "healthyStateDuration": "PT1M",
 "type": "REST",
 "properties": {
 "healthChecks": [
 {
 "name": "appHealth",
 "request": {
 "method": "GET",
 "uri": "[parameters('healthCheckUrl')]",
 "authentication": {
 "type": "ApiKey",
 "name": "code",
 "in": "Query",
 "value": "[parameters('healthCheckAuthAPIKey')]"
 }
 },
 "response": {
 "successStatusCodes": [
 "200"
],
 "regex": {
 "matches": [
 "Status: healthy",
 "Status: warning"
],
 "matchQuantifier": "Any"
 }
 }
 }
]
 }
 }
 }
},

3. Replace the wait step resource definition with a health check step resource definition:

Based on the definition, the rollout proceeds if the health status is either healthy or warning.

4. Update the dependsON of the rollout definition to include the newly defined health check step:

"dependsOn": [
 "[resourceId('Microsoft.DeploymentManager/artifactSources',
variables('rolloutArtifactSource').name)]",
 "[resourceId('Microsoft.DeploymentManager/steps/', 'healthCheckStep')]"
],

"stepGroups": [
 {
 "name": "stepGroup1",
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceWUS.name,
variables('serviceTopology').serviceWUS.serviceUnit2.name)]",
 "postDeploymentSteps": []
 },
 {
 "name": "stepGroup2",
 "dependsOnStepGroups": ["stepGroup1"],
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceWUS.name,
variables('serviceTopology').serviceWUS.serviceUnit1.name)]",
 "postDeploymentSteps": [
 {
 "stepId": "[resourceId('Microsoft.DeploymentManager/steps/', 'healthCheckStep')]"
 }
]
 },
 {
 "name": "stepGroup3",
 "dependsOnStepGroups": ["stepGroup2"],
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceEUS.name,
variables('serviceTopology').serviceEUS.serviceUnit2.name)]",
 "postDeploymentSteps": []
 },
 {
 "name": "stepGroup4",
 "dependsOnStepGroups": ["stepGroup3"],
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceEUS.name,
variables('serviceTopology').serviceEUS.serviceUnit1.name)]",
 "postDeploymentSteps": []
 }
]

5. Update stepGroups to include the health check step. The healthCheckStep is called in
postDeploymentSteps of stepGroup2. stepGroup3 and stepGroup4 are only deployed if the healthy
status is either healthy or warning.

If you compare the stepGroup3 section before and after it is revised, this section now depends on
stepGroup2. This is necessary when stepGroup3 and the subsequent step groups depend on the results
of health monitoring.

The following screenshot illustrates the areas modified, and how the health check step is used:

Deploy the topology
To simplify the tutorial, the topology template and artifacts are shared at the following locations so that you don't
need to prepare your own copy. If you want to use your own, follow the instructions in Tutorial: Use Azure
Deployment Manager with Resource Manager templates.

Topology template:
\https://armtutorials.blob.core.windows.net/admtutorial/ADMTemplates/CreateADMServiceTopology.json
Artifacts store: \https://armtutorials.blob.core.windows.net/admtutorial/ArtifactStore

To deploy the topology, select Try it to open the Cloud shell, and then paste the PowerShell script.

$projectName = Read-Host -Prompt "Enter the same project name used earlier in this tutorial"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$resourceGroupName = "${projectName}rg"
$artifactLocation = "https://armtutorials.blob.core.windows.net/admtutorial/ArtifactStore?st=2019-05-
06T03%3A57%3A31Z&se=2020-05-07T03%3A57%3A00Z&sp=rl&sv=2018-03-
28&sr=c&sig=gOh%2Bkhi693rmdxiZFQ9xbKZMU1kbLJDqXw7EP4TaGlI%3D" | ConvertTo-SecureString -AsPlainText -Force

Create the service topology
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateUri
"https://armtutorials.blob.core.windows.net/admtutorial/ADMTemplatesHC/CreateADMServiceTopology.json" `
 -namePrefix $projectName `
 -azureResourceLocation $location `
 -artifactSourceSASLocation $artifactLocation

Deploy the rollout with the unhealthy status

Verify the service topology and the underlined resources have been created successfully using the Azure portal:

Show hidden types must be selected to see the resources.

To simplify the tutorial, the revised rollout template is shared at the following locations so that you don't need to
prepare your own copy. If you want to use your own, follow the instructions in Tutorial: Use Azure Deployment
Manager with Resource Manager templates.

Topology template:
\https://armtutorials.blob.core.windows.net/admtutorial/ADMTemplatesHC/CreateADMRollout.json
Artifacts store: \https://armtutorials.blob.core.windows.net/admtutorial/ArtifactStore

Use the unhealthy status URL you created in Create a health check service simulator . For managedIdentityID ,
see Create the user-assigned managed identity.

$projectName = Read-Host -Prompt "Enter the same project name used earlier in this tutorial"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$managedIdentityID = Read-Host -Prompt "Enter a user-assigned managed identity"
$healthCheckUrl = Read-Host -Prompt "Enter the health check Azure function URL"
$healthCheckAuthAPIKey = $healthCheckUrl.Substring($healthCheckUrl.IndexOf("?code=")+6,
$healthCheckUrl.Length-$healthCheckUrl.IndexOf("?code=")-6)
$healthCheckUrl = $healthCheckUrl.Substring(0, $healthCheckUrl.IndexOf("?"))

$resourceGroupName = "${projectName}rg"
$artifactLocation = "https://armtutorials.blob.core.windows.net/admtutorial/ArtifactStore?st=2019-05-
06T03%3A57%3A31Z&se=2020-05-07T03%3A57%3A00Z&sp=rl&sv=2018-03-
28&sr=c&sig=gOh%2Bkhi693rmdxiZFQ9xbKZMU1kbLJDqXw7EP4TaGlI%3D" | ConvertTo-SecureString -AsPlainText -Force

Create the rollout
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateUri "https://armtutorials.blob.core.windows.net/admtutorial/ADMTemplatesHC/CreateADMRollout.json"
`
 -namePrefix $projectName `
 -azureResourceLocation $location `
 -artifactSourceSASLocation $artifactLocation `
 -managedIdentityID $managedIdentityID `
 -healthCheckUrl $healthCheckUrl `
 -healthCheckAuthAPIKey $healthCheckAuthAPIKey

NOTENOTE

$projectName = Read-Host -Prompt "Enter the same project name used earlier in this tutorial"
$resourceGroupName = "${projectName}rg"
$rolloutName = "${projectName}Rollout"

Get the rollout status
Get-AzDeploymentManagerRollout `
 -ResourceGroupName $resourceGroupName `
 -Name $rolloutName `
 -Verbose

New-AzResourceGroupDeployment is an asynchronous call. The success message only means the deployment has
successfully begun. To verify the deployment, use Get-AZDeploymentManagerRollout . See the next procedure.

To check the rollout progress using the following PowerShell script:

The following sample output shows the deployment failed due to the unhealthy status:

Service: myhc0417ServiceWUSrg
 TargetLocation: WestUS
 TargetSubscriptionId: <Subscription ID>

 ServiceUnit: myhc0417ServiceWUSWeb
 TargetResourceGroup: myhc0417ServiceWUSrg

 Step: RestHealthCheck/healthCheckStep.PostDeploy
 Status: Failed
 StepGroup: stepGroup2
 Operation Info:
 Start Time: 05/06/2019 17:58:31
 End Time: 05/06/2019 17:58:32
 Total Duration: 00:00:01
 Error:
 Code: ResourceReportedUnhealthy
 Message: Health checks failed as the following resources were unhealthy: '05/06/2019
17:58:32 UTC: Health check 'appHealth' failed with the following errors: Response from endpoint
'https://myhc0417webapp.azurewebsites.net/api/healthStatus/unhealthy' does not match the regex pattern(s):
'Status: healthy, Status: warning.'. Response content: "Status: unhealthy"..'.
Get-AzDeploymentManagerRollout :
Service: myhc0417ServiceWUSrg
 ServiceUnit: myhc0417ServiceWUSWeb
 Step: RestHealthCheck/healthCheckStep.PostDeploy
 Status: Failed
 StepGroup: stepGroup2
 Operation Info:
 Start Time: 05/06/2019 17:58:31
 End Time: 05/06/2019 17:58:32
 Total Duration: 00:00:01
 Error:
 Code: ResourceReportedUnhealthy
 Message: Health checks failed as the following resources were unhealthy: '05/06/2019
17:58:32 UTC: Health check 'appHealth' failed with the following errors: Response from endpoint
'https://myhc0417webapp.azurewebsites.net/api/healthStatus/unhealthy' does not match the regex pattern(s):
'Status: healthy, Status: warning.'. Response content: "Status: unhealthy"..'.
At line:1 char:1
+ Get-AzDeploymentManagerRollout `
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+ CategoryInfo : NotSpecified: (:) [Get-AzDeploymentManagerRollout], Exception
+ FullyQualifiedErrorId : RolloutFailed,Microsoft.Azure.Commands.DeploymentManager.Commands.GetRollout

ResourceGroupName : myhc0417rg
BuildVersion : 1.0.0.0
ArtifactSourceId : /subscriptions/<Subscription ID>/resourceGroups/myhc0417rg/providers/Mi
 crosoft.DeploymentManager/artifactSources/myhc0417ArtifactSourceRollout
TargetServiceTopologyId : /subscriptions/<Subscription ID>/resourceGroups/myhc0417rg/providers/Mi
 crosoft.DeploymentManager/serviceTopologies/myhc0417ServiceTopology
Status : Failed
TotalRetryAttempts : 0
Identity : Microsoft.Azure.Commands.DeploymentManager.Models.PSIdentity
OperationInfo : Microsoft.Azure.Commands.DeploymentManager.Models.PSRolloutOperationInfo
Services : {myhc0417ServiceWUS, myhc0417ServiceWUSrg}
Name : myhc0417Rollout
Type : Microsoft.DeploymentManager/rollouts
Location : centralus
Id : /subscriptions/<Subscription ID>/resourcegroups/myhc0417rg/providers/Mi
 crosoft.DeploymentManager/rollouts/myhc0417Rollout
Tags :

Deploy the rollout with the healthy status

After the rollout is completed, you shall see one additional resource group created for West US.

Verify the deployment

Clean up resources

Next steps

Repeat this section to redeploy the rollout with the healthy status URL. After the rollout is completed, you shall see
one more resource group created for East US.

1. Open the Azure portal.
2. Browse to the newly create web applications under the new resource groups created by the rollout

deployment.
3. Open the web application in a web browser. Verify the location and the version on the index.html file.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.

2. Use the Filter by name field to narrow down the resource groups created in this tutorial. There shall be 3-
4:

<namePrefix>rg: contains the Deployment Manager resources.
<namePrefix>ServiceWUSrg: contains the resources defined by ServiceWUS.
<namePrefix>ServiceEUSrg: contains the resources defined by ServiceEUS.
The resource group for the user-defined managed identity.

3. Select the resource group name.

4. Select Delete resource group from the top menu.

5. Repeat the last two steps to delete other resource groups created by this tutorial.

In this tutorial, you learned how to use the health check feature of Azure Deployment Manager. To learn more, see
Azure Resource Manager documentation.

https://portal.azure.com
https://docs.microsoft.com/azure/azure-resource-manager/

Tutorial: Troubleshoot Resource Manager template
deployments
2/14/2019 • 3 minutes to read • Edit Online

NOTENOTE

Prerequisites

Create a problematic template

Learn how to troubleshoot Resource Manager template deployment errors. In this tutorial, you set up two errors in
a template, and learn how to use the activity logs and deployment history to resolve the issues.

There are two types of errors that are related to template deployment:

Validation errors arise from scenarios that can be determined before deployment. They include syntax errors
in your template, or trying to deploy resources that would exceed your subscription quotas.
Deployment errors arise from conditions that occur during the deployment process. They include trying to
access a resource that is being deployed in parallel.

Both types of errors return an error code that you use to troubleshoot the deployment. Both types of errors appear
in the activity log. However, validation errors don't appear in your deployment history because the deployment
never started.

This tutorial covers the following tasks:

Create a problematic template
Troubleshoot validation errors
Troubleshoot deployment errors
Clean up resources

If you don't have an Azure subscription, create a free account before you begin.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To complete this article, you need:

Visual Studio Code with Resource Manager Tools extension.

Open a template called Create a standard storage account from Azure QuickStart Templates, and setup two
template issues.

1. From Visual Studio Code, select File>Open File.

2. In File name, paste the following URL:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-tutorial-troubleshoot.md
https://azure.microsoft.com/free/
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://code.visualstudio.com/
https://azure.microsoft.com/resources/templates/101-storage-account-create/
https://azure.microsoft.com/resources/templates/

Troubleshoot the validation error

New-AzResourceGroupDeployment : 4:29:24 PM - Error: Code=InvalidRequestContent; Message=The request content was
invalid and could not be deserialized: 'Could not find member 'apiVersion1' on object of type
'TemplateResource'. Path 'properties.template.resources[0].apiVersion1', line 36, position 24.'.

Troubleshoot the deployment error

New-AzResourceGroupDeployment : 4:48:50 PM - Resource Microsoft.Storage/storageAccounts 'storeqii7x2rce77dc'
failed with message '{
 "error": {
 "code": "NoRegisteredProviderFound",
 "message": "No registered resource provider found for location 'centralus' and API version '2018-07-02' for
type 'storageAccounts'. The supported api-versions are '2018-07-01, 2018-03-01-preview, 2018-02-01, 2017-10-01,
2017-06-01, 2016-12-01, 2016-05-01, 2016-01-01, 2015-06-15, 2015-05-01-preview'. The supported locations are
'eastus, eastus2, westus, westeurope, eastasia, southeastasia, japaneast, japanwest, northcentralus,
southcentralus, centralus, northeurope, brazilsouth, australiaeast, australiasoutheast, southindia,
centralindia, westindia, canadaeast, canadacentral, westus2, westcentralus, uksouth, ukwest, koreacentral,
koreasouth, francecentral'."
 }
}'

https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-
create/azuredeploy.json

"apiVersion1": "2018-07-02",

3. Select Open to open the file.

4. Change the apiVersion line to the following line:

apiVersion1 is invalid element name. It is a validation error.
The API version shall be "2018-07-01". It is a deployment error.

5. Select File>Save As to save the file as azuredeploy.json to your local computer.

Refer to the Deploy the template section to deploy the template.

You shall get an error from the shell similar to:

The error message indicates the problem is with apiVersion1.

Use Visual Studio Code to correct the problem by changing apiVersion1 to apiVersion, and then save the
template.

Refer to the Deploy the template section to deploy the template.

You shall get an error from the shell similar to:

The deployment error can be found from the Azure portal using the following procedure:

1. Sign in to the Azure portal.

2. Open the resource group by selecting Resource groups and then the resource group name. You shall see 1
Failed under Deployment.

https://portal.azure.com

3. Select Error details.

The error message is the same as the one shown earlier:

You can also find the error from the activity logs:

1. Sign in to the Azure portal.

2. Select Monitor > Activity log.

3. Use the filters to find the log.

https://portal.azure.com

Clean up resources

Next steps

Use Visual Studio Code to correct the problem, and then redeploy the template.

For a list of common errors, see Troubleshoot common Azure deployment errors with Azure Resource Manager.

When the Azure resources are no longer needed, clean up the resources you deployed by deleting the resource
group.

1. From the Azure portal, select Resource group from the left menu.
2. Enter the resource group name in the Filter by name field.
3. Select the resource group name. You shall see a total of six resources in the resource group.
4. Select Delete resource group from the top menu.

In this tutorial, you learned how to troubleshoot Resource Manager template deployment errors. For more
information, see Troubleshoot common Azure deployment errors with Azure Resource Manager.

Azure Resource Manager templates for management
features
11/16/2018 • 2 minutes to read • Edit Online

Role assignments

Assign role for resource group Assigns a built-in role to a user for an existing resource group.

Assign role for existing virtual machine Assigns a built-in role to a user for an existing VM.

Assign role for several virtual machines Assigns built-in roles to users for more than one virtual
machine.

Assign role for Azure subscription Assigns a role to a user for an Azure subscription.

Role definition

Create custom role definition Creates a new role definition in an Azure subscription.

Resource lock

Lock resource group Creates a resource group, and applies a DoNotDelete lock to
the resource group. Assigns the contributor role to a user.

The following table includes links to Azure Resource Manager templates for features provided by Resource
Manager.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/template-samples.md
https://github.com/Azure/azure-quickstart-templates/tree/master/101-rbac-builtinrole-resourcegroup
https://github.com/Azure/azure-quickstart-templates/tree/master/101-rbac-builtinrole-virtualmachine
https://github.com/Azure/azure-quickstart-templates/tree/master/201-rbac-builtinrole-multipleVMs
https://github.com/Azure/azure-quickstart-templates/tree/master/subscription-level-deployments/subscription-role-assigment
https://github.com/Azure/azure-quickstart-templates/tree/master/subscription-level-deployments/create-role-def
https://github.com/Azure/azure-quickstart-templates/tree/master/subscription-level-deployments/create-rg-lock-role-assignment

Understand the structure and syntax of Azure Resource
Manager templates
6/18/2019 • 24 minutes to read • Edit Online

Template format

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "",
 "apiProfile": "",
 "parameters": { },
 "variables": { },
 "functions": [],
 "resources": [],
 "outputs": { }
}

ELEMENT NAME REQUIRED DESCRIPTION

$schema Yes Location of the JSON schema file that
describes the version of the template
language.

For resource group deployments, use:
https://schema.management.azure.com/schemas/2015-
01-01/deploymentTemplate.json#

For subscription deployments, use:
https://schema.management.azure.com/schemas/2018-
05-01/subscriptionDeploymentTemplate.json#

contentVersion Yes Version of the template (such as 1.0.0.0).
You can provide any value for this
element. Use this value to document
significant changes in your template.
When deploying resources using the
template, this value can be used to make
sure that the right template is being used.

This article describes the structure of an Azure Resource Manager template. It presents the different sections of a
template and the properties that are available in those sections. The template consists of JSON and expressions that
you can use to construct values for your deployment.

This article is intended for users who have some familiarity with Resource Manager templates. It provides detailed
information about the structure and syntax of the template. If you want an introduction to creating a template, see
Create your first Azure Resource Manager template.

In its simplest structure, a template has the following elements:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-authoring-templates.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-create-first-template

apiProfile No An API version that serves as a collection
of API versions for resource types. Use
this value to avoid having to specify API
versions for each resource in the
template. When you specify an API profile
version and don't specify an API version
for the resource type, Resource Manager
uses the API version for that resource
type that is defined in the profile.

The API profile property is especially
helpful when deploying a template to
different environments, such as Azure
Stack and global Azure. Use the API
profile version to make sure your
template automatically uses versions that
are supported in both environments. For
a list of the current API profile versions
and the resources API versions defined in
the profile, see API Profile.

For more information, see Track versions
using API profiles.

parameters No Values that are provided when
deployment is executed to customize
resource deployment.

variables No Values that are used as JSON fragments
in the template to simplify template
language expressions.

functions No User-defined functions that are available
within the template.

resources Yes Resource types that are deployed or
updated in a resource group or
subscription.

outputs No Values that are returned after
deployment.

ELEMENT NAME REQUIRED DESCRIPTION

Syntax

"parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 }
},

Each element has properties you can set. This article describes the sections of the template in greater detail.

The basic syntax of the template is JSON. However, you can use expressions to extend the JSON values available within
the template. Expressions start and end with brackets: [and] , respectively. The value of the expression is evaluated
when the template is deployed. An expression can return a string, integer, boolean, array, or object. The following
example shows an expression in the default value of a parameter :

Within the expression, the syntax resourceGroup() calls one of the functions that Resource Manager provides for use
within a template. Just like in JavaScript, function calls are formatted as functionName(arg1,arg2,arg3) . The syntax
.location retrieves one property from the object returned by that function.

https://github.com/Azure/azure-rest-api-specs/tree/master/profile
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates-cloud-consistency

"demoVar1": "[[test value]"

"demoVar2": "[test] value"

"name": "[concat('storage', uniqueString(resourceGroup().id))]"

"tags": {
 "CostCenter": "{\"Dept\":\"Finance\",\"Environment\":\"Production\"}"
},

Parameters

Available propertiesAvailable properties

"parameters": {
 "<parameter-name>" : {
 "type" : "<type-of-parameter-value>",
 "defaultValue": "<default-value-of-parameter>",
 "allowedValues": ["<array-of-allowed-values>"],
 "minValue": <minimum-value-for-int>,
 "maxValue": <maximum-value-for-int>,
 "minLength": <minimum-length-for-string-or-array>,
 "maxLength": <maximum-length-for-string-or-array-parameters>,
 "metadata": {
 "description": "<description-of-the parameter>"
 }
 }
}

Template functions and their parameters are case-insensitive. For example, Resource Manager resolves
variables('var1') and VARIABLES('VAR1') as the same. When evaluated, unless the function expressly modifies case
(such as toUpper or toLower), the function preserves the case. Certain resource types may have case requirements
irrespective of how functions are evaluated.

To have a literal string start with a left bracket [and end with a right bracket] , but not have it interpreted as an
expression, add an extra bracket to start the string with [[. For example, the variable:

Resolves to [test value] .

However, if the literal string doesn't end with a bracket, don't escape the first bracket. For example, the variable:

Resolves to [test] value .

To pass a string value as a parameter to a function, use single quotes.

To escape double quotes in an expression, such as adding a JSON object in the template, use the backslash.

A template expression can't exceed 24,576 characters.

For the full list of template functions, see Azure Resource Manager template functions.

In the parameters section of the template, you specify which values you can input when deploying the resources. These
parameter values enable you to customize the deployment by providing values that are tailored for a particular
environment (such as dev, test, and production). You don't have to provide parameters in your template, but without
parameters your template would always deploy the same resources with the same names, locations, and properties.

You're limited to 256 parameters in a template. You can reduce the number of parameters by using objects that contain
multiple properties, as shown in this article.

The available properties for a parameter are:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions

ELEMENT NAME REQUIRED DESCRIPTION

parameterName Yes Name of the parameter. Must be a valid
JavaScript identifier.

type Yes Type of the parameter value. The allowed
types and values are string, securestring,
int, bool, object, secureObject, and
array.

defaultValue No Default value for the parameter, if no
value is provided for the parameter.

allowedValues No Array of allowed values for the parameter
to make sure that the right value is
provided.

minValue No The minimum value for int type
parameters, this value is inclusive.

maxValue No The maximum value for int type
parameters, this value is inclusive.

minLength No The minimum length for string, secure
string, and array type parameters, this
value is inclusive.

maxLength No The maximum length for string, secure
string, and array type parameters, this
value is inclusive.

description No Description of the parameter that is
displayed to users through the portal. For
more information, see Comments in
templates.

Define and use a parameterDefine and use a parameter

"parameters": {
 "storageSKU": {
 "type": "string",
 "allowedValues": [
 "Standard_LRS",
 "Standard_ZRS",
 "Standard_GRS",
 "Standard_RAGRS",
 "Premium_LRS"
],
 "defaultValue": "Standard_LRS",
 "metadata": {
 "description": "The type of replication to use for the storage account."
 }
 }
}

The following example shows a simple parameter definition. It defines the name of the parameter, and specifies that it
takes a string value. The parameter only accepts values that make sense for its intended use. It specifies a default value
when no value is provided during deployment. Finally, the parameter includes a description of its use.

In the template, you reference the value for the parameter with the following syntax:

"resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "sku": {
 "name": "[parameters('storageSKU')]"
 },
 ...
 }
]

Template functions with parametersTemplate functions with parameters

"parameters": {
 "siteName": {
 "type": "string",
 "defaultValue": "[concat('site', uniqueString(resourceGroup().id))]",
 "metadata": {
 "description": "The site name. To use the default value, do not specify a new value."
 }
 },
 "hostingPlanName": {
 "type": "string",
 "defaultValue": "[concat(parameters('siteName'),'-plan')]",
 "metadata": {
 "description": "The host name. To use the default value, do not specify a new value."
 }
 }
}

Objects as parametersObjects as parameters

"parameters": {
 "VNetSettings": {
 "type": "object",
 "defaultValue": {
 "name": "VNet1",
 "location": "eastus",
 "addressPrefixes": [
 {
 "name": "firstPrefix",
 "addressPrefix": "10.0.0.0/22"
 }
],
 "subnets": [
 {
 "name": "firstSubnet",
 "addressPrefix": "10.0.0.0/24"
 },
 {
 "name": "secondSubnet",
 "addressPrefix": "10.0.1.0/24"
 }
]
 }
 }
},

When specifying the default value for a parameter, you can use most template functions. You can use another parameter
value to build a default value. The following template demonstrates the use of functions in the default value:

You can't use the reference function in the parameters section. Parameters are evaluated before deployment so the
reference function can't get the runtime state of a resource.

It can be easier to organize related values by passing them in as an object. This approach also reduces the number of
parameters in the template.

Define the parameter in your template and specify a JSON object instead of a single value during deployment.

"resources": [
 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[parameters('VNetSettings').name]",
 "location": "[parameters('VNetSettings').location]",
 "properties": {
 "addressSpace":{
 "addressPrefixes": [
 "[parameters('VNetSettings').addressPrefixes[0].addressPrefix]"
]
 },
 "subnets":[
 {
 "name":"[parameters('VNetSettings').subnets[0].name]",
 "properties": {
 "addressPrefix": "[parameters('VNetSettings').subnets[0].addressPrefix]"
 }
 },
 {
 "name":"[parameters('VNetSettings').subnets[1].name]",
 "properties": {
 "addressPrefix": "[parameters('VNetSettings').subnets[1].addressPrefix]"
 }
 }
]
 }
 }
]

Parameter example templatesParameter example templates

TEMPLATE DESCRIPTION

parameters with functions for default values Demonstrates how to use template functions when defining
default values for parameters. The template doesn't deploy any
resources. It constructs parameter values and returns those
values.

parameter object Demonstrates using an object for a parameter. The template
doesn't deploy any resources. It constructs parameter values and
returns those values.

Variables

Available definitionsAvailable definitions

Then, reference the subproperties of the parameter by using the dot operator.

These example templates demonstrate some scenarios for using parameters. Deploy them to test how parameters are
handled in different scenarios.

In the variables section, you construct values that can be used throughout your template. You don't need to define
variables, but they often simplify your template by reducing complex expressions.

The following example shows the available options for defining a variable:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/parameterswithfunctions.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/parameterobject.json

"variables": {
 "<variable-name>": "<variable-value>",
 "<variable-name>": {
 <variable-complex-type-value>
 },
 "<variable-object-name>": {
 "copy": [
 {
 "name": "<name-of-array-property>",
 "count": <number-of-iterations>,
 "input": <object-or-value-to-repeat>
 }
]
 },
 "copy": [
 {
 "name": "<variable-array-name>",
 "count": <number-of-iterations>,
 "input": <object-or-value-to-repeat>
 }
]
}

Define and use a variableDefine and use a variable

"variables": {
 "storageName": "[concat(toLower(parameters('storageNamePrefix')), uniqueString(resourceGroup().id))]"
},

"resources": [
 {
 "name": "[variables('storageName')]",
 "type": "Microsoft.Storage/storageAccounts",
 ...

Configuration variablesConfiguration variables

"variables": {
 "environmentSettings": {
 "test": {
 "instanceSize": "Small",
 "instanceCount": 1
 },
 "prod": {
 "instanceSize": "Large",
 "instanceCount": 4
 }
 }
},

For information about using copy to create several values for a variable, see Variable iteration.

The following example shows a variable definition. It creates a string value for a storage account name. It uses several
template functions to get a parameter value, and concatenates it to a unique string.

You use the variable when defining the resource.

You can use complex JSON types to define related values for an environment.

In parameters, you create a value that indicates which configuration values to use.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-multiple

"parameters": {
 "environmentName": {
 "type": "string",
 "allowedValues": [
 "test",
 "prod"
]
 }
},

"[variables('environmentSettings')[parameters('environmentName')].instanceSize]"

Variable example templatesVariable example templates

TEMPLATE DESCRIPTION

variable definitions Demonstrates the different types of variables. The template
doesn't deploy any resources. It constructs variable values and
returns those values.

configuration variable Demonstrates the use of a variable that defines configuration
values. The template doesn't deploy any resources. It constructs
variable values and returns those values.

network security rules and parameter file Constructs an array in the correct format for assigning security
rules to a network security group.

Functions

You retrieve the current settings with:

These example templates demonstrate some scenarios for using variables. Deploy them to test how variables are
handled in different scenarios.

Within your template, you can create your own functions. These functions are available for use in your template.
Typically, you define complicated expression that you don't want to repeat throughout your template. You create the
user-defined functions from expressions and functions that are supported in templates.

When defining a user function, there are some restrictions:

The function can't access variables.
The function can only use parameters that are defined in the function. When you use the parameters function within
a user-defined function, you're restricted to the parameters for that function.
The function can't call other user-defined functions.
The function can't use the reference function.
Parameters for the function can't have default values.

Your functions require a namespace value to avoid naming conflicts with template functions. The following example
shows a function that returns a storage account name:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/variables.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/variablesconfigurations.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/multiplesecurityrules.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/multiplesecurityrules.parameters.json
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-deployment
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-resource

"functions": [
 {
 "namespace": "contoso",
 "members": {
 "uniqueName": {
 "parameters": [
 {
 "name": "namePrefix",
 "type": "string"
 }
],
 "output": {
 "type": "string",
 "value": "[concat(toLower(parameters('namePrefix')), uniqueString(resourceGroup().id))]"
 }
 }
 }
 }
],

"resources": [
 {
 "name": "[contoso.uniqueName(parameters('storageNamePrefix'))]",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2016-01-01",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "location": "South Central US",
 "tags": {},
 "properties": {}
 }
]

Resources

Available propertiesAvailable properties

You call the function with:

In the resources section, you define the resources that are deployed or updated.

You define resources with the following structure:

"resources": [
 {
 "condition": "<true-to-deploy-this-resource>",
 "apiVersion": "<api-version-of-resource>",
 "type": "<resource-provider-namespace/resource-type-name>",
 "name": "<name-of-the-resource>",
 "location": "<location-of-resource>",
 "tags": {
 "<tag-name1>": "<tag-value1>",
 "<tag-name2>": "<tag-value2>"
 },
 "comments": "<your-reference-notes>",
 "copy": {
 "name": "<name-of-copy-loop>",
 "count": <number-of-iterations>,
 "mode": "<serial-or-parallel>",
 "batchSize": <number-to-deploy-serially>
 },
 "dependsOn": [
 "<array-of-related-resource-names>"
],
 "properties": {
 "<settings-for-the-resource>",
 "copy": [
 {
 "name": ,
 "count": ,
 "input": {}
 }
]
 },
 "sku": {
 "name": "<sku-name>",
 "tier": "<sku-tier>",
 "size": "<sku-size>",
 "family": "<sku-family>",
 "capacity": <sku-capacity>
 },
 "kind": "<type-of-resource>",
 "plan": {
 "name": "<plan-name>",
 "promotionCode": "<plan-promotion-code>",
 "publisher": "<plan-publisher>",
 "product": "<plan-product>",
 "version": "<plan-version>"
 },
 "resources": [
 "<array-of-child-resources>"
]
 }
]

ELEMENT NAME REQUIRED DESCRIPTION

condition No Boolean value that indicates whether the
resource will be provisioned during this
deployment. When true , the resource is
created during deployment. When
false , the resource is skipped for this

deployment. See condition.

apiVersion Yes Version of the REST API to use for
creating the resource. To determine
available values, see template reference.

https://docs.microsoft.com/azure/templates/

type Yes Type of the resource. This value is a
combination of the namespace of the
resource provider and the resource type
(such as
Microsoft.Storage/storageAccounts).
To determine available values, see
template reference. For a child resource,
the format of the type depends on
whether it's nested within the parent
resource or defined outside of the parent
resource. See child resources.

name Yes Name of the resource. The name must
follow URI component restrictions defined
in RFC3986. In addition, Azure services
that expose the resource name to outside
parties validate the name to make sure it
isn't an attempt to spoof another identity.
For a child resource, the format of the
name depends on whether it's nested
within the parent resource or defined
outside of the parent resource. See child
resources.

location Varies Supported geo-locations of the provided
resource. You can select any of the
available locations, but typically it makes
sense to pick one that is close to your
users. Usually, it also makes sense to
place resources that interact with each
other in the same region. Most resource
types require a location, but some types
(such as a role assignment) don't require a
location.

tags No Tags that are associated with the
resource. Apply tags to logically organize
resources across your subscription.

comments No Your notes for documenting the resources
in your template. For more information,
see Comments in templates.

copy No If more than one instance is needed, the
number of resources to create. The
default mode is parallel. Specify serial
mode when you don't want all or the
resources to deploy at the same time. For
more information, see Create several
instances of resources in Azure Resource
Manager.

ELEMENT NAME REQUIRED DESCRIPTION

https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-create-multiple

dependsOn No Resources that must be deployed before
this resource is deployed. Resource
Manager evaluates the dependencies
between resources and deploys them in
the correct order. When resources aren't
dependent on each other, they're
deployed in parallel. The value can be a
comma-separated list of a resource
names or resource unique identifiers. Only
list resources that are deployed in this
template. Resources that aren't defined in
this template must already exist. Avoid
adding unnecessary dependencies as they
can slow your deployment and create
circular dependencies. For guidance on
setting dependencies, see Defining
dependencies in Azure Resource Manager
templates.

properties No Resource-specific configuration settings.
The values for the properties are the
same as the values you provide in the
request body for the REST API operation
(PUT method) to create the resource. You
can also specify a copy array to create
several instances of a property. To
determine available values, see template
reference.

sku No Some resources allow values that define
the SKU to deploy. For example, you can
specify the type of redundancy for a
storage account.

kind No Some resources allow a value that defines
the type of resource you deploy. For
example, you can specify the type of
Cosmos DB to create.

plan No Some resources allow values that define
the plan to deploy. For example, you can
specify the marketplace image for a
virtual machine.

resources No Child resources that depend on the
resource being defined. Only provide
resource types that are permitted by the
schema of the parent resource.
Dependency on the parent resource isn't
implied. You must explicitly define that
dependency. See child resources.

ELEMENT NAME REQUIRED DESCRIPTION

ConditionCondition
When you must decide during deployment whether to create a resource, use the condition element. The value for this
element resolves to true or false. When the value is true, the resource is created. When the value is false, the resource
isn't created. The value can only be applied to the whole resource.

Typically, you use this value when you want to create a new resource or use an existing one. For example, to specify
whether a new storage account is deployed or an existing storage account is used, use:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-define-dependencies
https://docs.microsoft.com/azure/templates/

{
 "condition": "[equals(parameters('newOrExisting'),'new')]",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "apiVersion": "2017-06-01",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "Storage",
 "properties": {}
}

Resource namesResource names

"variables": {
 "storageAccountName": "[concat(uniqueString(resourceGroup().id),'storage')]"
}

For a complete example template that uses the condition element, see VM with a new or existing Virtual Network,
Storage, and Public IP.

If you use a reference or list function with a resource that is conditionally deployed, the function is evaluated even if the
resource isn't deployed. You get an error if the function refers to a resource that doesn't exist. Use the if function to make
sure the function is only evaluated for conditions when the resource is deployed. See the if function for a sample
template that uses if and reference with a conditionally deployed resource.

Generally, you work with three types of resource names in Resource Manager:

Resource names that must be unique.
Resource names that aren't required to be unique, but you choose to provide a name that can help you identify the
resource.
Resource names that can be generic.

Provide a unique resource name for any resource type that has a data access endpoint. Some common resource types
that require a unique name include:

Azure Storage
Web Apps feature of Azure App Service
SQL Server
Azure Key Vault
Azure Cache for Redis
Azure Batch
Azure Traffic Manager
Azure Search
Azure HDInsight

1

 Storage account names also must be lowercase, 24 characters or less, and not have any hyphens.1

When setting the name, you can either manually create a unique name or use the uniqueString() function to generate a
name. You also might want to add a prefix or suffix to the uniqueString result. Modifying the unique name can help
you more easily identify the resource type from the name. For example, you can generate a unique name for a storage
account by using the following variable:

For some resource types, you might want to provide a name for identification, but the name doesn't have to be
unique. For these resource types, provide a name that describes it use or characteristics.

https://github.com/Azure/azure-quickstart-templates/tree/master/201-vm-new-or-existing-conditions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-resource
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-resource
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-logical
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-logical
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-string

"parameters": {
 "vmName": {
 "type": "string",
 "defaultValue": "demoLinuxVM",
 "metadata": {
 "description": "The name of the VM to create."
 }
 }
}

{
 "type": "firewallrules",
 "name": "AllowAllWindowsAzureIps",
 ...
}

Resource locationResource location

For resource types that you mostly access through a different resource, you can use a generic name that is hard-coded
in the template. For example, you can set a standard, generic name for firewall rules on a SQL server:

When deploying a template, you must provide a location for each resource. Different resource types are supported in
different locations. To get the supported locations for a resource type, see Azure resource providers and types.

Use a parameter to specify the location for resources, and set the default value to resourceGroup().location .

The following example shows a storage account that is deployed to a location specified as a parameter:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-supported-services

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountType": {
 "type": "string",
 "defaultValue": "Standard_LRS",
 "allowedValues": [
 "Standard_LRS",
 "Standard_GRS",
 "Standard_ZRS",
 "Premium_LRS"
],
 "metadata": {
 "description": "Storage Account type"
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "Location for all resources."
 }
 }
 },
 "variables": {
 "storageAccountName": "[concat('storage', uniquestring(resourceGroup().id))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "location": "[parameters('location')]",
 "apiVersion": "2018-07-01",
 "sku": {
 "name": "[parameters('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {}
 }
],
 "outputs": {
 "storageAccountName": {
 "type": "string",
 "value": "[variables('storageAccountName')]"
 }
 }
}

Child resourcesChild resources

{
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Sql/servers",
 "name": "exampleserver",
 ...
 "resources": [
 {
 "apiVersion": "2017-10-01-preview",
 "type": "databases",
 "name": "exampledatabase",
 ...
 }
]
}

Within some resource types, you can also define an array of child resources. Child resources are resources that only
exist within the context of another resource. For example, a SQL database can't exist without a SQL server so the
database is a child of the server. You can define the database within the definition for the server.

{
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Sql/servers",
 "name": "exampleserver",
 "resources": [
],
 ...
},
{
 "apiVersion": "2017-10-01-preview",
 "type": "Microsoft.Sql/servers/databases",
 "name": "exampleserver/exampledatabase",
 ...
}

"type": "{child-resource-type}",
"name": "{child-resource-name}",

"type": "{resource-provider-namespace}/{parent-resource-type}/{child-resource-type}",
"name": "{parent-resource-name}/{child-resource-name}",

{resource-provider-namespace}/{parent-resource-type}/{parent-resource-name}[/{child-resource-type}/{child-resource-
name}]*

Outputs

Available propertiesAvailable properties

But, you don't have to define the database within the server. You can define the child resource at the top level. You might
use this approach if the parent resource isn't deployed in the same template, or if want to use copy to create more than
one child resource. With this approach, you must provide the full resource type, and include the parent resource name in
the child resource name.

The values you provide for type and name vary based on whether the child resource is defined within the parent
resource or outside of the parent resource.

When nested in the parent resource, use:

When defined outside of the parent resource, use:

When nested, the type is set to databases but its full resource type is still Microsoft.Sql/servers/databases . You don't
provide Microsoft.Sql/servers/ because it's assumed from the parent resource type. The child resource name is set to
exampledatabase but the full name includes the parent name. You don't provide exampleserver because it's assumed

from the parent resource.

When constructing a fully qualified reference to a resource, the order to combine segments from the type and name
isn't simply a concatenation of the two. Instead, after the namespace, use a sequence of type/name pairs from least
specific to most specific:

For example:

Microsoft.Compute/virtualMachines/myVM/extensions/myExt is correct
Microsoft.Compute/virtualMachines/extensions/myVM/myExt is not correct

In the Outputs section, you specify values that are returned from deployment. Typically, you return values from
resources that were deployed.

The following example shows the structure of an output definition:

"outputs": {
 "<outputName>" : {
 "condition": "<boolean-value-whether-to-output-value>",
 "type" : "<type-of-output-value>",
 "value": "<output-value-expression>"
 }
}

ELEMENT NAME REQUIRED DESCRIPTION

outputName Yes Name of the output value. Must be a
valid JavaScript identifier.

condition No Boolean value that indicates whether this
output value is returned. When true ,
the value is included in the output for the
deployment. When false , the output
value is skipped for this deployment.
When not specified, the default value is
true .

type Yes Type of the output value. Output values
support the same types as template input
parameters. If you specify securestring
for the output type, the value isn't
displayed in the deployment history and
can't be retrieved from another template.
To use a secret value in more than one
template, store the secret in a Key Vault
and reference the secret in the parameter
file. For more information, see Use Azure
Key Vault to pass secure parameter value
during deployment.

value Yes Template language expression that is
evaluated and returned as output value.

Define and use output valuesDefine and use output values

"outputs": {
 "resourceID": {
 "type": "string",
 "value": "[resourceId('Microsoft.Network/publicIPAddresses', parameters('publicIPAddresses_name'))]"
 }
}

"outputs": {
 "resourceID": {
 "condition": "[equals(parameters('publicIpNewOrExisting'), 'new')]",
 "type": "string",
 "value": "[resourceId('Microsoft.Network/publicIPAddresses', parameters('publicIPAddresses_name'))]"
 }
}

The following example shows how to return the resource ID for a public IP address:

The next example shows how to conditionally return the resource ID for a public IP address based on whether a new
one was deployed:

For a simple example of conditional output, see conditional output template.

After the deployment, you can retrieve the value with script. For PowerShell, use:

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-keyvault-parameter
https://github.com/bmoore-msft/AzureRM-Samples/blob/master/conditional-output/azuredeploy.json

(Get-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -Name <deployment-
name>).Outputs.resourceID.value

az group deployment show -g <resource-group-name> -n <deployment-name> --query properties.outputs.resourceID.value

"publicIPAddress": {
 "id": "[reference('linkedTemplate').outputs.resourceID.value]"
}

Output example templatesOutput example templates

TEMPLATE DESCRIPTION

Copy variables Creates complex variables and outputs those values. Doesn't
deploy any resources.

Public IP address Creates a public IP address and outputs the resource ID.

Load balancer Links to the preceding template. Uses the resource ID in the
output when creating the load balancer.

Comments and metadata

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "metadata": {
 "comments": "This template was developed for demonstration purposes.",
 "author": "Example Name"
 },

"parameters": {
 "adminUsername": {
 "type": "string",
 "metadata": {
 "description": "User name for the Virtual Machine."
 }
 },

For Azure CLI, use:

You can retrieve the output value from a linked template by using the reference function. To get an output value from a
linked template, retrieve the property value with syntax like:
"[reference('deploymentName').outputs.propertyName.value]" .

When getting an output property from a linked template, the property name can't include a dash.

The following example shows how to set the IP address on a load balancer by retrieving a value from a linked template.

You can't use the reference function in the outputs section of a nested template. To return the values for a deployed
resource in a nested template, convert your nested template to a linked template.

You have a few options for adding comments and metadata to your template.

You can add a metadata object almost anywhere in your template. Resource Manager ignores the object, but your
JSON editor may warn you that the property isn't valid. In the object, define the properties you need.

For parameters, add a metadata object with a description property.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions-resource
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-linked-templates
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/copyvariables.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/public-ip.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/public-ip-parentloadbalancer.json

"resources": [
 {
 "comments": "Storage account used to store VM disks",
 "apiVersion": "2018-07-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "location": "[parameters('location')]",
 "metadata": {
 "comments": "These tags are needed for policy compliance."
 },
 "tags": {
 "Dept": "[parameters('deptName')]",
 "Environment": "[parameters('environment')]"
 },
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 }
]

"outputs": {
 "hostname": {
 "type": "string",
 "value": "[reference(variables('publicIPAddressName')).dnsSettings.fqdn]",
 "metadata": {
 "comments": "Return the fully qualified domain name"
 }
 },

{
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[variables('vmName')]", // to customize name, change it in variables
 "location": "[parameters('location')]", //defaults to resource group location
 "apiVersion": "2018-10-01",
 "dependsOn": [// storage account and network interface must be deployed first
 "[resourceId('Microsoft.Storage/storageAccounts/', variables('storageAccountName'))]",
 "[resourceId('Microsoft.Network/networkInterfaces/', variables('nicName'))]"
],

When deploying the template through the portal, the text you provide in the description is automatically used as a tip
for that parameter.

For resources, add a comments element or a metadata object. The following example shows both a comments element
and a metadata object.

For outputs, add a metadata object to the output value.

You can't add a metadata object to user-defined functions.

For inline comments, you can use // but this syntax doesn't work with all tools. You can't use Azure CLI to deploy the
template with inline comments. And, you can't use the portal template editor to work on templates with inline
comments. If you add this style of comment, be sure the tools you use support inline JSON comments.

In VS Code, you can set the language mode to JSON with comments. The inline comments are no longer marked as
invalid. To change the mode:

Quickstarts and tutorials

1. Open language mode selection (Ctrl+K M)

2. Select JSON with Comments.

Use the following quickstarts and tutorials to learn how to develop resource manager templates:

TITLE DESCRIPTION

Use the Azure portal Generate a template using the portal, and understand the
process of editing and deploying the template.

Use Visual Studio Code Use Visual Studio Code to create and edit templates, and
how to use the Azure Cloud shell to deploy templates.

Use Visual Studio Use Visual Studio to create, edit, and deploy templates.

TITLE DESCRIPTION

Utilize template reference Utilize the template reference documentation to develop
templates. In the tutorial, you find the storage account
schema, and use the information to create an encrypted
storage account.

Create multiple instances Create multiple instances of Azure resources. In the tutorial,
you create multiple instances of storage account.

Set resource deployment order Define resource dependencies. In the tutorial, you create a
virtual network, a virtual machine, and the dependent Azure
resources. You learn how the dependencies are defined.

Use conditions Deploy resources based on some parameter values. In the
tutorial, you define a template to create a new storage
account or use an existing storage account based on the
value of a parameter.

Quickstarts

Tutorials

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-quickstart-create-templates-use-the-portal
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-quickstart-create-templates-use-visual-studio-code
https://docs.microsoft.com/en-us/azure/azure-resource-manager/vs-azure-tools-resource-groups-deployment-projects-create-deploy
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-encrypted-storage-accounts
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-multiple-instances
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-templates-with-dependent-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-use-conditions

Next steps

Integrate key vault Retrieve secrets/passwords from Azure Key Vault. In the
tutorial, you create a virtual machine. The virtual machine
administrator password is retrieved from a Key Vault.

Create linked templates Modularize templates, and call other templates from a
template. In the tutorial, you create a virtual network, a
virtual machine, and the dependent resources. The
dependent storage account is defined in a linked template.

Deploy virtual machine extensions Perform post-deployment tasks by using extensions. In the
tutorial, you deploy a customer script extension to install web
server on the virtual machine.

Deploy SQL extensions Perform post-deployment tasks by using extensions. In the
tutorial, you deploy a customer script extension to install web
server on the virtual machine.

Secure artifacts Secure the artifacts needed to complete the deployments. In
the tutorial, you learn how to secure the artifact used in the
Deploy SQL extensions tutorial.

Use safe deployment practices Use Azure Deployment manager.

Tutorial: Troubleshoot Resource Manager template
deployments

Troubleshoot template deployment issues.

TITLE DESCRIPTION

These tutorials can be used individually, or as a series to learn the major Resource Manager template development
concepts.

To view complete templates for many different types of solutions, see the Azure Quickstart Templates.
For details about the functions you can use from within a template, see Azure Resource Manager Template
Functions.
To combine several templates during deployment, see Using linked templates with Azure Resource Manager.
For recommendations about creating templates, see Azure Resource Manager template best practices.
For recommendations on creating Resource Manager templates that you can use across all Azure environments and
Azure Stack, see Develop Azure Resource Manager templates for cloud consistency.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-use-key-vault
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-create-linked-templates
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-deploy-vm-extensions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-deploy-sql-extensions-bacpac
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-secure-artifacts
https://docs.microsoft.com/en-us/azure/azure-resource-manager/deployment-manager-tutorial
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-troubleshoot
https://azure.microsoft.com/documentation/templates/
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-template-functions
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-linked-templates
https://docs.microsoft.com/en-us/azure/azure-resource-manager/template-best-practices
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates-cloud-consistency

Azure Resource Manager template best practices
7/12/2019 • 9 minutes to read • Edit Online

Template limits

Resource group

Parameters

General recommendations for parametersGeneral recommendations for parameters

This article gives recommendations about how to construct your Resource Manager template. These
recommendations help you avoid common problems when using a template to deploy a solution.

For recommendations about how to govern your Azure subscriptions, see Azure enterprise scaffold: Prescriptive
subscription governance.

For recommendations about how to build templates that work in all Azure cloud environments, see Develop Azure
Resource Manager templates for cloud consistency.

Limit the size of your template to 4 MB, and each parameter file to 64 KB. The 4-MB limit applies to the final state
of the template after it has been expanded with iterative resource definitions, and values for variables and
parameters.

You're also limited to:

256 parameters
256 variables
800 resources (including copy count)
64 output values
24,576 characters in a template expression

You can exceed some template limits by using a nested template. For more information, see Using linked templates
when deploying Azure resources. To reduce the number of parameters, variables, or outputs, you can combine
several values into an object. For more information, see Objects as parameters.

When you deploy resources to a resource group, the resource group stores metadata about the resources. The
metadata is stored in the location of the resource group.

If the resource group's region is temporarily unavailable, you can't update resources in the resource group because
the metadata is unavailable. The resources in other regions will still function as expected, but you can't update
them. To minimize risk, locate your resource group and resources in the same region.

The information in this section can be helpful when you work with parameters.

Minimize your use of parameters. Instead, use variables or literal values for properties that don't need to be
specified during deployment.

Use camel case for parameter names.

Use parameters for settings that vary according to the environment, like SKU, size, or capacity.

Use parameters for resource names that you want to specify for easy identification.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/template-best-practices.md
https://docs.microsoft.com/azure/architecture/cloud-adoption/appendix/azure-scaffold?toc=%2Fen-us%2Fazure%2Fazure-resource-manager%2Ftoc.json&bc=%2Fen-us%2Fazure%2Fbread%2Ftoc.json
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-objects-as-parameters

Security recommendations for parametersSecurity recommendations for parameters

"parameters": {
 "storageAccountType": {
 "type": "string",
 "metadata": {
 "description": "The type of the new storage account created to store the VM disks."
 }
 }
}

"parameters": {
 "storageAccountType": {
 "type": "string",
 "defaultValue": "Standard_GRS",
 "metadata": {
 "description": "The type of the new storage account created to store the VM disks."
 }
 }
}

"storageAccountName": {
 "type": "string",
 "defaultValue": "[concat('storage', uniqueString(resourceGroup().id))]",
 "metadata": {
 "description": "Name of the storage account"
 }
},

Provide a description of every parameter in the metadata:

Define default values for parameters that aren't sensitive. By specifying a default value, it's easier to deploy
the template, and users of your template see an example of an appropriate value. Any default value for a
parameter must be valid for all users in the default deployment configuration.

To specify an optional parameter, don't use an empty string as a default value. Instead, use a literal value or a
language expression to construct a value.

Don't use a parameter for the API version for a resource type. Resource properties and values can vary by
version number. IntelliSense in a code editor can't determine the correct schema when the API version is set
to a parameter. Instead, hard-code the API version in the template.

Use allowedValues sparingly. Use it only when you must make sure some values aren't included in the
permitted options. If you use allowedValues too broadly, you might block valid deployments by not keeping
your list up-to-date.

When a parameter name in your template matches a parameter in the PowerShell deployment command,
Resource Manager resolves this naming conflict by adding the postfix FromTemplate to the template
parameter. For example, if you include a parameter named ResourceGroupName in your template, it
conflicts with the ResourceGroupName parameter in the New-AzResourceGroupDeployment cmdlet.
During deployment, you're prompted to provide a value for ResourceGroupNameFromTemplate.

Always use parameters for user names and passwords (or secrets).

Use securestring for all passwords and secrets. If you pass sensitive data in a JSON object, use the
secureObject type. Template parameters with secure string or secure object types can't be read after

resource deployment.

https://docs.microsoft.com/powershell/module/az.resources/new-azresourcegroupdeployment

Location recommendations for parametersLocation recommendations for parameters

Variables

"parameters": {
 "secretValue": {
 "type": "securestring",
 "metadata": {
 "description": "The value of the secret to store in the vault."
 }
 }
}

Don't provide default values for user names, passwords, or any value that requires a secureString type.

Don't provide default values for properties that increase the attack surface area of the application.

"parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "The location in which the resources should be deployed."
 }
 }
},

Use a parameter to specify the location for resources, and set the default value to resourceGroup().location .
Providing a location parameter enables users of the template to specify a location that they have permission
to deploy to.

Don't specify allowedValues for the location parameter. The locations you specify might not be available in
all clouds.

Use the location parameter value for resources that are likely to be in the same location. This approach
minimizes the number of times users are asked to provide location information.

For resources that aren't available in all locations, use a separate parameter or specify a literal location value.

The following information can be helpful when you work with variables:

Use variables for values that you need to use more than once in a template. If a value is used only once, a
hard-coded value makes your template easier to read.

Use variables for values that you construct from a complex arrangement of template functions. Your
template is easier to read when the complex expression only appears in variables.

Don't use variables for apiVersion on a resource. The API version determines the schema of the resource.
Often, you can't change the version without changing the properties for the resource.

You can't use the reference function in the variables section of the template. The reference function derives
its value from the resource's runtime state. However, variables are resolved during the initial parsing of the
template. Construct values that need the reference function directly in the resources or outputs section of
the template.

Include variables for resource names that must be unique.

Use a copy loop in variables to create a repeated pattern of JSON objects.

Remove unused variables.

Resource dependencies

Resources

When deciding what dependencies to set, use the following guidelines:

Use the reference function and pass in the resource name to set an implicit dependency between resources
that need to share a property. Don't add an explicit dependsOn element when you've already defined an
implicit dependency. This approach reduces the risk of having unnecessary dependencies.

Set a child resource as dependent on its parent resource.

Resources with the condition element set to false are automatically removed from the dependency order.
Set the dependencies as if the resource is always deployed.

Let dependencies cascade without setting them explicitly. For example, your virtual machine depends on a
virtual network interface, and the virtual network interface depends on a virtual network and public IP
addresses. Therefore, the virtual machine is deployed after all three resources, but don't explicitly set the
virtual machine as dependent on all three resources. This approach clarifies the dependency order and
makes it easier to change the template later.

If a value can be determined before deployment, try deploying the resource without a dependency. For
example, if a configuration value needs the name of another resource, you might not need a dependency.
This guidance doesn't always work because some resources verify the existence of the other resource. If you
receive an error, add a dependency.

The following information can be helpful when you work with resources:

"resources": [
 {
 "name": "[variables('storageAccountName')]",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2016-01-01",
 "location": "[resourceGroup().location]",
 "comments": "This storage account is used to store the VM disks.",
 ...
 }
]

"osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat(reference(concat('Microsoft.Storage/storageAccounts/',
variables('storageAccountName')), '2016-01-01').primaryEndpoints.blob,
variables('vmStorageAccountContainerName'), '/',variables('OSDiskName'),'.vhd')]"
 }
}

To help other contributors understand the purpose of the resource, specify comments for each resource in
the template:

If you use a public endpoint in your template (such as an Azure Blob storage public endpoint), don't hard-
code the namespace. Use the reference function to dynamically retrieve the namespace. You can use this
approach to deploy the template to different public namespace environments without manually changing
the endpoint in the template. Set the API version to the same version that you're using for the storage
account in your template:

If the storage account is deployed in the same template that you're creating, you don't need to specify the

"osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat(reference(variables('storageAccountName'), '2016-01-01').primaryEndpoints.blob,
variables('vmStorageAccountContainerName'), '/',variables('OSDiskName'),'.vhd')]"
 }
}

"diagnosticsProfile": {
 "bootDiagnostics": {
 "enabled": "true",
 "storageUri": "[reference(concat('Microsoft.Storage/storageAccounts/',
variables('storageAccountName')), '2016-01-01').primaryEndpoints.blob]"
 }
}

"osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri":"[concat(reference(resourceId(parameters('existingResourceGroup'),
'Microsoft.Storage/storageAccounts/', parameters('existingStorageAccountName')), '2016-01-
01').primaryEndpoints.blob, variables('vmStorageAccountContainerName'), '/',
variables('OSDiskName'),'.vhd')]"
 }
}

provider namespace when you reference the resource. The following example shows the simplified syntax:

If you have other values in your template that are configured to use a public namespace, change these
values to reflect the same reference function. For example, you can set the storageUri property of the
virtual machine diagnostics profile:

You also can reference an existing storage account that is in a different resource group:

Assign public IP addresses to a virtual machine only when an application requires it. To connect to a virtual
machine (VM) for debugging, or for management or administrative purposes, use inbound NAT rules, a
virtual network gateway, or a jumpbox.

For more information about connecting to virtual machines, see:

Run VMs for an N-tier architecture in Azure
Set up WinRM access for VMs in Azure Resource Manager
Allow external access to your VM by using the Azure portal
Allow external access to your VM by using PowerShell
Allow external access to your Linux VM by using Azure CLI

The domainNameLabel property for public IP addresses must be unique. The domainNameLabel value
must be between 3 and 63 characters long, and follow the rules specified by this regular expression:
^[a-z][a-z0-9-]{1,61}[a-z0-9]$. Because the uniqueString function generates a string that is 13 characters

long, the dnsPrefixString parameter is limited to 50 characters:

https://docs.microsoft.com/en-us/azure/guidance/guidance-compute-n-tier-vm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/winrm
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/nsg-quickstart-powershell
https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-linux-nsg-quickstart

Outputs

"outputs": {
 "fqdn": {
 "value": "[reference(parameters('publicIPAddresses_name')).dnsSettings.fqdn]",
 "type": "string"
 },
 "ipaddress": {
 "value": "[reference(parameters('publicIPAddresses_name')).ipAddress]",
 "type": "string"
 }
}

Next steps

"parameters": {
 "dnsPrefixString": {
 "type": "string",
 "maxLength": 50,
 "metadata": {
 "description": "The DNS label for the public IP address. It must be lowercase. It should
match the following regular expression, or it will raise an error: ^[a-z][a-z0-9-]{1,61}[a-z0-9]$"
 }
 }
},
"variables": {
 "dnsPrefix": "[concat(parameters('dnsPrefixString'),uniquestring(resourceGroup().id))]"
}

"properties": {
 "publisher": "Microsoft.Azure.Extensions",
 "type": "CustomScript",
 "typeHandlerVersion": "2.0",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": [
 "[concat(variables('template').assets, '/lamp-app/install_lamp.sh')]"
]
 },
 "protectedSettings": {
 "commandToExecute": "[concat('sh install_lamp.sh ', parameters('mySqlPassword'))]"
 }
}

NOTENOTE

When you add a password to a custom script extension, use the commandToExecute property in the
protectedSettings property:

To ensure that secrets are encrypted when they are passed as parameters to VMs and extensions, use the
protectedSettings property of the relevant extensions.

If you use a template to create public IP addresses, include an outputs section that returns details of the IP address
and the fully qualified domain name (FQDN). You can use output values to easily retrieve details about public IP
addresses and FQDNs after deployment.

For information about the structure of the Resource Manager template file, see Understand the structure and

syntax of Azure Resource Manager Templates.
For recommendations about how to build templates that work in all Azure cloud environments, see Develop
Azure Resource Manager templates for cloud consistency.

Develop Azure Resource Manager templates for
cloud consistency
4/19/2019 • 26 minutes to read • Edit Online

IMPORTANTIMPORTANT
Using this Azure feature from PowerShell requires the AzureRM module installed. This is an older module only available for
Windows PowerShell 5.1 that no longer receives new features. The Az and AzureRM modules are not compatible when
installed for the same versions of PowerShell. If you need both versions:

1. Uninstall the Az module from a PowerShell 5.1 session.
2. Install the AzureRM module from a PowerShell 5.1 session.
3. Download and install PowerShell Core 6.x or later.
4. Install the Az module in a PowerShell Core session.

A key benefit of Azure is consistency. Development investments for one location are reusable in another. A
template makes your deployments consistent and repeatable across environments, including the global Azure,
Azure sovereign clouds, and Azure Stack. To reuse templates across clouds, however, you need to consider cloud-
specific dependencies as this guide explains.

Microsoft offers intelligent, enterprise-ready cloud services in many locations, including:

The global Azure platform supported by a growing network of Microsoft-managed datacenters in regions
around the world.
Isolated sovereign clouds like Azure Germany, Azure Government, and Azure China (Azure operated by
21Vianet). Sovereign clouds provide a consistent platform with most of the same great features that global
Azure customers have access to.
Azure Stack, a hybrid cloud platform that lets you deliver Azure services from your organization's datacenter.
Enterprises can set up Azure Stack in their own datacenters, or consume Azure Services from service providers,
running Azure Stack in their facilities (sometimes known as hosted regions).

At the core of all these clouds, Azure Resource Manager provides an API that allows a wide variety of user
interfaces to communicate with the Azure platform. This API gives you powerful infrastructure-as-code
capabilities. Any type of resource that is available on the Azure cloud platform can be deployed and configured
with Azure Resource Manager. With a single template, you can deploy and configure your complete application to
an operational end state.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/templates-cloud-consistency.md
https://docs.microsoft.com/powershell/azure/uninstall-az-ps
https://docs.microsoft.com/powershell/azure/azurerm/install-azurerm-ps
https://docs.microsoft.com/powershell/scripting/install/installing-powershell-core-on-windows
https://docs.microsoft.com/powershell/azure/install-az-ps

Ensure template functions work

The consistency of global Azure, the sovereign clouds, hosted clouds, and a cloud in your datacenter helps you
benefit from Azure Resource Manager. You can reuse your development investments across these clouds when
you set up template-based resource deployment and configuration.

However, even though the global, sovereign, hosted, and hybrid clouds provide consistent services, not all clouds
are identical. As a result, you can create a template with dependencies on features available only in a specific cloud.

The rest of this guide describes the areas to consider when planning to develop new or updating existing Azure
Resource Manager templates for Azure Stack. In general, your checklist should include the following items:

Verify that the functions, endpoints, services, and other resources in your template are available in the target
deployment locations.
Store nested templates and configuration artifacts in accessible locations, ensuring access across clouds.
Use dynamic references instead of hard-coding links and elements.
Ensure the template parameters you use work in the target clouds.
Verify that resource-specific properties are available the target clouds.

For an introduction to Azure Resource Manger templates, see Template deployment.

The basic syntax of a Resource Manager template is JSON. Templates use a superset of JSON, extending the
syntax with expressions and functions. The template language processor is frequently updated to support
additional template functions. For a detailed explanation of the available template functions, see Azure Resource
Manager template functions.

New template functions that are introduced to Azure Resource Manager aren't immediately available in the
sovereign clouds or Azure Stack. To deploy a template successfully, all functions referenced in the template must
be available in the target cloud.

Azure Resource Manager capabilities will always be introduced to global Azure first. You can use the following
PowerShell script to verify whether newly introduced template functions are also available in Azure Stack:

1. Make a clone of the GitHub repository: https://github.com/marcvaneijk/arm-template-functions.

2. Once you have a local clone of the repository, connect to the destination's Azure Resource Manager with
PowerShell.

https://github.com/marcvaneijk/arm-template-functions

Working with linked artifacts

Use nested templates across regionsUse nested templates across regions

"resources": [
 {
 "apiVersion": "2017-05-10",
 "name": "linkedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "incremental",
 "templateLink": {
 "uri":"https://mystorageaccount.blob.core.windows.net/AzureTemplates/vNet.json",
 "contentVersion":"1.0.0.0"
 }
 }
 }
]

Make linked templates accessible across cloudsMake linked templates accessible across clouds

Import the module
Import-module <path to local clone>\AzTemplateFunctions.psm1

Execute the Test-AzureRmTemplateFunctions cmdlet
Test-AzureRmTemplateFunctions -path <path to local clone>

3. Import the psm1 module and execute the Test-AzureRmureRmTemplateFunctions cmdlet:

The script deploys multiple, minimized templates, each containing only unique template functions. The output of
the script reports the supported and unavailable template functions.

A template can contain references to linked artifacts and contain a deployment resource that links to another
template. The linked templates (also referred to as nested template) are retrieved by Resource Manager at
runtime. A template can also contain references to artifacts for virtual machine (VM) extensions. These artifacts
are retrieved by the VM extension running inside of the VM for configuration of the VM extension during the
template deployment.

The following sections describe considerations for cloud consistency when developing templates that include
artifacts that are external to the main deployment template.

Templates can be decomposed into small, reusable templates, each of which has a specific purpose and can be
reused across deployment scenarios. To execute a deployment, you specify a single template known as the main or
master template. It specifies the resources to deploy, such as virtual networks, VMs, and web apps. The main
template can also contain a link to another template, meaning you can nest templates. Likewise, a nested template
can contain links to other templates. You can nest up to five levels deep.

The following code shows how the templateLink parameter refers to a nested template:

Azure Resource Manager evaluates the main template at runtime and retrieves and evaluates each nested
template. After all nested templates are retrieved, the template is flattened, and further processing is initiated.

Consider where and how to store any linked templates you use. At runtime, Azure Resource Manager fetches—
and therefore requires direct access to—any linked templates. A common practice is to use GitHub to store the
nested templates. A GitHub repository can contain files that are accessible publicly through a URL. Although this
technique works well for the public cloud and the sovereign clouds, an Azure Stack environment might be located
on a corporate network or on a disconnected remote location, without any outbound Internet access. In those
cases, Azure Resource Manager would fail to retrieve the nested templates.

"parameters": {
 "_artifactsLocation": {
 "type": "string",
 "metadata": {
 "description": "The base URI where artifacts required by this template are located."
 },
 "defaultValue": "https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/201-vm-custom-
script-windows/"
 },
 "_artifactsLocationSasToken": {
 "type": "securestring",
 "metadata": {
 "description": "The sasToken required to access _artifactsLocation."
 },
 "defaultValue": ""
 }
}

"resources": [
 {
 "name": "shared",
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2015-01-01",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[uri(parameters('_artifactsLocation'), concat('nested/vnet.json',
parameters('_artifactsLocationSasToken')))]",
 "contentVersion": "1.0.0.0"
 }
 }
 }
]

A better practice for cross-cloud deployments is to store your linked templates in a location that is accessible for
the target cloud. Ideally all deployment artifacts are maintained in and deployed from a continuous
integration/continuous development (CI/CD) pipeline. Alternatively, you can store nested templates in a blob
storage container, from which Azure Resource Manager can retrieve them.

Since the blob storage on each cloud uses a different endpoint fully qualified domain name (FQDN), configure the
template with the location of the linked templates with two parameters. Parameters can accept user input at
deployment time. Templates are typically authored and shared by multiple people, so a best practice is to use a
standard name for these parameters. Naming conventions help make templates more reusable across regions,
clouds, and authors.

In the following code, _artifactsLocation is used to point to a single location, containing all deployment-related
artifacts. Notice that a default value is provided. At deployment time, if no input value is specified for
_artifactsLocation , the default value is used. The _artifactsLocationSasToken is used as input for the sasToken .

The default value should be an empty string for scenarios where the _artifactsLocation isn't secured — for
example, a public GitHub repository.

Throughout the template, links are generated by combining the base URI (from the _artifactsLocation

parameter) with an artifact-relative path and the _artifactsLocationSasToken . The following code shows how to
specify the link to the nested template using the uri template function:

By using this approach, the default value for the _artifactsLocation parameter is used. If the linked templates
need to be retrieved from a different location, the parameter input can be used at deployment time to override the
default value—no change to the template itself is needed.

Use _artifactsLocation instead of hardcoding linksUse _artifactsLocation instead of hardcoding links

"properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.9",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": [
 "https://raw.githubusercontent.com/Microsoft/dotnet-core-sample-templates/master/dotnet-core-music-
windows/scripts/configure-music-app.ps1"
]
 }
}

"parameters": {
 "_artifactsLocation": {
 "type": "string",
 "metadata": {
 "description": "The base URI where artifacts required by this template are located."
 },
 "defaultValue": "https://raw.githubusercontent.com/Microsoft/dotnet-core-sample-templates/master/dotnet-
core-music-windows/"
 },
 "_artifactsLocationSasToken": {
 "type": "securestring",
 "metadata": {
 "description": "The sasToken required to access _artifactsLocation."
 },
 "defaultValue": ""
 }
}

Besides being used for nested templates, the URL in the _artifactsLocation parameter is used as a base for all
related artifacts of a deployment template. Some VM extensions include a link to a script stored outside the
template. For these extensions, you should not hardcode the links. For example, the Custom Script and PowerShell
DSC extensions may link to an external script on GitHub as shown:

Hardcoding the links to the script potentially prevents the template from deploying successfully to another
location. During configuration of the VM resource, the VM agent running inside the VM initiates a download of all
the scripts linked in the VM extension, and then stores the scripts on the VM's local disk. This approach functions
like the nested template links explained earlier in the "Use nested templates across regions" section.

Resource Manager retrieves nested templates at runtime. For VM extensions, the retrieval of any external artifacts
is performed by the VM agent. Besides the different initiator of the artifact retrieval, the solution in the template
definition is the same. Use the _artifactsLocation parameter with a default value of the base path where all the
artifacts are stored (including the VM extension scripts) and the _artifactsLocationSasToken parameter for the
input for the sasToken.

To construct the absolute URI of an artifact, the preferred method is to use the uri template function, instead of the
concat template function. By replacing hardcoded links to the scripts in the VM extension with the uri template
function, this functionality in the template is configured for cloud consistency.

"properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.9",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "fileUris": [
 "[uri(parameters('_artifactsLocation'), concat('scripts/configure-music-app.ps1',
parameters('_artifactsLocationSasToken')))]"
]
 }
}

Factor in differing regional capabilities

With this approach, all deployment artifacts, including configuration scripts, can be stored in the same location
with the template itself. To change the location of all the links, you only need to specify a different base URL for the
artifactsLocation parameters.

With the agile development and continuous flow of updates and new services introduced to Azure, regions can
differ in availability of services or updates. After rigorous internal testing, new services or updates to existing
services are usually introduced to a small audience of customers participating in a validation program. After
successful customer validation, the services or updates are made available within a subset of Azure regions, then
introduced to more regions, rolled out to the sovereign clouds, and potentially made available for Azure Stack
customers as well.

Knowing that Azure regions and clouds may differ in their available services, you can make some proactive
decisions about your templates. A good place to start is by examining the available resource providers for a cloud.
A resource provider tells you the set of resources and operations that are available for an Azure service.

A template deploys and configures resources. A resource type is provided by a resource provider. For example, the
compute resource provider (Microsoft.Compute), provides multiple resource types such as virtualMachines and
availabilitySets. Each resource provider provides an API to Azure Resource Manager defined by a common
contract, enabling a consistent, unified authoring experience across all resource providers. However, a resource
provider that is available in global Azure may not be available in a sovereign cloud or an Azure Stack region.

To verify the resource providers that are available in a given cloud, run the following script in the Azure command
line interface (CLI):

https://azure.microsoft.com/regions/services/
https://docs.microsoft.com/cli/azure/install-azure-cli

az provider list --query "[].{Provider:namespace, Status:registrationState}" --out table

Get-AzureRmResourceProvider -ListAvailable | Select-Object ProviderNamespace, RegistrationState

Verify the version of all resource typesVerify the version of all resource types

az provider list --query "[].{namespace:namespace, resourceType:resourceType[]}"

Get-AzureRmResourceProvider | select-object ProviderNamespace -ExpandProperty ResourceTypes | ft
ProviderNamespace, ResourceTypeName, ApiVersions

Refer to resource locations with a parameterRefer to resource locations with a parameter

You can also use the following PowerShell cmdlet to see available resource providers:

A set of properties is common for all resource types, but each resource also has its own specific properties. New
features and related properties are added to existing resource types at times through a new API version. A
resource in a template has its own API version property - apiVersion . This versioning ensures that an existing
resource configuration in a template is not affected by changes on the platform.

New API versions introduced to existing resource types in global Azure might not immediately be available in all
regions, sovereign clouds, or Azure Stack. To view a list of the available resource providers, resource types, and
API versions for a cloud, you can use Resource Explorer in Azure portal. Search for Resource Explorer in the All
Services menu. Expand the Providers node in Resource Explorer to return all the available resource providers, their
resource types, and API versions in that cloud.

To list the available API version for all resource types in a given cloud in Azure CLI, run the following script:

You can also use the following PowerShell cmdlet:

A template is always deployed into a resource group that resides in a region. Besides the deployment itself, each
resource in a template also has a location property that you use to specify the region to deploy in. To develop your
template for cloud consistency, you need a dynamic way to refer to resource locations, because each Azure Stack
can contain unique location names. Usually resources are deployed in the same region as the resource group, but
to support scenarios such as cross-region application availability, it can be useful to spread resources across
regions.

Even though you could hardcode the region names when specifying the resource properties in a template, this
approach doesn't guarantee that the template can be deployed to other Azure Stack environments, because the
region name most likely doesn't exist there.

To accommodate different regions, add an input parameter location to the template with a default value. The
default value will be used if no value is specified during deployment.

The template function [resourceGroup()] returns an object that contains the following key/value pairs:

{
 "id": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}",
 "name": "{resourceGroupName}",
 "location": "{resourceGroupLocation}",
 "tags": {
 },
 "properties": {
 "provisioningState": "{status}"
 }
}

"parameters": {
 "location": {
 "type": "string",
 "metadata": {
 "description": "Location the resources will be deployed to."
 },
 "defaultValue": "[resourceGroup().location]"
 }
},
"resources": [
 {
 "name": "storageaccount1",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2015-06-15",
 "location": "[parameters('location')]",
 ...

Track versions using API profilesTrack versions using API profiles

By referencing the location key of the object in the defaultValue of the input parameter, Azure Resource Manager
will, at runtime, replace the [resourceGroup().location] template function with the name of the location of the
resource group the template is deployed to.

With this template function, you can deploy your template to any cloud without even knowing the region names in
advance. In addition, a location for a specific resource in the template can differ from the resource group location.
In this case, you can configure it by using additional input parameters for that specific resource, while the other
resources in the same template still use the initial location input parameter.

It can be very challenging to keep track of all the available resource providers and related API versions that are
present in Azure Stack. For example, at the time of writing, the latest API version for
Microsoft.Compute/availabilitySets in Azure is 2018-04-01 , while the available API version common to Azure
and Azure Stack is 2016-03-30 . The common API version for Microsoft.Storage/storageAccounts shared
among all Azure and Azure Stack locations is 2016-01-01 , while the latest API version in Azure is 2018-02-01 .

For this reason, Resource Manager introduced the concept of API profiles to templates. Without API profiles, each
resource in a template is configured with an apiVersion element that describes the API version for that specific
resource.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "metadata": {
 "description": "Location the resources will be deployed to."
 },
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "variables": {},
 "resources": [
 {
 "name": "mystorageaccount",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2016-01-01",
 "location": "[parameters('location')]",
 "properties": {
 "accountType": "Standard_LRS"
 }
 },
 {
 "name": "myavailabilityset",
 "type": "Microsoft.Compute/availabilitySets",
 "apiVersion": "2016-03-30",
 "location": "[parameters('location')]",
 "properties": {
 "platformFaultDomainCount": 2,
 "platformUpdateDomainCount": 2
 }
 }
],
 "outputs": {}
}

An API profile version acts as an alias for a single API version per resource type common to Azure and Azure
Stack. Instead of specifying an API version for each resource in a template, you specify only the API profile version
in a new root element called apiProfile and omit the apiVersion element for the individual resources.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "apiProfile": "2018–03-01-hybrid",
 "parameters": {
 "location": {
 "type": "string",
 "metadata": {
 "description": "Location the resources will be deployed to."
 },
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "variables": {},
 "resources": [
 {
 "name": "mystorageaccount",
 "type": "Microsoft.Storage/storageAccounts",
 "location": "[parameters('location')]",
 "properties": {
 "accountType": "Standard_LRS"
 }
 },
 {
 "name": "myavailabilityset",
 "type": "Microsoft.Compute/availabilitySets",
 "location": "[parameters('location')]",
 "properties": {
 "platformFaultDomainCount": 2,
 "platformUpdateDomainCount": 2
 }
 }
],
 "outputs": {}
}

The API profile ensures that the API versions are available across locations, so you do not have to manually verify
the apiVersions that are available in a specific location. To ensure the API versions referenced by your API profile
are present in an Azure Stack environment, the Azure Stack operators must keep the solution up-to-date based on
the policy for support. If a system is more than six months out of date, it is considered out of compliance, and the
environment must be updated.

The API profile isn't a required element in a template. Even if you add the element, it will only be used for
resources for which no apiVersion is specified. This element allows for gradual changes but doesn't require any
changes to existing templates.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "apiProfile": "2018–03-01-hybrid",
 "parameters": {
 "location": {
 "type": "string",
 "metadata": {
 "description": "Location the resources will be deployed to."
 },
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "variables": {},
 "resources": [
 {
 "name": "mystorageaccount",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2016-01-01",
 "location": "[parameters('location')]",
 "properties": {
 "accountType": "Standard_LRS"
 }
 },
 {
 "name": "myavailabilityset",
 "type": "Microsoft.Compute/availabilitySets",
 "location": "[parameters('location')]",
 "properties": {
 "platformFaultDomainCount": 2,
 "platformUpdateDomainCount": 2
 }
 }
],
 "outputs": {}
}

Check endpoint references

NOTENOTE

Resources can have references to other services on the platform. For example, a public IP can have a public DNS
name assigned to it. The public cloud, the sovereign clouds, and Azure Stack solutions have their own distinct
endpoint namespaces. In most cases, a resource requires only a prefix as input in the template. During runtime,
Azure Resource Manager appends the endpoint value to it. Some endpoint values need to be explicitly specified in
the template.

To develop templates for cloud consistency, don't hardcode endpoint namespaces.

The following two examples are common endpoint namespaces that need to be explicitly specified when creating a
resource:

Storage accounts (blob, queue, table and file)
Connection strings for databases and Azure Cache for Redis

Endpoint namespaces can also be used in the output of a template as information for the user when the
deployment completes. The following are common examples:

Storage accounts (blob, queue, table and file)
Connection strings (MySql, SQLServer, SQLAzure, Custom, NotificationHub, ServiceBus, EventHub, ApiHub,

"diskUri":"[concat(reference(concat('Microsoft.Storage/storageAccounts/', variables('storageAccountName')),
'2015-06-15').primaryEndpoints.blob, 'container/myosdisk.vhd')]"

Refer to existing resources by unique IDRefer to existing resources by unique ID

"outputs": {
 "resourceId":{
 "type": "string",
 "value": "[resourceId('otherResourceGroup', 'Microsoft.Sql/servers', parameters('serverName'))]"
 }
}

"[concat('Server=tcp:', reference(resourceId('sql', 'Microsoft.Sql/servers', parameters('test')), '2015-05-01-
preview').fullyQualifiedDomainName, ',1433;Initial Catalog=', parameters('database'),';User ID=',
parameters('username'), ';Password=', parameters('pass'), ';Encrypt=True;')]"

Consider resource properties

Ensure VM images are availableEnsure VM images are available

DocDb, RedisCache, PostgreSQL)
Traffic Manager
domainNameLabel of a public IP address
Cloud services

In general, avoid hardcoded endpoints in a template. The best practice is to use the reference template function to
retrieve the endpoints dynamically. For example, the endpoint most commonly hardcoded is the endpoint
namespace for storage accounts. Each storage account has a unique FQDN that is constructed by concatenating
the name of the storage account with the endpoint namespace. A blob storage account named mystorageaccount1
results in different FQDNs depending on the cloud:

mystorageaccount1.blob.core.windows.net when created on the global Azure cloud.
mystorageaccount1.blob.core.chinacloudapi.cn when created in the Azure China cloud.

The following reference template function retrieves the endpoint namespace from the storage resource provider:

By replacing the hardcoded value of the storage account endpoint with the reference template function, you can
use the same template to deploy to different environments successfully without making any changes to the
endpoint reference.

You can also refer to an existing resource from the same or another resource group, and within the same
subscription or another subscription, within the same tenant in the same cloud. To retrieve the resource properties,
you must use the unique identifier for the resource itself. The resourceId template function retrieves the unique
ID of a resource such as SQL Server as the following code shows:

You can then use the resourceId function inside the reference template function to retrieve the properties of a
database. The return object contains the fullyQualifiedDomainName property that holds the full endpoint value.
This value is retrieved at runtime and provides the cloud environment-specific endpoint namespace. To define the
connection string without hardcoding the endpoint namespace, you can refer to the property of the return object
directly in the connection string as shown:

Specific resources within Azure Stack environments have unique properties you must consider in your template.

Azure provides a rich selection of VM images. These images are created and prepared for deployment by
Microsoft and partners. The images form the foundation for VMs on the platform. However, a cloud-consistent

az vm image list -all

Get-AzureRmVMImagePublisher -Location "West Europe" | Get-AzureRmVMImageOffer | Get-AzureRmVMImageSku | Get-
AzureRmVMImage

"storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindowsServer",
 "offer": "WindowsServer",
 "sku": "2016-Datacenter",
 "version": "latest"
 }
}

Check local VM sizesCheck local VM sizes

az vm list-sizes --location "West Europe"

Get-AzureRmVMSize -Location "West Europe"

Check use of Azure Managed Disks in Azure StackCheck use of Azure Managed Disks in Azure Stack

template should refer to available parameters only — in particular, the publisher, offer, and SKU of the VM images
available to the global Azure, Azure sovereign clouds, or an Azure Stack solution.

To retrieve a list of the available VM images in a location, run the following Azure CLI command:

You can retrieve the same list with the Azure PowerShell cmdlet Get-AzureRmVMImagePublisher and specify the
location you want with the -Location parameter. For example:

This command takes a couple of minutes to return all the available images in the West Europe region of the global
Azure cloud.

If you made these VM images available to Azure Stack, all the available storage would be consumed. To
accommodate even the smallest scale unit, Azure Stack allows you to select the images you want to add to an
environment.

The following code sample shows a consistent approach to refer to the publisher, offer, and SKU parameters in
your Azure Resource Manager templates:

To develop your template for cloud consistency, you need to make sure the VM size you want is available in all
target environments. VM sizes are a grouping of performance characteristics and capabilities. Some VM sizes
depend on the hardware that the VM runs on. For example, if you want to deploy a GPU-optimized VM, the
hardware that runs the hypervisor needs to have the hardware GPUs.

When Microsoft introduces a new size of VM that has certain hardware dependencies, the VM size is usually
made available first in a small subset of regions in the Azure cloud. Later, it is made available to other regions and
clouds. To make sure the VM size exists in each cloud you deploy to, you can retrieve the available sizes with the
following Azure CLI command:

For Azure PowerShell, use:

For a full list of available services, see Products available by region.

Managed disks handle the storage for an Azure tenant. Instead of explicitly creating a storage account and
specifying the URI for a virtual hard disk (VHD), you can use managed disks to implicitly perform these actions

https://docs.microsoft.com/powershell/module/az.compute/get-azvmimagepublisher
https://azure.microsoft.com/global-infrastructure/services/?cdn=disable

"storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindowsServer",
 "offer": "WindowsServer",
 "sku": "[parameters('windowsOSVersion')]",
 "version": "latest"
 },
 "osDisk": {
 "name": "osdisk",
 "vhd": {
 "uri": "[concat(reference(resourceId('Microsoft.Storage/storageAccounts/',
variables('storageAccountName')), '2015-06-15').primaryEndpoints.blob, 'vhds/osdisk.vhd')]"
 },
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
}

"storageProfile": {
 "imageReference": {
 "publisher": "MicrosoftWindowsServer",
 "offer": "WindowsServer",
 "sku": "[parameters('windowsOSVersion')]",
 "version": "latest"
 },
 "osDisk": {
 "caching": "ReadWrite",
 "createOption": "FromImage"
 }
}

Verify that VM extensions are available in Azure StackVerify that VM extensions are available in Azure Stack

Check that VM extensions are availableCheck that VM extensions are available

when you deploy a VM. Managed disks enhance availability by placing all the disks from VMs in the same
availability set into different storage units. Additionally, existing VHDs can be converted from Standard to
Premium storage with significantly less downtime.

Although managed disks are on the roadmap for Azure Stack, they are currently not supported. Until they are, you
can develop cloud-consistent templates for Azure Stack by explicitly specifying VHDs using the vhd element in
the template for the VM resource as shown:

In contrast, to specify a managed disk configuration in a template, remove the vhd element from the disk
configuration.

The same changes also apply data disks.

Another consideration for cloud consistency is the use of virtual machine extensions to configure the resources
inside a VM. Not all VM extensions are available in Azure Stack. A template can specify the resources dedicated to
the VM extension, creating dependencies and conditions within the template.

For example, if you want to configure a VM running Microsoft SQL Server, the VM extension can configure SQL
Server as part the template deployment. Consider what happens if the deployment template also contains an
application server configured to create a database on the VM running SQL Server. Besides also using a VM
extension for the application servers, you can configure the dependency of the application server on the successful
return of the SQL Server VM extension resource. This approach ensures the VM running SQL Server is
configured and available when the application server is instructed to create the database.

The declarative approach of the template allows you to define the end state of the resources and their inter-
dependencies, while the platform takes care of the logic required for the dependencies.

https://docs.microsoft.com/en-us/azure/virtual-machines/windows/using-managed-disks-template-deployments
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/extensions-features

az vm extension image list --location myLocation

Get-AzureRmVmImagePublisher -Location myLocation | Get-AzureRmVMExtensionImageType | Get-
AzureRmVMExtensionImage | Select Type, Version

Ensure that versions are availableEnsure that versions are available

{
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "name": "myExtension",
 "location": "[parameters('location')]",
 ...

Get-AzureRmResourceProvider -ProviderNamespace "Microsoft.Compute" | Select-Object -ExpandProperty
ResourceTypes | Select ResourceTypeName, Locations, ApiVersions | where {$_.ResourceTypeName -eq
"virtualMachines/extensions"}

Get-AzureRmResourceProvider -ProviderNamespace "Microsoft.Compute" | Select-Object -ExpandProperty
ResourceTypes | Select ResourceTypeName, Locations, ApiVersions | where {$_.ResourceTypeName -eq
"virtualMachineScaleSets/extensions"}

Many types of VM extensions exist. When developing template for cloud consistency, make sure to use only the
extensions that are available in all the regions the template targets.

To retrieve a list of the VM extensions that are available for a specific region (in this example, myLocation), run the
following Azure CLI command:

You can also execute the Azure PowerShell Get-AzureRmVmImagePublisher cmdlet and use -Location to specify
the location of the virtual machine image. For example:

Since VM extensions are first-party Resource Manager resources, they have their own API versions. As the
following code shows, the VM extension type is a nested resource in the Microsoft.Compute resource provider.

The API version of the VM extension resource must be present in all the locations you plan to target with your
template. The location dependency works like the resource provider API version availability discussed earlier in
the "Verify the version of all resource types" section.

To retrieve a list of the available API versions for the VM extension resource, use the Get-
AzureRmResourceProvider cmdlet with the Microsoft.Compute resource provider as shown:

You can also use VM extensions in virtual machine scale sets. The same location conditions apply. To develop your
template for cloud consistency, make sure the API versions are available in all the locations you plan on deploying
to. To retrieve the API versions of the VM extension resource for scale sets, use the same cmdlet as before, but
specify the virtual machine scale sets resource type as shown:

Each specific extension is also versioned. This version is shown in the typeHandlerVersion property of the VM
extension. Make sure that the version specified in the typeHandlerVersion element of your template's VM
extensions are available in the locations where you plan to deploy the template. For example, the following code
specifies version 1.7:

https://docs.microsoft.com/powershell/module/az.compute/get-azvmimagepublisher
https://docs.microsoft.com/powershell/module/az.resources/get-azresourceprovider

{
 "name": "MyCustomScriptExtension",
 "type": "extensions",
 "apiVersion": "2016-03-30",
 "location": "[parameters('location')]",
 "dependsOn": [
 "[concat('Microsoft.Compute/virtualMachines/myVM', copyindex())]"
],
 "properties": {
 "publisher": "Microsoft.Compute",
 "type": "CustomScriptExtension",
 "typeHandlerVersion": "1.7",
 ...

Get-AzureRmVMExtensionImage -Location myLocation -PublisherName Microsoft.PowerShell -Type DSC | FT

Tips for testing and automation

To retrieve a list of the available versions for a specific VM extension, use the Get-AzureRmVMExtensionImage
cmdlet. The following example retrieves the available versions for the PowerShell DSC (Desired State
Configuration) VM extension from myLocation:

To get a list of publishers, use the Get-AzureRmVmImagePublisher command. To request type, use the Get-
AzureRmVMExtensionImageType commend.

It's a challenge to keep track of all related settings, capabilities, and limitations while authoring a template. The
common approach is to develop and test templates against a single cloud before other locations are targeted.
However, the earlier that tests are performed in the authoring process, the less troubleshooting and code rewriting
your development team will have to do. Deployments that fail because of location dependencies can be time-
consuming to troubleshoot. That’s why we recommend automated testing as early as possible in the authoring
cycle. Ultimately, you'll need less development time and fewer resources, and your cloud-consistent artifacts will
become even more valuable.

The following image shows a typical example of a development process for a team using an integrated
development environment (IDE). At different stages in the timeline, different test types are executed. Here, two
developers are working on the same solution, but this scenario applies equally to a single developer or a large
team. Each developer typically creates a local copy of a central repository, enabling each one to work on the local
copy without impacting the others who may be working on the same files.

Consider the following tips for testing and automation:

Do make use of testing tools. For example, Visual Studio Code and Visual Studio include IntelliSense and other
features that can help you validate your templates.

https://docs.microsoft.com/powershell/module/az.compute/get-azvmextensionimage
https://docs.microsoft.com/powershell/module/az.compute/get-azvmimagepublisher
https://docs.microsoft.com/powershell/module/az.compute/get-azvmextensionimagetype

Next steps

To improve the code quality during development on the local IDE, perform static code analysis with unit tests
and integration tests.
For an even better experience during initial development, unit tests and integration tests should only warn
when an issue is found and proceed with the tests. That way, you can identify the issues to addressed and
prioritize the order of the changes, also referred to as test-driven deployment (TDD).
Be aware that some tests can be performed without being connected to Azure Resource Manager. Others, like
testing template deployment, require Resource Manager to perform certain actions that cannot be performed
offline.
Testing a deployment template against the validation API isn't equal to an actual deployment. Also, even if you
deploy a template from a local file, any references to nested templates in the template are retrieved by
Resource Manager directly, and artifacts referenced by VM extensions are retrieved by the VM agent running
inside the deployed VM.

Azure Resource Manager template considerations
Best practices for Azure Resource Manager templates

https://docs.microsoft.com/azure-stack/user/azure-stack-develop-templates

Azure Resource Manager deployment modes
7/2/2019 • 3 minutes to read • Edit Online

Complete mode

NOTENOTE

Incremental mode

When deploying your resources, you specify that the deployment is either an incremental update or a complete
update. The primary difference between these two modes is how Resource Manager handles existing resources in
the resource group that aren't in the template. The default mode is incremental.

For both modes, Resource Manager tries to create all resources specified in the template. If the resource already
exists in the resource group and its settings are unchanged, no operation is taken for that resource. If you change
the property values for a resource, the resource is updated with those new values. If you try to update the
location or type of an existing resource, the deployment fails with an error. Instead, deploy a new resource with
the location or type that you need.

In complete mode, Resource Manager deletes resources that exist in the resource group but aren't specified in
the template. Resources that are specified in the template, but not deployed because a condition evaluates to
false, aren't deleted.

Be careful using complete mode with copy loops. Any resources that aren't specified in the template after
resolving the copy loop are deleted.

There are some differences in how resource types handle complete mode deletions. Parent resources are
automatically deleted when not in a template that's deployed in complete mode. Some child resources aren't
automatically deleted when not in the template. However, these child resources are deleted if the parent resource
is deleted.

For example, if your resource group contains a DNS zone (Microsoft.Network/dnsZones resource type) and a
CNAME record (Microsoft.Network/dnsZones/CNAME resource type), the DNS zone is the parent resource for
the CNAME record. If you deploy with complete mode and don't include the DNS zone in your template, the
DNS zone and the CNAME record are both deleted. If you include the DNS zone in your template but don't
include the CNAME record, the CNAME isn't deleted.

For a list of how resource types handle deletion, see Deletion of Azure resources for complete mode
deployments.

If the resource group is locked, complete mode doesn't delete the resources.

Only root-level templates support the complete deployment mode. For linked or nested templates, you must use
incremental mode.

Subscription level deployments don't support complete mode.

Currently, the portal doesn't support complete mode.

In incremental mode, Resource Manager leaves unchanged resources that exist in the resource group but aren't
specified in the template.

However, when redeploying an existing resource in incremental mode, the outcome is a different. Specify all

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/deployment-modes.md

Example result

Set deployment mode

New-AzResourceGroupDeployment `
 -Mode Complete `
 -Name ExampleDeployment `
 -ResourceGroupName ExampleResourceGroup `
 -TemplateFile c:\MyTemplates\storage.json

az group deployment create \
 --name ExampleDeployment \
 --mode Complete \
 --resource-group ExampleGroup \
 --template-file storage.json \
 --parameters storageAccountType=Standard_GRS

properties for the resource, not just the ones you're updating. A common misunderstanding is to think properties
that are not specified are left unchanged. If you don't specify certain properties, Resource Manager interprets the
update as overwriting those values.

To illustrate the difference between incremental and complete modes, consider the following scenario.

Resource Group contains:

Resource A
Resource B
Resource C

Template contains:

Resource A
Resource B
Resource D

When deployed in incremental mode, the resource group has:

Resource A
Resource B
Resource C
Resource D

When deployed in complete mode, Resource C is deleted. The resource group has:

Resource A
Resource B
Resource D

To set the deployment mode when deploying with PowerShell, use the Mode parameter.

To set the deployment mode when deploying with Azure CLI, use the mode parameter.

The following example shows a linked template set to incremental deployment mode:

"resources": [
 {
 "apiVersion": "2017-05-10",
 "name": "linkedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 <nested-template-or-external-template>
 }
 }
]

Next steps
To learn about creating Resource Manager templates, see Authoring Azure Resource Manager templates.
To learn about deploying resources, see Deploy an application with Azure Resource Manager template.
To view the operations for a resource provider, see Azure REST API.

https://docs.microsoft.com/rest/api/

Azure Resource Manager resource group deletion
6/18/2019 • 2 minutes to read • Edit Online

Determine order of deletion

Resource deletion

ErrorsErrors

After deletion

ErrorsErrors

This article describes how Azure Resource Manager orders the deletion of resources when you delete a resource
group.

When you delete a resource group, Resource Manager determines the order to delete resources. It uses the
following order :

1. All the child (nested) resources are deleted.

2. Resources that manage other resources are deleted next. A resource can have the managedBy property set
to indicate that a different resource manages it. When this property is set, the resource that manages the
other resource is deleted before the other resources.

3. The remaining resources are deleted after the previous two categories.

After the order is determined, Resource Manager issues a DELETE operation for each resource. It waits for any
dependencies to finish before proceeding.

For synchronous operations, the expected successful response codes are:

200
204
404

For asynchronous operations, the expected successful response is 202. Resource Manager tracks the location
header or the azure-async operation header to determine the status of the asynchronous delete operation.

When a delete operation returns an error, Resource Manager retries the DELETE call. Retries happen for the 5xx,
429 and 408 status codes. By default, the time period for retry is 15 minutes.

Resource Manager issues a GET call on each resource that it tried to delete. The response of this GET call is
expected to be 404. When Resource Manager gets a 404, it considers the deletion to have completed successfully.
Resource Manager removes the resource from its cache.

However, if the GET call on the resource returns a 200 or 201, Resource Manager recreates the resource.

If the GET operation returns an error, Resource Manager retries the GET for the following error code:

Less than 100
408
429
Greater than 500

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-delete.md

Next steps

For other error codes, Resource Manager fails the deletion of the resource.

To understand Resource Manager concepts, see Azure Resource Manager overview.
For deletion commands, see PowerShell, Azure CLI, and REST API.

https://docs.microsoft.com/powershell/module/az.resources/Remove-AzResourceGroup
https://docs.microsoft.com/cli/azure/group?view=azure-cli-latest#az-group-delete
https://docs.microsoft.com/rest/api/resources/resourcegroups/delete

Enable safe deployment practices with Azure
Deployment Manager (Public preview)
6/11/2019 • 7 minutes to read • Edit Online

Identity and access

Topology template

To deploy your service across many regions and make sure it's running as expected in each region, you can use
Azure Deployment Manager to coordinate a staged rollout of the service. Just as you would for any Azure
deployment, you define the resources for your service in Resource Manager templates. After creating the
templates, you use Deployment Manager to describe the topology for your service and how it should be rolled
out.

Deployment Manager is a feature of Resource Manager. It expands your capabilities during deployment. Use
Deployment Manager when you have a complex service that needs to be deployed to several regions. By staging
the rollout of your service, you can find potential problems before it has been deployed to all regions. If you don't
need the extra precautions of a staged rollout, use the standard deployment options for Resource Manager.
Deployment Manager seamlessly integrates with all existing third-party tools that support Resource Manager
deployments, such as continuous integration and continuous delivery (CI/CD) offerings.

Azure Deployment Manager is in preview. Help us improve the feature by providing feedback.

To use Deployment Manager, you need to create four files:

Topology template
Rollout template
Parameter file for topology
Parameter file for rollout

You deploy the topology template before deploying the rollout template.

Additional resources:

The Azure Deployment Manager REST API reference.
Tutorial: Use Azure Deployment Manager with Resource Manager templates.
Tutorial: Use health check in Azure Deployment Manager.
An Azure Deployment Manager sample.

With Deployment Manager, a user-assigned managed identity performs the deployment actions. You create this
identity before starting your deployment. It must have access to the subscription you're deploying the service to,
and sufficient permission to complete the deployment. For information about the actions granted through roles,
see Built-in roles for Azure resources.

The identity must reside in the same location as the rollout.

The topology template describes the Azure resources that make up your service and where to deploy them. The
following image shows the topology for an example service:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/deployment-manager-overview.md
https://aka.ms/admfeedback
https://docs.microsoft.com/rest/api/deploymentmanager/
https://github.com/Azure-Samples/adm-quickstart
https://docs.microsoft.com/en-us/azure/active-directory/managed-identities-azure-resources/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

 Artifact source for templatesArtifact source for templates

The topology template includes the following resources:

Artifact source - where your Resource Manager templates and parameters are stored
Service topology - points to artifact source

Services - specifies location and Azure subscription ID
Service units - specifies resource group, deployment mode, and path to template and parameter
file

To understand what happens at each level, it's helpful to see which values you provide.

In your topology template, you create an artifact source that holds the templates and parameters files. The artifact
source is a way to pull the files for deployment. You'll see another artifact source for binaries later in this article.

The following example shows the general format of the artifact source.

{
 "type": "Microsoft.DeploymentManager/artifactSources",
 "name": "<artifact-source-name>",
 "location": "<artifact-source-location>",
 "apiVersion": "2018-09-01-preview",
 "properties": {
 "sourceType": "AzureStorage",
 "artifactRoot": "<root-folder-for-templates>",
 "authentication": {
 "type": "SAS",
 "properties": {
 "sasUri": "<SAS-URI-for-storage-container>"
 }
 }
 }
}

Service topologyService topology

{
 "type": "Microsoft.DeploymentManager/serviceTopologies",
 "name": "<topology-name>",
 "location": "<topology-location>",
 "apiVersion": "2018-09-01-preview",
 "properties": {
 "artifactSourceId": "<resource-ID-artifact-source>"
 },
 "dependsOn": [
 "<artifact-source>"
],
 "resources": [
 {
 "type": "services",
 ...
 }
]
}

ServicesServices

For more information, see artifactSources template reference.

The following example shows the general format of the service topology resource. You provide the resource ID of
the artifact source that holds the templates and parameter files. The service topology includes all service
resources. To make sure the artifact source is available, the service topology depends on it.

For more information, see serviceTopologies template reference.

The following example shows the general format of the services resource. In each service, you provide the
location and Azure subscription ID to use for deploying your service. To deploy to several regions, you define a
service for each region. The service depends on the service topology.

https://docs.microsoft.com/azure/templates/Microsoft.DeploymentManager/artifactSources
https://docs.microsoft.com/azure/templates/Microsoft.DeploymentManager/serviceTopologies

{
 "type": "services",
 "name": "<service-name>",
 "location": "<service-location>",
 "apiVersion": "2018-09-01-preview",
 "dependsOn": [
 "<service-topology>"
],
 "properties": {
 "targetSubscriptionId": "<subscription-ID>",
 "targetLocation": "<location-of-deployed-service>"
 },
 "resources": [
 {
 "type": "serviceUnits",
 ...
 }
]
}

Service UnitsService Units

{
 "type": "serviceUnits",
 "name": "<service-unit-name>",
 "location": "<service-unit-location>",
 "apiVersion": "2018-09-01-preview",
 "dependsOn": [
 "<service>"
],
 "tags": {
 "serviceType": "Service West US Web App"
 },
 "properties": {
 "targetResourceGroup": "<resource-group-name>",
 "deploymentMode": "Incremental",
 "artifacts": {
 "templateArtifactSourceRelativePath": "<relative-path-to-template>",
 "parametersArtifactSourceRelativePath": "<relative-path-to-parameter-file>"
 }
 }
}

Rollout template

For more information, see services template reference.

The following example shows the general format of the service units resource. In each service unit, you specify the
resource group, the deployment mode to use for deployment, and the path to the template and parameter file. If
you specify a relative path for the template and parameters, the full path is constructed from the root folder in the
artifacts source. You can specify an absolute path for the template and parameters, but you lose the ability to
easily version your releases. The service unit depends on the service.

Each template should include the related resources that you want to deploy in one step. For example, a service
unit could have a template that deploys all of the resources for your service's front end.

For more information, see serviceUnits template reference.

The rollout template describes the steps to take when deploying your service. You specify the service topology to
use and define the order for deploying service units. It includes an artifact source for storing binaries for the
deployment. In your rollout template, you define the following hierarchy:

https://docs.microsoft.com/azure/templates/Microsoft.DeploymentManager/serviceTopologies/services
https://docs.microsoft.com/azure/templates/Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits

Artifact source for binariesArtifact source for binaries

StepsSteps

{
 "apiVersion": "2018-09-01-preview",
 "type": "Microsoft.DeploymentManager/steps",
 "name": "waitStep",
 "location": "<step-location>",
 "properties": {
 "stepType": "wait",
 "attributes": {
 "duration": "PT1M"
 }
 }
},

RolloutsRollouts

Artifact source
Step
Rollout

Step groups
Deployment operations

The following image shows the hierarchy of the rollout template:

Each rollout can have many step groups. Each step group has one deployment operation that points to a service
unit in the service topology.

In the rollout template, you create an artifact source for the binaries you need to deploy to the service. This
artifact source is similar to the artifact source for templates, except that it contains the scripts, web pages,
compiled code, or other files needed by your service.

You can define a step to perform either before or after your deployment operation. Currently, only the wait step
and the 'healthCheck' step are available.

The wait step pauses the deployment before continuing. It allows you to verify that your service is running as
expected before deploying the next service unit. The following example shows the general format of a wait step.

The duration property uses ISO 8601 standard. The preceding example specifies a one-minute wait.

For more information about the health check step, see Introduce health integration rollout to Azure Deployment
Manager and Tutorial: Use health check in Azure Deployment Manager.

For more information, see steps template reference.

To make sure the artifact source is available, the rollout depends on it. The rollout defines steps groups for each
service unit that is deployed. You can define actions to take before or after deployment. For example, you can

https://en.wikipedia.org/wiki/ISO_8601#Durations
https://docs.microsoft.com/azure/templates/Microsoft.DeploymentManager/steps

{
 "type": "Microsoft.DeploymentManager/rollouts",
 "name": "<rollout-name>",
 "location": "<rollout-location>",
 "apiVersion": "2018-09-01-preview",
 "Identity": {
 "type": "userAssigned",
 "identityIds": [
 "<managed-identity-ID>"
]
 },
 "dependsOn": [
 "<artifact-source>"
],
 "properties": {
 "buildVersion": "1.0.0.0",
 "artifactSourceId": "<artifact-source-ID>",
 "targetServiceTopologyId": "<service-topology-ID>",
 "stepGroups": [
 {
 "name": "stepGroup1",
 "dependsOnStepGroups": ["<step-group-name>"],
 "preDeploymentSteps": ["<step-ID>"],
 "deploymentTargetId":
 "<service-unit-ID>",
 "postDeploymentSteps": ["<step-ID>"]
 },
 ...
]
 }
}

Parameter file

containerRoot variable

specify that the deployment wait after the service unit has been deployed. You can define the order of the step
groups.

The identity object specifies the user-assigned managed identity that performs the deployment actions.

The following example shows the general format of the rollout.

For more information, see rollouts template reference.

You create two parameter files. One parameter file is used when deploying the service topology, and the other is
used for the rollout deployment. There are some values that you need to make sure are the same in both
parameter files.

With versioned deployments, the path to your artifacts changes with each new version. The first time you run a
deployment the path might be https://<base-uri-blob-container>/binaries/1.0.0.0 . The second time it might be
https://<base-uri-blob-container>/binaries/1.0.0.1 . Deployment Manager simplifies getting the correct root

path for the current deployment by using the $containerRoot variable. This value changes with each version and
isn't known before deployment.

Use the $containerRoot variable in the parameter file for template to deploy the Azure resources. At deployment
time, this variable is replaced with the actual values from the rollout.

For example, during rollout you create an artifact source for the binary artifacts.

https://docs.microsoft.com/azure/templates/Microsoft.DeploymentManager/rollouts

{
 "type": "Microsoft.DeploymentManager/artifactSources",
 "name": "[variables('rolloutArtifactSource').name]",
 "location": "[parameters('azureResourceLocation')]",
 "apiVersion": "2018-09-01-preview",
 "properties": {
 "sourceType": "AzureStorage",
 "artifactRoot": "[parameters('binaryArtifactRoot')]",
 "authentication" :
 {
 "type": "SAS",
 "properties": {
 "sasUri": "[parameters('artifactSourceSASLocation')]"
 }
 }
 }
},

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "deployPackageUri": {
 "value": "$containerRoot\\helloWorldWebAppWUS.zip"
 }
 }
}

{
 "name": "MSDeploy",
 "type": "extensions",
 "location": "[parameters('location')]",
 "apiVersion": "2015-08-01",
 "dependsOn": [
 "[concat('Microsoft.Web/sites/', parameters('WebAppName'))]"
],
 "tags": {
 "displayName": "WebAppMSDeploy"
 },
 "properties": {
 "packageUri": "[parameters('deployPackageURI')]"
 }
}

Next steps

Notice the artifactRoot and sasUri properties. The artifact root might be set to a value like binaries/1.0.0.0 .
The SAS URI is the URI to your storage container with a SAS token for access. Deployment Manager
automatically constructs the value of the $containerRoot variable. It combines those values in the format
<container>/<artifactRoot> .

Your template and parameter file need to know the correct path for getting the versioned binaries. For example, to
deploy files for a web app, create the following parameter file with the $containerRoot variable. You must use two
backslashes (\\) for the path because the first is an escape character.

Then, use that parameter in your template:

You manage versioned deployments by creating new folders and passing in that root during rollout. The path
flows through to the template that deploys the resources.

In this article, you learned about Deployment Manager. Proceed to the next article to learn how to deploy with
Deployment Manager.

Tutorial: Use Azure Deployment Manager with Resource Manager templates

Introduce health integration rollout to Azure
Deployment Manager (Public preview)
7/5/2019 • 5 minutes to read • Edit Online

Health monitoring providers

Datadog, the leading monitoring and
analytics platform for modern cloud
environments. See how Datadog
integrates with Azure Deployment
Manager.

Site24x7, the all-in-one private and
public cloud services monitoring
solution. See how Site24x7 integrates
with Azure Deployment Manager.

Wavefront, the monitoring and
analytics platform for multi-cloud
application environments. See how
Wavefront integrates with Azure
Deployment Manager.

How service health is determined

Azure Deployment Manager allows you to perform staged rollouts of Azure Resource Manager resources. The
resources are deployed region by region in an ordered fashion. The integrated health check of Azure Deployment
Manager can monitor rollouts, and automatically stop problematic rollouts, so that you can troubleshoot and
reduce the scale of the impact. This feature can reduce service unavailability caused by regressions in updates.

In order to make health integration as easy as possible, Microsoft has been working with some of the top service
health monitoring companies to provide you with a simple copy/paste solution to integrate health checks with
your deployments. If you’re not already using a health monitor, these are great solutions to start with:

Health monitoring providers offer several mechanisms for monitoring services and alerting you of any service
health issues. Azure Monitor is an example of one such offering. Azure Monitor can be used to create alerts when
certain thresholds are exceeded. For example, your memory and CPU utilization spike beyond expected levels
when you deploy a new update to your service. When notified, you can take corrective actions.

These health providers typically offer REST APIs so that the status of your service’s monitors can be examined
programmatically. The REST APIs can either come back with a simple healthy/unhealthy signal (determined by the
HTTP response code), and/or with detailed information about the signals it is receiving.

The new healthCheck step in Azure Deployment Manager allows you to declare HTTP codes that indicate a
healthy service, or, for more complex REST results, you can even specify regular expressions that, if they match,
indicate a healthy response.

The flow to getting setup with Azure Deployment Manager health checks:

1. Create your health monitors via a health service provider of your choice.

2. Create one or more healthCheck steps as part of your Azure Deployment Manager rollout. Fill out the
healthCheck steps with the following information:

a. The URI for the REST API for your health monitors (as defined by your health service provider).
b. Authentication information. Currently only API-key style authentication is supported.
c. HTTP status codes or regular expressions that define a healthy response. Note that you may provide

regular expressions, which ALL must match for the response to be considered healthy, or you may
provide expressions of which ANY must match for the response to be considered healthy. Both methods
are supported.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/deployment-manager-health-check.md
https://www.datadoghq.com/azure-deployment-manager/
https://www.site24x7.com/azure/adm.html
https://go.wavefront.com/wavefront-adm/
https://docs.microsoft.com/en-us/azure/azure-monitor/overview
https://www.wikipedia.org/wiki/List_of_HTTP_status_codes

{
 "type": "Microsoft.DeploymentManager/steps",
 "apiVersion": "2018-09-01-preview",
 "name": "healthCheckStep",
 "location": "[parameters('azureResourceLocation')]",
 "properties": {
 "stepType": "healthCheck",
 "attributes": {
 "waitDuration": "PT0M",
 "maxElasticDuration": "PT0M",
 "healthyStateDuration": "PT1M",
 "type": "REST",
 "properties": {
 "healthChecks": [
 {
 "name": "appHealth",
 "request": {
 "method": "GET",
 "uri": "[parameters('healthCheckUrl')]",
 "authentication": {
 "type": "ApiKey",
 "name": "code",
 "in": "Query",
 "value": "[parameters('healthCheckAuthAPIKey')]"
 }
 },
 "response": {
 "successStatusCodes": [
 "200"
],
 "regex": {
 "matches": [
 "Status: healthy",
 "Status: warning"
],
 "matchQuantifier": "Any"
 }
 }
 }
]
 }
 }
 }
},

The following Json is an example:

3. Invoke the healthCheck steps at the appropriate time in your Azure Deployment Manager rollout. In the
following example, a health check step is invoked in postDeploymentSteps of stepGroup2.

Phases of a health check

"stepGroups": [
 {
 "name": "stepGroup1",
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceWUS.name,
variables('serviceTopology').serviceWUS.serviceUnit2.name)]",
 "postDeploymentSteps": []
 },
 {
 "name": "stepGroup2",
 "dependsOnStepGroups": ["stepGroup1"],
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceWUS.name,
variables('serviceTopology').serviceWUS.serviceUnit1.name)]",
 "postDeploymentSteps": [
 {
 "stepId": "[resourceId('Microsoft.DeploymentManager/steps/', 'healthCheckStep')]"
 }
]
 },
 {
 "name": "stepGroup3",
 "dependsOnStepGroups": ["stepGroup2"],
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceEUS.name,
variables('serviceTopology').serviceEUS.serviceUnit2.name)]",
 "postDeploymentSteps": []
 },
 {
 "name": "stepGroup4",
 "dependsOnStepGroups": ["stepGroup3"],
 "preDeploymentSteps": [],
 "deploymentTargetId": "
[resourceId('Microsoft.DeploymentManager/serviceTopologies/services/serviceUnits',
variables('serviceTopology').name, variables('serviceTopology').serviceEUS.name,
variables('serviceTopology').serviceEUS.serviceUnit1.name)]",
 "postDeploymentSteps": []
 }
]

To walk through an example, see Tutorial: Use health check in Azure Deployment Manager.

At this point Azure Deployment Manager knows how to query for the health of your service and at what phases in
your rollout to do so. However, Azure Deployment Manager also allows for deep configuration of the timing of
these checks. A healthCheck step is executed in 3 sequential phases, all of which have configurable durations:

1. Wait

a. After a deployment operation is completed, VMs may be rebooting, reconfiguring based on new data, or
even being started for the first time. It also takes time for services to start emitting health signals to be
aggregated by the health monitoring provider into something useful. During this tumultuous process, it
may not make sense to check for service health since the update has not yet reached a steady state.
Indeed, the service may be oscillating between healthy and unhealthy states as the resources settle.

b. During the Wait phase, service health is not monitored. This is used to allow the deployed resources the

Next steps

time to bake before beginning the health check process.
2. Elastic

a. Since it is impossible to know in all cases how long resources will take to bake before they become
stable, the Elastic phase allows for a flexible time period between when the resources are potentially
unstable and when they are required to maintain a healthy steady state.

b. When the Elastic phase begins, Azure Deployment Manager begins polling the provided REST endpoint
for service health periodically. The polling interval is configurable.

c. If the health monitor comes back with signals indicating that the service is unhealthy, these signals are
ignored, the Elastic phase continues, and polling continues.

d. As soon as the health monitor comes back with signals indicating that the service is healthy, the Elastic
phase ends and the HealthyState phase begins.

e. Thus, the duration specified for the Elastic phase is the maximum amount of time that can be spent
polling for service health before a healthy response is considered mandatory.

3. HealthyState

a. During the HealthyState phase, service health is continually polled at the same interval as the Elastic
phase.

b. The service is expected to maintain healthy signals from the health monitoring provider for the entire
specified duration.

c. If at any point an unhealthy response is detected, Azure Deployment Manager will stop the entire rollout
and return the REST response carrying the unhealthy service signals.

d. Once the HealthyState duration has ended, the healthCheck is complete, and deployment continues to
the next step.

In this article, you learned about how to integrate health monitoring in Azure Deployment Manager. Proceed to
the next article to learn how to deploy with Deployment Manager.

Tutorial: integrate health check in Azure Deployment Manager

Azure Resource Manager vs. classic deployment:
Understand deployment models and the state of your
resources
6/18/2019 • 10 minutes to read • Edit Online

NOTENOTE

NOTENOTE

History of the deployment models

The information provided in this article is only used when you migrate from the classic deployment to the Azure Resource
Manager deployment.

In this article, you learn about Azure Resource Manager and classic deployment models. The Resource Manager
and classic deployment models represent two different ways of deploying and managing your Azure solutions. You
work with them through two different API sets, and the deployed resources can contain important differences. The
two models are not compatible with each other. This article describes those differences.

To simplify the deployment and management of resources, Microsoft recommends that you use Resource Manager
for all new resources. If possible, Microsoft recommends that you redeploy existing resources through Resource
Manager.

If you are new to Resource Manager, you may want to first review the terminology defined in the Azure Resource
Manager overview.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

Azure originally provided only the classic deployment model. In this model, each resource existed independently;
there was no way to group related resources together. Instead, you had to manually track which resources made up
your solution or application, and remember to manage them in a coordinated approach. To deploy a solution, you
had to either create each resource individually through the portal or create a script that deployed all the resources
in the correct order. To delete a solution, you had to delete each resource individually. You could not easily apply
and update access control policies for related resources. Finally, you could not apply tags to resources to label them
with terms that help you monitor your resources and manage billing.

In 2014, Azure introduced Resource Manager, which added the concept of a resource group. A resource group is a
container for resources that share a common lifecycle. The Resource Manager deployment model provides several
benefits:

You can deploy, manage, and monitor all the services for your solution as a group, rather than handling these
services individually.
You can repeatedly deploy your solution throughout its lifecycle and have confidence your resources are
deployed in a consistent state.
You can apply access control to all resources in your resource group, and those policies are automatically

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-deployment-model.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Understand support for the models

Get-AzResource -ResourceGroupName ExampleGroup -ResourceType Microsoft.ClassicCompute/virtualMachines

Name : ExampleClassicVM
ResourceId :
/subscriptions/{guid}/resourceGroups/ExampleGroup/providers/Microsoft.ClassicCompute/virtualMachines/ExampleCla
ssicVM
ResourceName : ExampleClassicVM
ResourceType : Microsoft.ClassicCompute/virtualMachines
ResourceGroupName : ExampleGroup
Location : westus
SubscriptionId : {guid}

Get-AzVM -ResourceGroupName ExampleGroup

applied when new resources are added to the resource group.
You can apply tags to resources to logically organize all the resources in your subscription.
You can use JavaScript Object Notation (JSON) to define the infrastructure for your solution. The JSON file is
known as a Resource Manager template.
You can define the dependencies between resources so they are deployed in the correct order.

When Resource Manager was added, all resources were retroactively added to default resource groups. If you
create a resource through classic deployment now, the resource is automatically created within a default resource
group for that service, even though you did not specify that resource group at deployment. However, just existing
within a resource group does not mean that the resource has been converted to the Resource Manager model.

There are three scenarios to be aware of:

1. Cloud Services does not support Resource Manager deployment model.
2. Virtual machines, storage accounts, and virtual networks support both Resource Manager and classic

deployment models.
3. All other Azure services support Resource Manager.

For virtual machines, storage accounts, and virtual networks, if the resource was created through classic
deployment, you must continue to operate on it through classic operations. If the virtual machine, storage account,
or virtual network was created through Resource Manager deployment, you must continue using Resource
Manager operations. This distinction can get confusing when your subscription contains a mix of resources created
through Resource Manager and classic deployment. This combination of resources can create unexpected results
because the resources do not support the same operations.

In some cases, a Resource Manager command can retrieve information about a resource created through classic
deployment, or can perform an administrative task such as moving a classic resource to another resource group.
But, these cases should not give the impression that the type supports Resource Manager operations. For example,
suppose you have a resource group that contains a virtual machine that was created with classic deployment. If you
run the following Resource Manager PowerShell command:

It returns the virtual machine:

However, the Resource Manager cmdlet Get-AzVM only returns virtual machines deployed through Resource
Manager. The following command does not return the virtual machine created through classic deployment.

Only resources created through Resource Manager support tags. You cannot apply tags to classic resources.

Changes for compute, network, and storage
The following diagram displays compute, network, and storage resources deployed through Resource Manager.

Note the following relationships between the resources:

All the resources exist within a resource group.
The virtual machine depends on a specific storage account defined in the Storage resource provider to store its
disks in blob storage (required).
The virtual machine references a specific NIC defined in the Network resource provider (required) and an
availability set defined in the Compute resource provider (optional).
The NIC references the virtual machine's assigned IP address (required), the subnet of the virtual network for
the virtual machine (required), and to a Network Security Group (optional).
The subnet within a virtual network references a Network Security Group (optional).
The load balancer instance references the backend pool of IP addresses that include the NIC of a virtual
machine (optional) and references a load balancer public or private IP address (optional).

Here are the components and their relationships for classic deployment:

ITEM CLASSIC RESOURCE MANAGER

Cloud Service for Virtual Machines Cloud Service was a container for
holding the virtual machines that
required Availability from the platform
and Load Balancing.

Cloud Service is no longer an object
required for creating a Virtual Machine
using the new model.

Virtual Networks A virtual network is optional for the
virtual machine. If included, the virtual
network cannot be deployed with
Resource Manager.

Virtual machine requires a virtual
network that has been deployed with
Resource Manager.

Storage Accounts The virtual machine requires a storage
account that stores the VHDs for the
operating system, temporary, and
additional data disks.

The virtual machine requires a storage
account to store its disks in blob
storage.

The classic solution for hosting a virtual machine includes:

A required cloud service that acts as a container for hosting virtual machines (compute). Virtual machines are
automatically provided with a network interface card (NIC) and an IP address assigned by Azure. Additionally,
the cloud service contains an external load balancer instance, a public IP address, and default endpoints to allow
remote desktop and remote PowerShell traffic for Windows-based virtual machines and Secure Shell (SSH)
traffic for Linux-based virtual machines.
A required storage account that stores the VHDs for a virtual machine, including the operating system,
temporary, and additional data disks (storage).
An optional virtual network that acts as an additional container, in which you can create a subnetted structure
and designate the subnet on which the virtual machine is located (network).

The following table describes changes in how Compute, Network, and Storage resource providers interact:

Availability Sets Availability to the platform was
indicated by configuring the same
“AvailabilitySetName” on the Virtual
Machines. The maximum count of fault
domains was 2.

Availability Set is a resource exposed by
Microsoft.Compute Provider. Virtual
Machines that require high availability
must be included in the Availability Set.
The maximum count of fault domains is
now 3.

Affinity Groups Affinity Groups were required for
creating Virtual Networks. However,
with the introduction of Regional Virtual
Networks, that was not required
anymore.

To simplify, the Affinity Groups concept
doesn’t exist in the APIs exposed
through Azure Resource Manager.

Load Balancing Creation of a Cloud Service provides an
implicit load balancer for the Virtual
Machines deployed.

The Load Balancer is a resource exposed
by the Microsoft.Network provider. The
primary network interface of the Virtual
Machines that needs to be load
balanced should be referencing the load
balancer. Load Balancers can be internal
or external. A load balancer instance
references the backend pool of IP
addresses that include the NIC of a
virtual machine (optional) and
references a load balancer public or
private IP address (optional).

Virtual IP Address Cloud Services gets a default VIP
(Virtual IP Address) when a VM is added
to a cloud service. The Virtual IP
Address is the address associated with
the implicit load balancer.

Public IP address is a resource exposed
by the Microsoft.Network provider.
Public IP address can be static
(reserved) or dynamic. Dynamic public
IPs can be assigned to a Load Balancer.
Public IPs can be secured using Security
Groups.

Reserved IP Address You can reserve an IP Address in Azure
and associate it with a Cloud Service to
ensure that the IP Address is sticky.

Public IP Address can be created in
static mode and it offers the same
capability as a reserved IP address.

Public IP Address (PIP) per VM Public IP Addresses can also be
associated to a VM directly.

Public IP address is a resource exposed
by the Microsoft.Network provider.
Public IP Address can be static
(reserved) or dynamic.

Endpoints Input Endpoints needed to be
configured on a Virtual Machine to be
open up connectivity for certain ports.
One of the common modes of
connecting to virtual machines done by
setting up input endpoints.

Inbound NAT Rules can be configured
on Load Balancers to achieve the same
capability of enabling endpoints on
specific ports for connecting to the
VMs.

DNS Name A cloud service would get an implicit
globally unique DNS Name. For
example: mycoffeeshop.cloudapp.net

.

DNS Names are optional parameters
that can be specified on a Public IP
Address resource. The FQDN is in the
following format -
<domainlabel>.
<region>.cloudapp.azure.com

.

ITEM CLASSIC RESOURCE MANAGER

Network Interfaces Primary and Secondary Network
Interface and its properties were
defined as network configuration of a
Virtual machine.

Network Interface is a resource exposed
by Microsoft.Network Provider. The
lifecycle of the Network Interface is not
tied to a Virtual Machine. It references
the virtual machine's assigned IP
address (required), the subnet of the
virtual network for the virtual machine
(required), and to a Network Security
Group (optional).

ITEM CLASSIC RESOURCE MANAGER

Migrate from classic to Resource Manager

Frequently asked questions

Next steps

To learn about connecting virtual networks from different deployment models, see Connect virtual networks from
different deployment models in the portal.

If you are ready to migrate your resources from classic deployment to Resource Manager deployment, see:

1. Technical deep dive on platform-supported migration from classic to Azure Resource Manager
2. Platform supported migration of IaaS resources from Classic to Azure Resource Manager
3. Migrate IaaS resources from classic to Azure Resource Manager by using Azure PowerShell
4. Migrate IaaS resources from classic to Azure Resource Manager by using Azure CLI

Can I create a virtual machine using Resource Manager to deploy in a virtual network created using
classic deployment?

This configuration is not supported. You cannot use Resource Manager to deploy a virtual machine into a virtual
network that was created using classic deployment.

Can I create a virtual machine using Resource Manager from a user image that was created using the
classic deployment model?

This configuration is not supported. However, you can copy the VHD files from a storage account that was created
using the classic deployment model, and add them to a new account created through Resource Manager.

What is the impact on the quota for my subscription?

The quotas for the virtual machines, virtual networks, and storage accounts created through the Azure Resource
Manager are separate from other quotas. Each subscription gets quotas to create the resources using the new APIs.
You can read more about the additional quotas here.

Can I continue to use my automated scripts for provisioning virtual machines, virtual networks, and
storage accounts through the Resource Manager APIs?

All the automation and scripts that you've built continue to work for the existing virtual machines, virtual networks
created under the Azure Service Management mode. However, the scripts have to be updated to use the new
schema for creating the same resources through the Resource Manager mode.

Where can I find examples of Azure Resource Manager templates?

A comprehensive set of starter templates can be found on Azure Resource Manager Quickstart Templates.

To walk through the creation of template that defines a virtual machine, storage account, and virtual network,

https://docs.microsoft.com/en-us/azure/vpn-gateway/vpn-gateway-connect-different-deployment-models-portal
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-deep-dive
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-overview
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/migration-classic-resource-manager-ps
https://docs.microsoft.com/en-us/azure/virtual-machines/virtual-machines-linux-cli-migration-classic-resource-manager
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://azure.microsoft.com/documentation/templates/

see Resource Manager template walkthrough.
To see the commands for deploying a template, see Deploy an application with Azure Resource Manager
template.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-template-walkthrough

Security attributes for Azure Resource Manager
7/24/2019 • 2 minutes to read • Edit Online

Preventative
SECURITY ATTRIBUTE YES/NO NOTES

Encryption at rest (such as server-side
encryption, server-side encryption with
customer-managed keys, and other
encryption features)

Yes

Encryption in transit (such as
ExpressRoute encryption, in VNet
encryption, and VNet-VNet encryption)

Yes HTTPS/TLS.

Encryption key handling (CMK, BYOK,
etc.)

N/A Azure Resource Manager stores no
customer content, only control data.

Column level encryption (Azure Data
Services)

Yes

API calls encrypted Yes

Network segmentation
SECURITY ATTRIBUTE YES/NO NOTES

Service endpoint support No

VNet injection support Yes

Network isolation and firewalling
support

No

Forced tunneling support No

Detection

This article documents the security attributes built into Azure Resource Manager.

A security attribute is a quality or feature of an Azure service. It contributes to the service's ability to prevent, detect,
and respond to security vulnerabilities.

In each category, we show "Yes" or "No" to indicate whether an attribute is used. For some services, we show
"N/A" for an attribute that is not applicable. We might also provide a note or a link to more information about an
attribute.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/azure-resource-manager-security-attributes.md

SECURITY ATTRIBUTE YES/NO NOTES

Azure monitoring support (Log
analytics, App insights, etc.)

No

Identity and access management
SECURITY ATTRIBUTE YES/NO NOTES

Authentication Yes Azure Active Directory based.

Authorization Yes

Audit trail
SECURITY ATTRIBUTE YES/NO NOTES

Control and management plane logging
and audit

Yes Activity logs expose all write operations
(PUT, POST, DELETE) performed on your
resources; see View activity logs to audit
actions on resources.

Data plane logging and audit N/A

Configuration management
SECURITY ATTRIBUTE YES/NO NOTES

Configuration management support
(versioning of configuration, etc.)

Yes

https://docs.microsoft.com/azure/active-directory

Create Azure Resource Manager template
6/18/2019 • 5 minutes to read • Edit Online

Select JSON editor

Understand the template structure

This article describes the process and decisions you make when creating an Azure Resource Manager template. It
provides an overview of examples and features that may help you when authoring your template. The article
assumes you're deploying resources to a resource group. If you need to deploy resources to your Azure
subscription, such as creating Azure Policies or role-based access control assignments, see Create resource groups
and resources for an Azure subscription.

The Resource Manager template is a JSON file. You need a good authoring tool to work on the JSON file. You
have many options, but if you don't already have an editor that you prefer, install Visual Studio Code (VS Code).

After installing VS Code, add the Azure Resource Manager Tools extension. This extension adds many features that
simplify template authoring.

The screenshot shows a Resource Manager template opened in Visual Studio Code.

For a tutorial of installing the Resource Manager tools extension and how to use VS Code, see Quickstart: Create
Azure Resource Manager templates by using Visual Studio Code.

Let's review the parts of the template to understand how the template works. Your template may not have every
section. The sections you want to focus on are:

The parameters section, which shows the values you can specify during deployment to customize the

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/how-to-create-template.md
https://code.visualstudio.com/
https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools

Look for similar templates

Add resources

infrastructure that is deployed.

The variables section, which shows values that are used throughout the template.

The functions section, which shows customized template expressions that are used in your template.

The resources section, which shows the Azure resources that are deployed to your subscription.

The outputs section, which shows the values that are returned after deployment has finished.

Often, you can find an existing template that deploys a solution that is similar to what you need. The Azure
Quickstart Templates has hundreds of templates from community contributors.

Search through that repository for a template that is similar to what you need. It's okay if the template doesn't do
exactly what you need, you can customize it.

After finding a template, select Browse on Github, and then copy the azuredeploy.json file from the repository.
In VS Code, create a new file named azuredeploy.json and add the contents of the template file you copied from
the Quickstart repository.

You probably want to customize the template to make sure it does exactly what you want. First, review the
resources that are deployed. You may need to add, remove, or change resources in the template. For descriptions
and syntax of the resources, see Azure Resource Manager template reference.

https://azure.microsoft.com/resources/templates/
https://docs.microsoft.com/azure/templates/

Add or remove parameters

Add tags

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "apiVersion": "2016-01-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "location": "[resourceGroup().location]",
 "tags": {
 "Dept": "Finance",
 "Environment": "Production"
 },
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": { }
 }
]
}

Review template functions

After reviewing those properties, make any required changes. For recommendations about how to define
resources, see resources - recommended practices.

You might also need to adjust the parameters for your template. You can add or remove parameters based on how
much customization you want to enable during deployment. For recommendations about how to use parameters,
see parameters - recommended practices.

You can add tags to your resources to logically organize by categories, and divide billing costs. Adding tags is easy,
you apply them in the JSON for the resource. For example, the following storage account has two tags:

You can also apply tags dynamically from parameters. For more information, see tags in template.

"name": "[parameters('siteName')]"

"[reference(resourceId(parameters('storageResourceGroup'), 'Microsoft.Storage/storageAccounts',
parameters('storageAccountName')), '2018-07-01')]"

Create more than one instance

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "apiVersion": "2016-01-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat(copyIndex(),'storage', uniqueString(resourceGroup().id))]",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {},
 "copy": {
 "name": "storagecopy",
 "count": 3
 }
 }
],
 "outputs": {}
}

Conditionally deploy a resource

You may notice expressions in your template that are surrounded by brackets, such as "[some-expression]" . These
expressions use template functions to dynamically construct values during deployment.

For example, you often see an expression like:

That expression gets the value of a parameter. The value is assigned to the name property.

Or, you may see a more complex expression that uses several functions like:

That expression gets an object with the properties of a storage account.

To understand what the functions do, review the template function reference documentation.

Sometimes you want to create more than one instance of a resource. For example, you might need several storage
accounts. Rather than repeat the resource through your template, you can use the copy syntax to specify more
than one instance.

The following example creates three storage accounts:

You can also specify the number of instances dynamically from a parameter. For more information, see Deploy
more than one instance of a resource or property in Azure Resource Manager Templates.

Sometimes you need to specify during deployment whether a resource in the template is deployed. For example,
you may want the flexibility to either deploy a new resource or use an existing resource. The condition element
gives you the ability to turn on or off deployment for a resource. When the expression in the condition element is
true, the resource is deployed. When false, the resource is skipped during deployment.

{
 "condition": "[equals(parameters('newOrExisting'),'new')]",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "apiVersion": "2017-06-01",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "Storage",
 "properties": {}
}

Review dependencies

The following example conditionally deploys a storage account:

For more information, see the condition element.

Some resources in your template need to be deployed before other resources. For example, the SQL server needs
to exist before the SQL database is created. Resource Manager implicitly determines the deployment order for
resources when the reference function is used. However, in some cases, you need to explicitly define the
dependencies by using the dependsOn element. Review your template to see if any dependencies need to be added.
Be careful to not add unnecessary dependencies as they can slow down deployment or create circular references.

The following image shows the dependency order for various App Service resources:

The following example shows part of a template that defines dependencies.

{
 "name": "[parameters('appName')]",
 "type": "Microsoft.Web/Sites",
 ...
 "resources": [
 {
 "name": "MSDeploy",
 "type": "Extensions",
 "dependsOn": [
 "[concat('Microsoft.Web/Sites/', parameters('appName'))]",
 "[concat('Microsoft.Sql/servers/', parameters('dbServerName'), '/databases/',
parameters('dbName'))]",
],
 ...
 },
 {
 "name": "connectionstrings",
 "type": "config",
 "dependsOn": [
 "[concat('Microsoft.Web/Sites/', parameters('appName'), '/Extensions/MSDeploy')]"
],
 ...
 }
]
}

Review recommended practices

Next steps

For more information, see Define the order for deploying resources in Azure Resource Manager Templates.

Before deploying your template, review Azure Resource Manager template best practices to see if there are any
recommended approaches you want to implement in your template.

If you need to use your template in different Azure cloud environments, see Develop Azure Resource Manager
templates for cloud consistency.

To deploy a template, see Deploy with Azure CLI or Deploy with PowerShell.
For a step-by-step Quickstart on creating a template, see Create Azure Resource Manager templates by using
Visual Studio Code.
For a list of the available functions in a template, see Template functions.

Create resource groups and resources at the
subscription level
6/18/2019 • 8 minutes to read • Edit Online

NOTENOTE

Deployment considerations

Schema and commandsSchema and commands

az deployment create \
 --name demoDeployment \
 --location centralus \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/emptyRG.json \
 --parameters rgName=demoResourceGroup rgLocation=centralus

Typically, you deploy Azure resources to a resource group in your Azure subscription. However, you can also
create Azure resource groups, and create Azure resources at the subscription level. To deploy templates at the
subscription level, you use Azure CLI and Azure PowerShell. The Azure portal doesn't support deployment in the
subscription level.

To create a resource group in an Azure Resource Manager template, define a
Microsoft.Resources/resourceGroups resource with a name and location for the resource group. You can
create a resource group and deploy resources to that resource group in the same template. The resources that
you can deploy at the subscription level include: Policies, and Role-based access control.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install
Azure PowerShell.

Subscription level deployment is different from resource group deployment in the following aspects:

The schema and commands you use for subscription-level deployments are different than resource group
deployments.

For the schema, use
https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json# .

For the Azure CLI deployment command, use az deployment create. For example, the following CLI command
deploys a template to create a resource group:

For the PowerShell deployment command, use New-AzDeployment. For example, the following PowerShell
command deploys a template to create a resource group:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/deploy-to-subscription.md
https://docs.microsoft.com/azure/templates/microsoft.resources/allversions
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/cli/azure/deployment?view=azure-cli-latest#az-deployment-create
https://docs.microsoft.com/powershell/module/az.resources/new-azdeployment

New-AzDeployment `
 -Name demoDeployment `
 -Location centralus `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/emptyRG.json `
 -rgName demoResourceGroup `
 -rgLocation centralus

Deployment name and locationDeployment name and location

Use template functionsUse template functions

Create resource groups

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.1",
 "parameters": {
 "rgName": {
 "type": "string"
 },
 "rgLocation": {
 "type": "string"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Resources/resourceGroups",
 "apiVersion": "2018-05-01",
 "location": "[parameters('rgLocation')]",
 "name": "[parameters('rgName')]",
 "properties": {}
 }
],
 "outputs": {}
}

When deploying to your subscription, you must provide a location for the deployment. You can also provide a
name for the deployment. If you don't specify a name for the deployment, the name of the template is used as the
deployment name. For example, deploying a template named azuredeploy.json creates a default deployment
name of azuredeploy.

The location of subscription level deployments is immutable. You can't create a deployment in one location when
there's an existing deployment with the same name but different location. If you get the error code
InvalidDeploymentLocation , either use a different name or the same location as the previous deployment for that

name.

For subscription-level deployments, there are some important considerations when using template functions:

The resourceGroup() function is not supported.
The resourceId() function is supported. Use it to get the resource ID for resources that are used at subscription
level deployments. For example, get the resource ID for a policy definition with
resourceId('Microsoft.Authorization/roleDefinitions/', parameters('roleDefinition'))

The reference() and list() functions are supported.

The following template creates an empty resource group.

The template schema can be found at here. Similar templates can be found at GitHub.

https://docs.microsoft.com/azure/templates/microsoft.resources/allversions
https://github.com/Azure/azure-quickstart-templates/tree/master/subscription-level-deployments

Create multiple resource groups

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.1",
 "parameters": {
 "rgNamePrefix": {
 "type": "string"
 },
 "rgLocation": {
 "type": "string"
 },
 "instanceCount": {
 "type": "int"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Resources/resourceGroups",
 "apiVersion": "2018-05-01",
 "location": "[parameters('rgLocation')]",
 "name": "[concat(parameters('rgNamePrefix'), copyIndex())]",
 "copy": {
 "name": "rgCopy",
 "count": "[parameters('instanceCount')]"
 },
 "properties": {}
 }
],
 "outputs": {}
}

Create resource group and deploy resources

Use the copy element with resource groups to create more than one resource group.

For information about resource iteration, see Deploy more than one instance of a resource or property in Azure
Resource Manager Templates, and Tutorial: Create multiple resource instances with Resource Manager
templates.

To create the resource group and deploy resources to it, use a nested template. The nested template defines the
resources to deploy to the resource group. Set the nested template as dependent on the resource group to make
sure the resource group exists before deploying the resources.

The following example creates a resource group, and deploys a storage account to the resource group.

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.1",
 "parameters": {
 "rgName": {
 "type": "string"
 },
 "rgLocation": {
 "type": "string"
 },
 "storagePrefix": {
 "type": "string",
 "maxLength": 11
 }
 },
 "variables": {
 "storageName": "[concat(parameters('storagePrefix'), uniqueString(subscription().id,
parameters('rgName')))]"
 },
 "resources": [
 {
 "type": "Microsoft.Resources/resourceGroups",
 "apiVersion": "2018-05-01",
 "location": "[parameters('rgLocation')]",
 "name": "[parameters('rgName')]",
 "properties": {}
 },
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "storageDeployment",
 "resourceGroup": "[parameters('rgName')]",
 "dependsOn": [
 "[resourceId('Microsoft.Resources/resourceGroups/', parameters('rgName'))]"
],
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2017-10-01",
 "name": "[variables('storageName')]",
 "location": "[parameters('rgLocation')]",
 "kind": "StorageV2",
 "sku": {
 "name": "Standard_LRS"
 }
 }
],
 "outputs": {}
 }
 }
 }
],
 "outputs": {}
}

Create policies

Assign policyAssign policy

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "policyDefinitionID": {
 "type": "string"
 },
 "policyName": {
 "type": "string"
 },
 "policyParameters": {
 "type": "object",
 "defaultValue": {}
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Authorization/policyAssignments",
 "name": "[parameters('policyName')]",
 "apiVersion": "2018-03-01",
 "properties": {
 "scope": "[subscription().id]",
 "policyDefinitionId": "[parameters('policyDefinitionID')]",
 "parameters": "[parameters('policyParameters')]"
 }
 }
]
}

Built-in policy that does not accept parameters
definition=$(az policy definition list --query "[?displayName=='Audit resource location matches resource
group location'].id" --output tsv)

az deployment create \
 --name demoDeployment \
 --location centralus \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/policyassign.json \
 --parameters policyDefinitionID=$definition policyName=auditRGLocation

$definition = Get-AzPolicyDefinition | Where-Object { $_.Properties.DisplayName -eq 'Audit resource location
matches resource group location' }

New-AzDeployment `
 -Name policyassign `
 -Location centralus `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/policyassign.json `
 -policyDefinitionID $definition.PolicyDefinitionId `
 -policyName auditRGLocation

The following example assigns an existing policy definition to the subscription. If the policy takes parameters,
provide them as an object. If the policy doesn't take parameters, use the default empty object.

To apply a built-in policy to your Azure subscription, use the following Azure CLI commands:

To deploy this template with PowerShell, use:

To apply a built-in policy to your Azure subscription, use the following Azure CLI commands:

Built-in policy that accepts parameters
definition=$(az policy definition list --query "[?displayName=='Allowed locations'].id" --output tsv)

az deployment create \
 --name demoDeployment \
 --location centralus \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/policyassign.json \
 --parameters policyDefinitionID=$definition policyName=setLocation policyParameters="
{'listOfAllowedLocations': {'value': ['westus']} }"

$definition = Get-AzPolicyDefinition | Where-Object { $_.Properties.DisplayName -eq 'Allowed locations' }

$locations = @("westus", "westus2")
$policyParams =@{listOfAllowedLocations = @{ value = $locations}}

New-AzDeployment `
 -Name policyassign `
 -Location centralus `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/policyassign.json `
 -policyDefinitionID $definition.PolicyDefinitionId `
 -policyName setLocation `
 -policyParameters $policyParams

Define and assign policyDefine and assign policy

To deploy this template with PowerShell, use:

You can define and assign a policy in the same template.

https://docs.microsoft.com/en-us/azure/governance/policy/concepts/definition-structure

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Authorization/policyDefinitions",
 "name": "locationpolicy",
 "apiVersion": "2018-05-01",
 "properties": {
 "policyType": "Custom",
 "parameters": {},
 "policyRule": {
 "if": {
 "field": "location",
 "equals": "northeurope"
 },
 "then": {
 "effect": "deny"
 }
 }
 }
 },
 {
 "type": "Microsoft.Authorization/policyAssignments",
 "name": "location-lock",
 "apiVersion": "2018-05-01",
 "dependsOn": [
 "locationpolicy"
],
 "properties": {
 "scope": "[subscription().id]",
 "policyDefinitionId": "[resourceId('Microsoft.Authorization/policyDefinitions',
'locationpolicy')]"
 }
 }
]
}

az deployment create \
 --name demoDeployment \
 --location centralus \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/policydefineandassign.json

New-AzDeployment `
 -Name definePolicy `
 -Location centralus `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/policydefineandassign.json

Create roles
Assign role at subscriptionAssign role at subscription

To create the policy definition in your subscription, and apply it to the subscription, use the following CLI
command:

To deploy this template with PowerShell, use:

The following example assigns a role to a user or group for the subscription. In this example, you don't specify a

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "principalId": {
 "type": "string"
 },
 "roleDefinitionId": {
 "type": "string"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Authorization/roleAssignments",
 "name": "[guid(parameters('principalId'), deployment().name)]",
 "apiVersion": "2017-09-01",
 "properties": {
 "roleDefinitionId": "[resourceId('Microsoft.Authorization/roleDefinitions',
parameters('roleDefinitionId'))]",
 "principalId": "[parameters('principalId')]"
 }
 }
]
}

Get ID of the role you want to assign
role=$(az role definition list --name Contributor --query [].name --output tsv)

Get ID of the AD group to assign the role to
principalid=$(az ad group show --group demogroup --query objectId --output tsv)

az deployment create \
 --name demoDeployment \
 --location centralus \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/roleassign.json \
 --parameters principalId=$principalid roleDefinitionId=$role

$role = Get-AzRoleDefinition -Name Contributor

$adgroup = Get-AzADGroup -DisplayName demogroup

New-AzDeployment `
 -Name demoRole `
 -Location centralus `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/roleassign.json `
 -roleDefinitionId $role.Id `
 -principalId $adgroup.Id

Assign role at scopeAssign role at scope

scope for the assignment because the scope is automatically set to the subscription.

To assign an Active Directory group to a role for your subscription, use the following Azure CLI commands:

To deploy this template with PowerShell, use:

The following subscription-level template assigns a role to a user or group that is scoped to a resource group
within the subscription. The scope must be at or below the level of deployment. You can deploy to a subscription
and specify a role assignment scoped to a resource group within that subscription. However, you can't deploy to a

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.1",
 "parameters": {
 "principalId": {
 "type": "string"
 },
 "roleDefinitionId": {
 "type": "string"
 },
 "rgName": {
 "type": "string"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "assignRole",
 "resourceGroup": "[parameters('rgName')]",
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Authorization/roleAssignments",
 "name": "[guid(parameters('principalId'), deployment().name)]",
 "apiVersion": "2017-09-01",
 "properties": {
 "roleDefinitionId": "[resourceId('Microsoft.Authorization/roleDefinitions',
parameters('roleDefinitionId'))]",
 "principalId": "[parameters('principalId')]",
 "scope": "[concat(subscription().id, '/resourceGroups/',
parameters('rgName'))]"
 }
 }
],
 "outputs": {}
 }
 }
 }
],
 "outputs": {}
}

resource group and specify a role assignment scope to the subscription.

To assign the role at a scope, use a nested deployment. Notice that the resource group name is specified both in
the properties for the deployment resource and in the scope property of the role assignment.

To assign an Active Directory group to a role for your subscription, use the following Azure CLI commands:

Get ID of the role you want to assign
role=$(az role definition list --name Contributor --query [].name --output tsv)

Get ID of the AD group to assign the role to
principalid=$(az ad group show --group demogroup --query objectId --output tsv)

az deployment create \
 --name demoDeployment \
 --location centralus \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/scopedRoleAssign.json \
 --parameters principalId=$principalid roleDefinitionId=$role rgName demoRg

$role = Get-AzRoleDefinition -Name Contributor

$adgroup = Get-AzADGroup -DisplayName demogroup

New-AzDeployment `
 -Name demoRole `
 -Location centralus `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/scopedRoleAssign.json `
 -roleDefinitionId $role.Id `
 -principalId $adgroup.Id `
 -rgName demoRg

Next steps

To deploy this template with PowerShell, use:

For an example of deploying workspace settings for Azure Security Center, see
deployASCwithWorkspaceSettings.json.
To learn about creating Azure Resource Manager templates, see Authoring templates.
For a list of the available functions in a template, see Template functions.

https://github.com/krnese/AzureDeploy/blob/master/ARM/deployments/deployASCwithWorkspaceSettings.json

Define the order for deploying resources in Azure
Resource Manager Templates
6/18/2019 • 4 minutes to read • Edit Online

dependsOn

{
 "type": "Microsoft.Compute/virtualMachineScaleSets",
 "name": "[variables('namingInfix')]",
 "location": "[variables('location')]",
 "apiVersion": "2016-03-30",
 "tags": {
 "displayName": "VMScaleSet"
 },
 "dependsOn": [
 "[variables('loadBalancerName')]",
 "[variables('virtualNetworkName')]",
 "storageLoop",
],
 ...
}

"dependsOn": [
 "[resourceId('Microsoft.Network/loadBalancers', variables('loadBalancerName'))]",
 "[resourceId('Microsoft.Network/virtualNetworks', variables('virtualNetworkName'))]"
]

For a given resource, there can be other resources that must exist before the resource is deployed. For example, a
SQL server must exist before attempting to deploy a SQL database. You define this relationship by marking one
resource as dependent on the other resource. You define a dependency with the dependsOn element, or by using
the reference function.

Resource Manager evaluates the dependencies between resources, and deploys them in their dependent order.
When resources aren't dependent on each other, Resource Manager deploys them in parallel. You only need to
define dependencies for resources that are deployed in the same template.

For a tutorial, see Tutorial: create Azure Resource Manager templates with dependent resources.

Within your template, the dependsOn element enables you to define one resource as a dependent on one or more
resources. Its value can be a comma-separated list of resource names.

The following example shows a virtual machine scale set that depends on a load balancer, virtual network, and a
loop that creates multiple storage accounts. These other resources aren't shown in the following example, but they
would need to exist elsewhere in the template.

In the preceding example, a dependency is included on the resources that are created through a copy loop named
storageLoop. For an example, see Create multiple instances of resources in Azure Resource Manager.

When defining dependencies, you can include the resource provider namespace and resource type to avoid
ambiguity. For example, to clarify a load balancer and virtual network that may have the same names as other
resources, use the following format:

While you may be inclined to use dependsOn to map relationships between your resources, it's important to

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-define-dependencies.md

Child resources

"resources": [
 {
 "name": "[variables('sqlserverName')]",
 "type": "Microsoft.Sql/servers",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "SqlServer"
 },
 "apiVersion": "2014-04-01-preview",
 "properties": {
 "administratorLogin": "[parameters('administratorLogin')]",
 "administratorLoginPassword": "[parameters('administratorLoginPassword')]"
 },
 "resources": [
 {
 "name": "[parameters('databaseName')]",
 "type": "databases",
 "location": "[resourceGroup().location]",
 "tags": {
 "displayName": "Database"
 },
 "apiVersion": "2014-04-01-preview",
 "dependsOn": [
 "[variables('sqlserverName')]"
],
 "properties": {
 "edition": "[parameters('edition')]",
 "collation": "[parameters('collation')]",
 "maxSizeBytes": "[parameters('maxSizeBytes')]",
 "requestedServiceObjectiveName": "[parameters('requestedServiceObjectiveName')]"
 }
 }
]
 }
]

reference and list functions

understand why you're doing it. For example, to document how resources are interconnected, dependsOn isn't the
right approach. You can't query which resources were defined in the dependsOn element after deployment. By
using dependsOn, you potentially impact deployment time because Resource Manager doesn't deploy in parallel
two resources that have a dependency.

The resources property allows you to specify child resources that are related to the resource being defined. Child
resources can only be defined five levels deep. It's important to note that an implicit deployment dependency isn't
created between a child resource and the parent resource. If you need the child resource to be deployed after the
parent resource, you must explicitly state that dependency with the dependsOn property.

Each parent resource accepts only certain resource types as child resources. The accepted resource types are
specified in the template schema of the parent resource. The name of child resource type includes the name of the
parent resource type, such as Microsoft.Web/sites/config and Microsoft.Web/sites/extensions are both
child resources of the Microsoft.Web/sites.

The following example shows a SQL server and SQL database. Notice that an explicit dependency is defined
between the SQL database and SQL server, even though the database is a child of the server.

The reference function enables an expression to derive its value from other JSON name and value pairs or
runtime resources. The list* functions return values for a resource from a list operation. Reference and list
expressions implicitly declare that one resource depends on another, when the referenced resource is deployed in

https://github.com/Azure/azure-resource-manager-schemas

reference('resourceName').propertyPath

listKeys('resourceName', 'yyyy-mm-dd')

{
 "name": "[variables('endpointName')]",
 "type": "endpoints",
 "location": "[resourceGroup().location]",
 "apiVersion": "2016-04-02",
 "dependsOn": [
 "[variables('profileName')]"
],
 "properties": {
 "originHostHeader": "[reference(variables('webAppName')).hostNames[0]]",
 ...
 }

Circular dependencies

Next steps

the same template and referred to by its name (not resource ID). If you pass the resource ID into the reference or
list functions, an implicit reference isn't created.

The general format of the reference function is:

The general format of the listKeys function is:

In the following example, a CDN endpoint explicitly depends on the CDN profile, and implicitly depends on a web
app.

You can use either this element or the dependsOn element to specify dependencies, but you don't need to use
both for the same dependent resource. Whenever possible, use an implicit reference to avoid adding an
unnecessary dependency.

To learn more, see reference function.

Resource Manager identifies circular dependencies during template validation. If you receive an error stating that
a circular dependency exists, evaluate your template to see if any dependencies aren't needed and can be
removed. If removing dependencies doesn't work, you can avoid circular dependencies by moving some
deployment operations into child resources that are deployed after the resources that have the circular
dependency. For example, suppose you're deploying two virtual machines but you must set properties on each
one that refer to the other. You can deploy them in the following order:

1. vm1
2. vm2
3. Extension on vm1 depends on vm1 and vm2. The extension sets values on vm1 that it gets from vm2.
4. Extension on vm2 depends on vm1 and vm2. The extension sets values on vm2 that it gets from vm1.

For information about assessing the deployment order and resolving dependency errors, see Troubleshoot
common Azure deployment errors with Azure Resource Manager.

To go through a tutorial, see Tutorial: create Azure Resource Manager templates with dependent resources.
For recommendations when setting dependencies, see Azure Resource Manager template best practices.
To learn about troubleshooting dependencies during deployment, see Troubleshoot common Azure

deployment errors with Azure Resource Manager.
To learn about creating Azure Resource Manager templates, see Authoring templates.
For a list of the available functions in a template, see Template functions.

Using linked and nested templates when deploying
Azure resources
7/18/2019 • 10 minutes to read • Edit Online

NOTENOTE

Link or nest a template

"resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "linkedTemplate",
 "properties": {
 "mode": "Incremental",
 <nested-template-or-external-template>
 }
 }
]

Nested templateNested template

To deploy your solution, you can use either a single template or a main template with many related templates.
The related template can be either a separate file that is linked to from the main template, or a template that is
nested within the main template.

For small to medium solutions, a single template is easier to understand and maintain. You can see all the
resources and values in a single file. For advanced scenarios, linked templates enable you to break down the
solution into targeted components, and reuse templates.

When using linked templates, you create a main template that receives the parameter values during deployment.
The main template contains all the linked templates and passes values to those templates as needed.

For a tutorial, see Tutorial: create linked Azure Resource Manager templates.

For linked or nested templates, you can only use Incremental deployment mode.

To link to another template, add a deployments resource to your main template.

The properties you provide for the deployment resource vary based on whether you're linking to an external
template or nesting an inline template in the main template.

To nest the template within the main template, use the template property and specify the template syntax.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-linked-templates.md

"resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "nestedTemplate",
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[variables('storageName')]",
 "location": "West US",
 "kind": "StorageV2",
 "sku": {
 "name": "Standard_LRS"
 }
 }
]
 }
 }
 }
]

NOTENOTE

"dependsOn": [
 "[variables('storageAccountName')]"
],

External template and external parametersExternal template and external parameters

For nested templates, you cannot use parameters or variables that are defined within the nested template. You can use
parameters and variables from the main template. In the preceding example, [variables('storageName')] retrieves a
value from the main template, not the nested template. This restriction does not apply to external templates.

For two resources defined inside a nested template and one resource depends on the other, the value of the dependency is
simply the name of the dependent resource:

You can't use the reference function in the outputs section of a nested template for a resource you have deployed in
the nested template. To return the values for a deployed resource in a nested template, convert your nested template to a
linked template.

The nested template requires the same properties as a standard template.

To link to an external template and parameter file, use templateLink and parametersLink. When linking to a
template, the Resource Manager service must be able to access it. You can't specify a local file or a file that is only
available on your local network. You can only provide a URI value that includes either http or https. One option
is to place your linked template in a storage account, and use the URI for that item.

"resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "linkedTemplate",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri":"https://mystorageaccount.blob.core.windows.net/AzureTemplates/newStorageAccount.json",
 "contentVersion":"1.0.0.0"
 },
 "parametersLink": {

"uri":"https://mystorageaccount.blob.core.windows.net/AzureTemplates/newStorageAccount.parameters.json",
 "contentVersion":"1.0.0.0"
 }
 }
 }
]

External template and inline parametersExternal template and inline parameters

"resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "linkedTemplate",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri":"https://mystorageaccount.blob.core.windows.net/AzureTemplates/newStorageAccount.json",
 "contentVersion":"1.0.0.0"
 },
 "parameters": {
 "StorageAccountName":{"value": "[parameters('StorageAccountName')]"}
 }
 }
 }
]

Using copy

You don't have to provide the contentVersion property for the template or parameters. If you don't provide a
content version value, the current version of the template is deployed. If you provide a value for content version,
it must match the version in the linked template; otherwise, the deployment fails with an error.

Or, you can provide the parameter inline. You can't use both inline parameters and a link to a parameter file. The
deployment fails with an error when both parametersLink and parameters are specified.

To pass a value from the main template to the linked template, use parameters.

To create multiple instances of a resource with a nested template, add the copy element at the level of the
Microsoft.Resources/deployments resource.

The following example template shows how to use copy with a nested template.

"resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "[concat('nestedTemplate', copyIndex())]",
 // yes, copy works here
 "copy":{
 "name": "storagecopy",
 "count": 2
 },
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2019-04-01",
 "name": "[concat(variables('storageName'), copyIndex())]",
 "location": "West US",
 "kind": "StorageV2",
 "sku": {
 "name": "Standard_LRS"
 }
 // no, copy doesn't work here
 //"copy":{
 // "name": "storagecopy",
 // "count": 2
 //}
 }
]
 }
 }
 }
]

Using variables to link templates

"variables": {
 "templateBaseUrl": "https://raw.githubusercontent.com/Azure/azure-quickstart-
templates/master/postgresql-on-ubuntu/",
 "sharedTemplateUrl": "[concat(variables('templateBaseUrl'), 'shared-resources.json')]",
 "vmTemplateUrl": "[concat(variables('templateBaseUrl'), 'database-2disk-resources.json')]"
}

The previous examples showed hard-coded URL values for the template links. This approach might work for a
simple template but it doesn't work well when working with a large set of modular templates. Instead, you can
create a static variable that stores a base URL for the main template and then dynamically create URLs for the
linked templates from that base URL. The benefit of this approach is you can easily move or fork the template
because you only need to change the static variable in the main template. The main template passes the correct
URIs throughout the decomposed template.

The following example shows how to use a base URL to create two URLs for linked templates
(sharedTemplateUrl and vmTemplate).

You can also use deployment() to get the base URL for the current template, and use that to get the URL for
other templates in the same location. This approach is useful if your template location changes or you want to
avoid hard coding URLs in the template file. The templateLink property is only returned when linking to a
remote template with a URL. If you're using a local template, that property isn't available.

"variables": {
 "sharedTemplateUrl": "[uri(deployment().properties.templateLink.uri, 'shared-resources.json')]"
}

Get values from linked template

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [],
 "outputs": {
 "greetingMessage": {
 "value": "Hello World",
 "type" : "string"
 }
 }
}

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "linkedTemplate",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[uri(deployment().properties.templateLink.uri, 'helloworld.json')]",
 "contentVersion": "1.0.0.0"
 }
 }
 }
],
 "outputs": {
 "messageFromLinkedTemplate": {
 "type": "string",
 "value": "[reference('linkedTemplate').outputs.greetingMessage.value]"
 }
 }
}

To get an output value from a linked template, retrieve the property value with syntax like:
"[reference('deploymentName').outputs.propertyName.value]" .

When getting an output property from a linked template, the property name can't include a dash.

The following examples demonstrate how to reference a linked template and retrieve an output value. The linked
template returns a simple message.

The main template deploys the linked template and gets the returned value. Notice that it references the
deployment resource by name, and it uses the name of the property returned by the linked template.

Like other resource types, you can set dependencies between the linked template and other resources. Therefore,
when other resources require an output value from the linked template, make sure the linked template is

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "publicIPAddresses_name": {
 "type": "string"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Network/publicIPAddresses",
 "apiVersion": "2018-11-01",
 "name": "[parameters('publicIPAddresses_name')]",
 "location": "eastus",
 "properties": {
 "publicIPAddressVersion": "IPv4",
 "publicIPAllocationMethod": "Dynamic",
 "idleTimeoutInMinutes": 4
 },
 "dependsOn": []
 }
],
 "outputs": {
 "resourceID": {
 "type": "string",
 "value": "[resourceId('Microsoft.Network/publicIPAddresses',
parameters('publicIPAddresses_name'))]"
 }
 }
}

deployed before them. Or, when the linked template relies on other resources, make sure other resources are
deployed before the linked template.

The following example shows a template that deploys a public IP address and returns the resource ID:

To use the public IP address from the preceding template when deploying a load balancer, link to the template
and add a dependency on the deployment resource. The public IP address on the load balancer is set to the
output value from the linked template.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "loadBalancers_name": {
 "defaultValue": "mylb",
 "type": "string"
 },
 "publicIPAddresses_name": {
 "defaultValue": "myip",
 "type": "string"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Network/loadBalancers",
 "apiVersion": "2018-11-01",
 "name": "[parameters('loadBalancers_name')]",
 "location": "eastus",
 "properties": {
 "frontendIPConfigurations": [
 {
 "name": "LoadBalancerFrontEnd",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "publicIPAddress": {
 "id": "[reference('linkedTemplate').outputs.resourceID.value]"
 }
 }
 }
],
 "backendAddressPools": [],
 "loadBalancingRules": [],
 "probes": [],
 "inboundNatRules": [],
 "outboundNatRules": [],
 "inboundNatPools": []
 },
 "dependsOn": [
 "linkedTemplate"
]
 },
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "linkedTemplate",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[uri(deployment().properties.templateLink.uri, 'publicip.json')]",
 "contentVersion": "1.0.0.0"
 },
 "parameters":{
 "publicIPAddresses_name":{"value": "[parameters('publicIPAddresses_name')]"}
 }
 }
 }
]
}

Linked and nested templates in deployment history
Resource Manager processes each template as a separate deployment in the deployment history. Therefore, a
main template with three linked or nested templates appears in the deployment history as:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "publicIPAddresses_name": {
 "type": "string"
 }
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Network/publicIPAddresses",
 "apiVersion": "2018-11-01",
 "name": "[parameters('publicIPAddresses_name')]",
 "location": "southcentralus",
 "properties": {
 "publicIPAddressVersion": "IPv4",
 "publicIPAllocationMethod": "Static",
 "idleTimeoutInMinutes": 4,
 "dnsSettings": {
 "domainNameLabel": "[concat(parameters('publicIPAddresses_name'),
uniqueString(resourceGroup().id))]"
 }
 },
 "dependsOn": []
 }
],
 "outputs": {
 "returnedIPAddress": {
 "type": "string",
 "value": "[reference(parameters('publicIPAddresses_name')).ipAddress]"
 }
 }
}

You can use these separate entries in the history to retrieve output values after the deployment. The following
template creates a public IP address and outputs the IP address:

The following template links to the preceding template. It creates three public IP addresses.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 },
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "[concat('linkedTemplate', copyIndex())]",
 "copy": {
 "count": 3,
 "name": "ip-loop"
 },
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[uri(deployment().properties.templateLink.uri, 'static-public-ip.json')]",
 "contentVersion": "1.0.0.0"
 },
 "parameters":{
 "publicIPAddresses_name":{"value": "[concat('myip-', copyIndex())]"}
 }
 }
 }
]
}

$loopCount = 3
for ($i = 0; $i -lt $loopCount; $i++)
{
 $name = 'linkedTemplate' + $i;
 $deployment = Get-AzResourceGroupDeployment -ResourceGroupName examplegroup -Name $name
 Write-Output "deployment $($deployment.DeploymentName) returned
$($deployment.Outputs.returnedIPAddress.value)"
}

#!/bin/bash

for i in 0 1 2;
do
 name="linkedTemplate$i";
 deployment=$(az group deployment show -g examplegroup -n $name);
 ip=$(echo $deployment | jq .properties.outputs.returnedIPAddress.value);
 echo "deployment $name returned $ip";
done

Securing an external template

After the deployment, you can retrieve the output values with the following PowerShell script:

Or, Azure CLI script in a Bash shell:

Although the linked template must be externally available, it doesn't need to be generally available to the public.
You can add your template to a private storage account that is accessible to only the storage account owner.
Then, you create a shared access signature (SAS) token to enable access during deployment. You add that SAS
token to the URI for the linked template. Even though the token is passed in as a secure string, the URI of the
linked template, including the SAS token, is logged in the deployment operations. To limit exposure, set an
expiration for the token.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "containerSasToken": { "type": "string" }
 },
 "resources": [
 {
 "type": "Microsoft.Resources/deployments",
 "apiVersion": "2018-05-01",
 "name": "linkedTemplate",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "[concat(uri(deployment().properties.templateLink.uri, 'helloworld.json'),
parameters('containerSasToken'))]",
 "contentVersion": "1.0.0.0"
 }
 }
 }
],
 "outputs": {
 }
}

Set-AzCurrentStorageAccount -ResourceGroupName ManageGroup -Name storagecontosotemplates
$token = New-AzStorageContainerSASToken -Name templates -Permission r -ExpiryTime (Get-
Date).AddMinutes(30.0)
$url = (Get-AzStorageBlob -Container templates -Blob parent.json).ICloudBlob.uri.AbsoluteUri
New-AzResourceGroupDeployment -ResourceGroupName ExampleGroup -TemplateUri ($url + $token) -
containerSasToken $token

The parameter file can also be limited to access through a SAS token.

The following example shows how to pass a SAS token when linking to a template:

In PowerShell, you get a token for the container and deploy the templates with the following commands. Notice
that the containerSasToken parameter is defined in the template. It isn't a parameter in the New-
AzResourceGroupDeployment command.

For Azure CLI in a Bash shell, you get a token for the container and deploy the templates with the following
code:

#!/bin/bash

expiretime=$(date -u -d '30 minutes' +%Y-%m-%dT%H:%MZ)
connection=$(az storage account show-connection-string \
 --resource-group ManageGroup \
 --name storagecontosotemplates \
 --query connectionString)
token=$(az storage container generate-sas \
 --name templates \
 --expiry $expiretime \
 --permissions r \
 --output tsv \
 --connection-string $connection)
url=$(az storage blob url \
 --container-name templates \
 --name parent.json \
 --output tsv \
 --connection-string $connection)
parameter='{"containerSasToken":{"value":"?'$token'"}}'
az group deployment create --resource-group ExampleGroup --template-uri $url?$token --parameters $parameter

Example templates

MAIN TEMPLATE LINKED TEMPLATE DESCRIPTION

Hello World linked template Returns string from linked template.

Load Balancer with public IP address linked template Returns public IP address from linked
template and sets that value in load
balancer.

Multiple IP addresses linked template Creates several public IP addresses in
linked template.

Next steps

The following examples show common uses of linked templates.

To go through a tutorial, see Tutorial: create linked Azure Resource Manager templates.
To learn about the defining the deployment order for your resources, see Defining dependencies in Azure
Resource Manager templates.
To learn how to define one resource but create many instances of it, see Create multiple instances of
resources in Azure Resource Manager.
For steps on setting up a template in a storage account and generating a SAS token, see Deploy resources
with Resource Manager templates and Azure PowerShell or Deploy resources with Resource Manager
templates and Azure CLI.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/helloworldparent.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/helloworld.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/public-ip-parentloadbalancer.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/public-ip.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/static-public-ip-parent.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/linkedtemplates/static-public-ip.json

Use Azure Key Vault to pass secure parameter value
during deployment
7/9/2019 • 6 minutes to read • Edit Online

Deploy key vaults and secrets

az group create --name $resourceGroupName --location $location
az keyvault create \
 --name $keyVaultName \
 --resource-group $resourceGroupName \
 --location $location \
 --enabled-for-template-deployment true
az keyvault secret set --vault-name $keyVaultName --name "ExamplePassword" --value "hVFkk965BuUv"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzKeyVault `
 -VaultName $keyVaultName `
 -resourceGroupName $resourceGroupName `
 -Location $location `
 -EnabledForTemplateDeployment
$secretvalue = ConvertTo-SecureString 'hVFkk965BuUv' -AsPlainText -Force
$secret = Set-AzKeyVaultSecret -VaultName $keyVaultName -Name 'ExamplePassword' -SecretValue $secretvalue

az keyvault set-policy \
 --upn $userPrincipalName \
 --name $keyVaultName \
 --secret-permissions set delete get list

$userPrincipalName = "<Email Address of the deployment operator>"

Set-AzKeyVaultAccessPolicy `
 -VaultName $keyVaultName `
 -UserPrincipalName $userPrincipalName `
 -PermissionsToSecrets set,delete,get,list

Instead of putting a secure value (like a password) directly in your template or parameter file, you can retrieve the
value from an Azure Key Vault during a deployment. You retrieve the value by referencing the key vault and secret
in your parameter file. The value is never exposed because you only reference its key vault ID. The key vault can
exist in a different subscription than the resource group you're deploying to.

To access a key vault during template deployment, set enabledForTemplateDeployment on the key vault to true .

The following Azure CLI and Azure PowerShell samples show how to create the key vault, and add a secret.

As the owner of the key vault, you automatically have access to creating secrets. If the user working with secrets
isn't the owner of the key vault, grant access with:

For more information about creating key vaults and adding secrets, see:

Set and retrieve a secret by using CLI
Set and retrieve a secret by using Powershell

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-keyvault-parameter.md
https://docs.microsoft.com/en-us/azure/key-vault/key-vault-whatis
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-cli
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-powershell

Grant access to the secrets

Reference secrets with static ID

Set and retrieve a secret by using the portal
Set and retrieve a secret by using .NET
Set and retrieve a secret by using Node.js

The user who deploys the template must have the Microsoft.KeyVault/vaults/deploy/action permission for the
scope of the resource group and key vault. The Owner and Contributor roles both grant this access. If you created
the key vault, you're the owner so you have the permission.

The following procedure shows how to create a role with the minimum permission, and how to assign the user

{
 "Name": "Key Vault resource manager template deployment operator",
 "IsCustom": true,
 "Description": "Lets you deploy a resource manager template with the access to the secrets in the Key
Vault.",
 "Actions": [
 "Microsoft.KeyVault/vaults/deploy/action"
],
 "NotActions": [],
 "DataActions": [],
 "NotDataActions": [],
 "AssignableScopes": [
 "/subscriptions/00000000-0000-0000-0000-000000000000"
]
}

az role definition create --role-definition "<PathToRoleFile>"
az role assignment create \
 --role "Key Vault resource manager template deployment operator" \
 --assignee $userPrincipalName \
 --resource-group $resourceGroupName

New-AzRoleDefinition -InputFile "<PathToRoleFile>"
New-AzRoleAssignment `
 -ResourceGroupName $resourceGroupName `
 -RoleDefinitionName "Key Vault resource manager template deployment operator" `
 -SignInName $userPrincipalName

1. Create a custom role definition JSON file:

Replace "00000000-0000-0000-0000-000000000000" with the subscription ID.

2. Create the new role using the JSON file:

The samples assign the custom role to the user on the resource group level.

When using a Key Vault with the template for a Managed Application, you must grant access to the Appliance
Resource Provider service principal. For more information, see Access Key Vault secret when deploying Azure
Managed Applications.

With this approach, you reference the key vault in the parameter file, not the template. The following image shows
how the parameter file references the secret and passes that value to the template.

https://docs.microsoft.com/en-us/azure/key-vault/quick-create-portal
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-net
https://docs.microsoft.com/en-us/azure/key-vault/quick-create-node
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/managed-applications/overview
https://docs.microsoft.com/en-us/azure/managed-applications/key-vault-access

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "adminLogin": {
 "type": "string"
 },
 "adminPassword": {
 "type": "securestring"
 },
 "sqlServerName": {
 "type": "string"
 }
 },
 "resources": [
 {
 "name": "[parameters('sqlServerName')]",
 "type": "Microsoft.Sql/servers",
 "apiVersion": "2015-05-01-preview",
 "location": "[resourceGroup().location]",
 "tags": {},
 "properties": {
 "administratorLogin": "[parameters('adminLogin')]",
 "administratorLoginPassword": "[parameters('adminPassword')]",
 "version": "12.0"
 }
 }
],
 "outputs": {
 }
}

Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment uses this method.

The following template deploys a SQL server that includes an administrator password. The password parameter is
set to a secure string. But, the template doesn't specify where that value comes from.

Now, create a parameter file for the preceding template. In the parameter file, specify a parameter that matches
the name of the parameter in the template. For the parameter value, reference the secret from the key vault. You
reference the secret by passing the resource identifier of the key vault and the name of the secret:

In the following parameter file, the key vault secret must already exist, and you provide a static value for its
resource ID.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-tutorial-use-key-vault

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "adminLogin": {
 "value": "exampleadmin"
 },
 "adminPassword": {
 "reference": {
 "keyVault": {
 "id": "/subscriptions/<subscription-id>/resourceGroups/<rg-
name>/providers/Microsoft.KeyVault/vaults/<vault-name>"
 },
 "secretName": "ExamplePassword"
 }
 },
 "sqlServerName": {
 "value": "<your-server-name>"
 }
 }
}

"secretName": "ExamplePassword",
"secretVersion": "cd91b2b7e10e492ebb870a6ee0591b68"

az group create --name $resourceGroupName --location $location
az group deployment create \
 --resource-group $resourceGroupName \
 --template-uri <The Template File URI> \
 --parameters <The Parameter File>

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateUri <The Template File URI> `
 -TemplateParameterFile <The Parameter File>

Reference secrets with dynamic ID

If you need to use a version of the secret other than the current version, use the secretVersion property.

Deploy the template and pass in the parameter file:

For Azure CLI, use:

For PowerShell, use:

The previous section showed how to pass a static resource ID for the key vault secret from the parameter.
However, in some scenarios, you need to reference a key vault secret that varies based on the current deployment.
Or, you may want to pass parameter values to the template rather than create a reference parameter in the
parameter file. In either case, you can dynamically generate the resource ID for a key vault secret by using a linked
template.

You can't dynamically generate the resource ID in the parameters file because template expressions aren't allowed
in the parameters file.

In your parent template, you add the linked template and pass in a parameter that contains the dynamically
generated resource ID. The following image shows how a parameter in the linked template references the secret.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "The location where the resources will be deployed."
 }
 },
 "vaultName": {
 "type": "string",
 "metadata": {
 "description": "The name of the keyvault that contains the secret."
 }
 },
 "secretName": {
 "type": "string",
 "metadata": {
 "description": "The name of the secret."
 }
 },
 "vaultResourceGroupName": {
 "type": "string",
 "metadata": {
 "description": "The name of the resource group that contains the keyvault."
 }
 },
 "vaultSubscription": {
 "type": "string",
 "defaultValue": "[subscription().subscriptionId]",
 "metadata": {
 "description": "The name of the subscription that contains the keyvault."
 }
 },
 "_artifactsLocation": {
 "type": "string",
 "metadata": {
 "description": "The base URI where artifacts required by this template are located. When the
template is deployed using the accompanying scripts, a private location in the subscription will be used and
this value will be automatically generated."
 },
 "defaultValue": "https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/201-
key-vault-use-dynamic-id/"
 },
 "_artifactsLocationSasToken": {
 "type": "securestring",
 "metadata": {
 "description": "The sasToken required to access _artifactsLocation. When the template is
deployed using the accompanying scripts, a sasToken will be automatically generated."
 },
 "defaultValue": ""
 }

The following template dynamically creates the key vault ID and passes it as a parameter.

https://github.com/Azure/azure-quickstart-templates/tree/master/201-key-vault-use-dynamic-id

 }
 },
 "resources": [
 {
 "apiVersion": "2018-05-01",
 "name": "dynamicSecret",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "contentVersion": "1.0.0.0",
 "uri": "[uri(parameters('_artifactsLocation'), concat('./nested/sqlserver.json',
parameters('_artifactsLocationSasToken')))]"
 },
 "parameters": {
 "location": {
 "value": "[parameters('location')]"
 },
 "adminLogin": {
 "value": "ghuser"
 },
 "adminPassword": {
 "reference": {
 "keyVault": {
 "id": "[resourceId(parameters('vaultSubscription'),
parameters('vaultResourceGroupName'), 'Microsoft.KeyVault/vaults', parameters('vaultName'))]"
 },
 "secretName": "[parameters('secretName')]"
 }
 }
 }
 }
 }
],
 "outputs": {
 "sqlFQDN": {
 "type": "string",
 "value": "[reference('dynamicSecret').outputs.sqlFQDN.value]"
 }
 }
}

az group create --name $resourceGroupName --location $location
az group deployment create \
 --resource-group $resourceGroupName \
 --template-uri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/201-key-vault-
use-dynamic-id/azuredeploy.json \
 --parameters vaultName=$keyVaultName vaultResourceGroupName=examplegroup secretName=examplesecret

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment `
 -ResourceGroupName $resourceGroupName `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/201-key-vault-use-
dynamic-id/azuredeploy.json `
 -vaultName $keyVaultName -vaultResourceGroupName $keyVaultResourceGroupName -secretName $secretName

Deploy the preceding template, and provide values for the parameters. You can use the example template from
GitHub, but you must provide parameter values for your environment.

For Azure CLI, use:

For PowerShell, use:

Next steps
For general information about key vaults, see What is Azure Key Vault?.
For complete examples of referencing key secrets, see Key Vault examples.

https://docs.microsoft.com/en-us/azure/key-vault/key-vault-overview
https://github.com/rjmax/ArmExamples/tree/master/keyvaultexamples

Resource, property, or variable iteration in Azure
Resource Manager templates
7/25/2019 • 9 minutes to read • Edit Online

"copy": {
 "name": "<name-of-loop>",
 "count": <number-of-iterations>,
 "mode": "serial" <or> "parallel",
 "batchSize": <number-to-deploy-serially>
}

"copy": [
 {
 "name": "<name-of-loop>",
 "count": <number-of-iterations>,
 "input": <values-for-the-property-or-variable>
 }
]

Copy limits

Resource iteration

This article shows you how to create more than one instance of a resource, variable, or property in your Azure
Resource Manager template. To create multiple instances, add the copy object to your template.

When used with a resource, the copy object has the following format:

When used with a variable or property, the copy object has the following format:

Both uses are described in greater detail in this article. For a tutorial, see Tutorial: create multiple resource
instances using Resource Manager templates.

If you need to specify whether a resource is deployed at all, see condition element.

To specify the number of iterations, you provide a value for the count property. The count can't exceed 800.

The count can't be a negative number. If you deploy a template with REST API version 2019-05-10 or later, you
can set count to zero. Earlier versions of the REST API don't support zero for count. Currently, Azure CLI or
PowerShell don't support zero for count, but that support will be added in a future release.

Be careful using complete mode deployment with copy. If you redeploy with complete mode to a resource
group, any resources that aren't specified in the template after resolving the copy loop are deleted.

The limits for the count are the same whether used with a resource, variable, or property.

When you must decide during deployment to create one or more instances of a resource, add a copy element
to the resource type. In the copy element, specify the number of iterations and a name for this loop.

The resource to create several times takes the following format:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-create-multiple.md

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "apiVersion": "2016-01-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat(copyIndex(),'storage', uniqueString(resourceGroup().id))]",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {},
 "copy": {
 "name": "storagecopy",
 "count": 3
 }
 }
],
 "outputs": {}
}

"name": "[concat('storage', copyIndex())]",

"name": "[concat('storage', copyIndex(1))]",

Notice that the name of each resource includes the copyIndex() function, which returns the current iteration in
the loop. copyIndex() is zero-based. So, the following example:

Creates these names:

storage0
storage1
storage2.

To offset the index value, you can pass a value in the copyIndex() function. The number of iterations is still
specified in the copy element, but the value of copyIndex is offset by the specified value. So, the following
example:

Creates these names:

storage1
storage2
storage3

The copy operation is helpful when working with arrays because you can iterate through each element in the
array. Use the length function on the array to specify the count for iterations, and copyIndex to retrieve the
current index in the array. So, the following example:

"parameters": {
 "org": {
 "type": "array",
 "defaultValue": [
 "contoso",
 "fabrikam",
 "coho"
]
 }
},
"resources": [
 {
 "name": "[concat('storage', parameters('org')[copyIndex()])]",
 "copy": {
 "name": "storagecopy",
 "count": "[length(parameters('org'))]"
 },
 ...
 }
]

Creates these names:

storagecontoso
storagefabrikam
storagecoho

By default, Resource Manager creates the resources in parallel. It applies no limit to the number of resources
deployed in parallel, other than the total limit of 800 resources in the template. The order in which they're
created isn't guaranteed.

However, you may want to specify that the resources are deployed in sequence. For example, when updating a
production environment, you may want to stagger the updates so only a certain number are updated at any one
time. To serially deploy more than one instance of a resource, set mode to serial and batchSize to the number
of instances to deploy at a time. With serial mode, Resource Manager creates a dependency on earlier instances
in the loop, so it doesn't start one batch until the previous batch completes.

For example, to serially deploy storage accounts two at a time, use:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
 {
 "apiVersion": "2016-01-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat(copyIndex(),'storage', uniqueString(resourceGroup().id))]",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {},
 "copy": {
 "name": "storagecopy",
 "count": 4,
 "mode": "serial",
 "batchSize": 2
 }
 }
],
 "outputs": {}
}

Property iteration

{
 "name": "examplevm",
 "type": "Microsoft.Compute/virtualMachines",
 "apiVersion": "2017-03-30",
 "properties": {
 "storageProfile": {
 "copy": [{
 "name": "dataDisks",
 "count": 3,
 "input": {
 "lun": "[copyIndex('dataDisks')]",
 "createOption": "Empty",
 "diskSizeGB": "1023"
 }
 }],
 ...

The mode property also accepts parallel, which is the default value.

For information about using copy with nested templates, see Using copy.

To create more than one value for a property on a resource, add a copy array in the properties element. This
array contains objects, and each object has the following properties:

name - the name of the property to create several values for
count - the number of values to create.
input - an object that contains the values to assign to the property

The following example shows how to apply copy to the dataDisks property on a virtual machine:

Notice that when using copyIndex inside a property iteration, you must provide the name of the iteration. You
don't have to provide the name when used with resource iteration.

Resource Manager expands the copy array during deployment. The name of the array becomes the name of

{
 "name": "examplevm",
 "type": "Microsoft.Compute/virtualMachines",
 "apiVersion": "2017-03-30",
 "properties": {
 "storageProfile": {
 "dataDisks": [
 {
 "lun": 0,
 "createOption": "Empty",
 "diskSizeGB": "1023"
 },
 {
 "lun": 1,
 "createOption": "Empty",
 "diskSizeGB": "1023"
 },
 {
 "lun": 2,
 "createOption": "Empty",
 "diskSizeGB": "1023"
 }
],
 ...

{
 "name": "string",
 "type": "Microsoft.Network/loadBalancers",
 "apiVersion": "2017-10-01",
 "properties": {
 "copy": [
 {
 "name": "loadBalancingRules",
 "count": "[length(parameters('loadBalancingRules'))]",
 "input": {
 ...
 }
 },
 {
 "name": "probes",
 "count": "[length(parameters('loadBalancingRules'))]",
 "input": {
 ...
 }
 }
]
 }
}

the property. The input values become the object properties. The deployed template becomes:

The copy element is an array so you can specify more than one property for the resource. Add an object for
each property to create.

You can use resource and property iteration together. Reference the property iteration by name.

{
 "type": "Microsoft.Network/virtualNetworks",
 "name": "[concat(parameters('vnetname'), copyIndex())]",
 "apiVersion": "2018-04-01",
 "copy":{
 "count": 2,
 "name": "vnetloop"
 },
 "location": "[resourceGroup().location]",
 "properties": {
 "addressSpace": {
 "addressPrefixes": [
 "[parameters('addressPrefix')]"
]
 },
 "copy": [
 {
 "name": "subnets",
 "count": 2,
 "input": {
 "name": "[concat('subnet-', copyIndex('subnets'))]",
 "properties": {
 "addressPrefix": "[variables('subnetAddressPrefix')[copyIndex('subnets')]]"
 }
 }
 }
]
 }
}

Variable iteration

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {
 "disk-array-on-object": {
 "copy": [
 {
 "name": "disks",
 "count": 5,
 "input": {
 "name": "[concat('myDataDisk', copyIndex('disks', 1))]",
 "diskSizeGB": "1",
 "diskIndex": "[copyIndex('disks')]"
 }
 },
 {
 "name": "diskNames",
 "count": 5,
 "input": "[concat('myDataDisk', copyIndex('diskNames', 1))]"

To create multiple instances of a variable, use the copy property in the variables section. You create an array of
elements constructed from the value in the input property. You can use the copy property within a variable, or
at the top level of the variables section. When using copyIndex inside a variable iteration, you must provide the
name of the iteration.

For a simple example of creating an array of string values, see copy array template.

The following example shows several different ways to create array variables with dynamically constructed
elements. It shows how to use copy inside a variable to create arrays of objects and strings. It also shows how to
use copy at the top level to create arrays of objects, strings, and integers.

https://github.com/bmoore-msft/AzureRM-Samples/blob/master/copy-array/azuredeploy.json

 }
]
 },
 "copy": [
 {
 "name": "top-level-object-array",
 "count": 5,
 "input": {
 "name": "[concat('myDataDisk', copyIndex('top-level-object-array', 1))]",
 "diskSizeGB": "1",
 "diskIndex": "[copyIndex('top-level-object-array')]"
 }
 },
 {
 "name": "top-level-string-array",
 "count": 5,
 "input": "[concat('myDataDisk', copyIndex('top-level-string-array', 1))]"
 },
 {
 "name": "top-level-integer-array",
 "count": 5,
 "input": "[copyIndex('top-level-integer-array')]"
 }
]
 },
 "resources": [],
 "outputs": {
 "exampleObject": {
 "value": "[variables('disk-array-on-object')]",
 "type": "object"
 },
 "exampleArrayOnObject": {
 "value": "[variables('disk-array-on-object').disks]",
 "type" : "array"
 },
 "exampleObjectArray": {
 "value": "[variables('top-level-object-array')]",
 "type" : "array"
 },
 "exampleStringArray": {
 "value": "[variables('top-level-string-array')]",
 "type" : "array"
 },
 "exampleIntegerArray": {
 "value": "[variables('top-level-integer-array')]",
 "type" : "array"
 }
 }
}

The type of variable that gets created depends on the input object. For example, the variable named top-level-
object-array in the preceding example returns:

[
 {
 "name": "myDataDisk1",
 "diskSizeGB": "1",
 "diskIndex": 0
 },
 {
 "name": "myDataDisk2",
 "diskSizeGB": "1",
 "diskIndex": 1
 },
 {
 "name": "myDataDisk3",
 "diskSizeGB": "1",
 "diskIndex": 2
 },
 {
 "name": "myDataDisk4",
 "diskSizeGB": "1",
 "diskIndex": 3
 },
 {
 "name": "myDataDisk5",
 "diskSizeGB": "1",
 "diskIndex": 4
 }
]

[
 "myDataDisk1",
 "myDataDisk2",
 "myDataDisk3",
 "myDataDisk4",
 "myDataDisk5"
]

Depend on resources in a loop

And, the variable named top-level-string-array returns:

You specify that a resource is deployed after another resource by using the dependsOn element. To deploy a
resource that depends on the collection of resources in a loop, provide the name of the copy loop in the
dependsOn element. The following example shows how to deploy three storage accounts before deploying the
Virtual Machine. The full Virtual Machine definition isn't shown. Notice that the copy element has name set to
storagecopy and the dependsOn element for the Virtual Machines is also set to storagecopy .

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "resources": [
 {
 "apiVersion": "2016-01-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat(copyIndex(),'storage', uniqueString(resourceGroup().id))]",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {},
 "copy": {
 "name": "storagecopy",
 "count": 3
 }
 },
 {
 "apiVersion": "2015-06-15",
 "type": "Microsoft.Compute/virtualMachines",
 "name": "[concat('VM', uniqueString(resourceGroup().id))]",
 "dependsOn": ["storagecopy"],
 ...
 }
],
 "outputs": {}
}

Iteration for a child resource

"resources": [
{
 "type": "Microsoft.DataFactory/datafactories",
 "name": "exampleDataFactory",
 ...
 "resources": [
 {
 "type": "datasets",
 "name": "exampleDataSet",
 "dependsOn": [
 "exampleDataFactory"
],
 ...
 }
]

You can't use a copy loop for a child resource. To create more than one instance of a resource that you typically
define as nested within another resource, you must instead create that resource as a top-level resource. You
define the relationship with the parent resource through the type and name properties.

For example, suppose you typically define a dataset as a child resource within a data factory.

To create more than one data set, move it outside of the data factory. The dataset must be at the same level as
the data factory, but it's still a child resource of the data factory. You preserve the relationship between data set
and data factory through the type and name properties. Since type can no longer be inferred from its position in
the template, you must provide the fully qualified type in the format:
{resource-provider-namespace}/{parent-resource-type}/{child-resource-type} .

To establish a parent/child relationship with an instance of the data factory, provide a name for the data set that

"resources": [
{
 "type": "Microsoft.DataFactory/datafactories",
 "name": "exampleDataFactory",
 ...
},
{
 "type": "Microsoft.DataFactory/datafactories/datasets",
 "name": "[concat('exampleDataFactory', '/', 'exampleDataSet', copyIndex())]",
 "dependsOn": [
 "exampleDataFactory"
],
 "copy": {
 "name": "datasetcopy",
 "count": "3"
 },
 ...
}]

Example templates

TEMPLATE DESCRIPTION

Copy storage Deploys more than one storage account with an index
number in the name.

Serial copy storage Deploys several storage accounts one at time. The name
includes the index number.

Copy storage with array Deploys several storage accounts. The name includes a value
from an array.

VM deployment with a variable number of data disks Deploys several data disks with a virtual machine.

Copy variables Demonstrates the different ways of iterating on variables.

Multiple security rules Deploys several security rules to a network security group. It
constructs the security rules from a parameter. For the
parameter, see multiple NSG parameter file.

Next steps

includes the parent resource name. Use the format: {parent-resource-name}/{child-resource-name} .

The following example shows the implementation:

The following examples show common scenarios for creating more than one instance of a resource or property.

To go through a tutorial, see Tutorial: create multiple resource instances using Resource Manager
templates.

If you want to learn about the sections of a template, see Authoring Azure Resource Manager Templates.

To learn how to deploy your template, see Deploy an application with Azure Resource Manager Template.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/copystorage.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/serialcopystorage.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/copystoragewitharray.json
https://github.com/Azure/azure-quickstart-templates/tree/master/101-vm-windows-copy-datadisks
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/copyvariables.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/multiplesecurityrules.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/multipleinstance/multiplesecurityrules.parameters.json

Provide post-deployment configurations by using
extensions
12/14/2018 • 2 minutes to read • Edit Online

Extensions

Next steps

Template extensions are small applications that provide post-deployment configuration and automation tasks on
Azure resources. The most popular one is virtual machine extensions. See Virtual machine extensions and features
for Windows, and Virtual machine extensions and features for Linux.

The existing extensions are:

Microsoft.Compute/virtualMachines/extensions
Microsoft.Compute virtualMachineScaleSets/extensions
Microsoft.HDInsight clusters/extensions
Microsoft.Sql servers/databases/extensions
Microsoft.Web/sites/siteextensions

To find out the available extensions, browse to the template reference. In Filter by title, enter extension.

To learn how to use these extensions, see:

Tutorial: Deploy virtual machine extensions with Azure Resource Manager templates.
Tutorial: Import SQL BACPAC files with Azure Resource Manager templates

Tutorial: Deploy virtual machine extensions with Azure Resource Manager templates

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-use-extensions.md
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/features-windows
https://docs.microsoft.com/en-us/azure/virtual-machines/extensions/features-linux
https://docs.microsoft.com/azure/templates/microsoft.compute/2018-10-01/virtualmachines/extensions
https://docs.microsoft.com/azure/templates/microsoft.compute/2018-10-01/virtualmachinescalesets/extensions
https://docs.microsoft.com/azure/templates/microsoft.hdinsight/2018-06-01-preview/clusters/extensions
https://docs.microsoft.com/azure/templates/microsoft.sql/2014-04-01/servers/databases/extensions
https://docs.microsoft.com/azure/templates/microsoft.web/2016-08-01/sites/siteextensions
https://docs.microsoft.com/azure/templates/

Deploy resources with Resource Manager templates
and Azure portal
6/28/2019 • 3 minutes to read • Edit Online

Create a resource group

Learn how to use the Azure portal with Azure Resource Manager to deploy your Azure resources. To learn about
managing your resources, see Manage Azure resources by using the Azure portal.

Deploying Azure resources by using the Azure portal usually involves two steps:

Create a resource group.
Deploy resources to the resource group.

In addition, you can also deploy an Azure Resource Manager template to create Azure resources.

This article shows both methods.

1. To create a new resource group, select Resource groups from the Azure portal.

2. Under Resource groups, select Add.

3. Select or enter the following property values:

Subscription: Select an Azure subscription.
Resource group: Give the resource group a name.
Region: Specify an Azure location. This is where the resource group stores metadata about the
resources. For compliance reasons, you may want to specify where that metadata is stored. In general,
we recommend that you specify a location where most of your resources will reside. Using the same
location can simplify your template.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-deploy-portal.md
https://portal.azure.com
https://portal.azure.com

Deploy resources to a resource group

4. Select Review + create.

5. review the values, and then select Create.

6. Select Refresh before you can see the new resource group in the list.

After you create a resource group, you can deploy resources to the group from the Marketplace. The Marketplace
provides pre-defined solutions for common scenarios.

1. To start a deployment, select Create a resource from the Azure portal.

2. Find the type of resource you would like to deploy. The resources are organized in categories. If you don't
see the particular solution you would like to deploy, you can search the Marketplace for it. The following
screenshot shows that Ubuntu Server is selected.

https://portal.azure.com

3. Depending on the type of selected resource, you have a collection of relevant properties to set before
deployment. For all types, you must select a destination resource group. The following image shows how to
create a Linux virtual machine and deploy it to the resource group you created.

Alternatively, you can decide to create a resource group when deploying your resources. Select Create new
and give the resource group a name.

4. Your deployment begins. The deployment could take several minutes. Some resources take longer time
than other resources. When the deployment has finished, you see a notification. Select Go to resource to
open

Deploy resources from custom template

NOTENOTE

5. After deploying your resources, you can add more resources to the resource group by selecting Add.

If you want to execute a deployment but not use any of the templates in the Marketplace, you can create a
customized template that defines the infrastructure for your solution. To learn about creating templates, see
Understand the structure and syntax of Azure Resource Manager templates.

The portal interface doesn't support referencing a secret from a Key Vault. Instead, use PowerShell or Azure CLI to deploy
your template locally or from an external URI.

1. To deploy a customized template through the portal, select Create a resource, search for template. and
then select Template deployment.

2. Select Create.

3. You see several options for creating a template:

Build your own template in editor: create a template using the portal template editor. The editor is
capable to add a resource template schema.
Common templates: There are four common templatess for creating a Linux virtual machine,
Windows virtual machine, a web application, and an Azure SQL database.
Load a GitHub quickstart template: use an existing quickstart templates.

https://azure.microsoft.com/resources/templates/

This tutorial provides the instruction for loading a quickstart template.

4. Under Load a GitHub quickstart template, type or select 101-storage-account-create.

You have two options:

Select template: deploy the template.
Edit template: edit the quickstart template before you deploy it.

5. Select Edit template to explore the portal template editor. The template is loaded in the editor. Notice there
are two parameters: storageAccountType and location.

Next steps

"storageAccountName": "[concat('azstore', uniquestring(resourceGroup().id))]"

6. Make a minor change to the template. For example, update the storageAccountName variable to:

7. Select Save. Now you see the portal template deployment interface. Notice the two parameters that you
defined in the template.

8. Enter or select the property values:

Subscription: Select an Azure subscription.
Resource group: Select Create new and give a name.
Location: Select an Azure location.
Storage Account Type: Use the default value.
Location: Use the default value.
I agree to the terms and conditions stated above: (select)

9. Select Purchase.

To view audit logs, see Audit operations with Resource Manager.
To troubleshoot deployment errors, see View deployment operations.
To export a template from a deployment or resource group, see Export Azure Resource Manager templates.
To safely roll out your service across multiple regions, see Azure Deployment Manager.

Deploy resources with Resource Manager templates
and Azure CLI
7/12/2019 • 9 minutes to read • Edit Online

Deployment scope

az group deployment create --resource-group <resource-group-name> --template-file <path-to-template>

az deployment create --location <location> --template-file <path-to-template>

Deploy local template

This article explains how to use Azure CLI with Resource Manager templates to deploy your resources to Azure. If
you aren't familiar with the concepts of deploying and managing your Azure solutions, see Azure Resource
Manager overview.

To run this sample, install the latest version of the Azure CLI. To start, run az login to create a connection with
Azure.

Samples for the Azure CLI are written for the bash shell. To run this sample in Windows PowerShell or
Command Prompt, you may need to change elements of the script.

If you don't have Azure CLI installed, you can use the Cloud Shell.

You can target your deployment to either an Azure subscription or a resource group within a subscription. In most
cases, you'll target deployment to a resource group. Use subscription deployments to apply policies and role
assignments across the subscription. You also use subscription deployments to create a resource group and
deploy resources to it. Depending on the scope of the deployment, you use different commands.

To deploy to a resource group, use az group deployment create:

To deploy to a subscription, use az deployment create:

Currently, management group deployments are only supported through the REST API. See Deploy resources
with Resource Manager templates and Resource Manager REST API.

The examples in this article use resource group deployments. For more information about subscription
deployments, see Create resource groups and resources at the subscription level.

When deploying resources to Azure, you:

1. Sign in to your Azure account
2. Create a resource group that serves as the container for the deployed resources. The name of the resource

group can only include alphanumeric characters, periods, underscores, hyphens, and parenthesis. It can be up
to 90 characters. It can't end in a period.

3. Deploy to the resource group the template that defines the resources to create

A template can include parameters that enable you to customize the deployment. For example, you can provide
values that are tailored for a particular environment (such as dev, test, and production). The sample template
defines a parameter for the storage account SKU.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-deploy-cli.md
https://docs.microsoft.com/cli/azure/install-azure-cli
https://docs.microsoft.com/cli/azure/group/deployment?view=azure-cli-latest#az-group-deployment-create
https://docs.microsoft.com/cli/azure/deployment?view=azure-cli-latest#az-deployment-create

az group create --name ExampleGroup --location "Central US"
az group deployment create \
 --name ExampleDeployment \
 --resource-group ExampleGroup \
 --template-file storage.json \
 --parameters storageAccountType=Standard_GRS

"provisioningState": "Succeeded",

Deploy remote template

az group create --name ExampleGroup --location "Central US"
az group deployment create \
 --name ExampleDeployment \
 --resource-group ExampleGroup \
 --template-uri "https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-
account-create/azuredeploy.json" \
 --parameters storageAccountType=Standard_GRS

Deploy template from Cloud Shell

The following example creates a resource group, and deploys a template from your local machine:

The deployment can take a few minutes to complete. When it finishes, you see a message that includes the result:

Instead of storing Resource Manager templates on your local machine, you may prefer to store them in an
external location. You can store templates in a source control repository (such as GitHub). Or, you can store them
in an Azure storage account for shared access in your organization.

To deploy an external template, use the template-uri parameter. Use the URI in the example to deploy the sample
template from GitHub.

The preceding example requires a publicly accessible URI for the template, which works for most scenarios
because your template shouldn't include sensitive data. If you need to specify sensitive data (like an admin
password), pass that value as a secure parameter. However, if you don't want your template to be publicly
accessible, you can protect it by storing it in a private storage container. For information about deploying a
template that requires a shared access signature (SAS) token, see Deploy private template with SAS token.

You can use Cloud Shell to deploy your template. To deploy an external template, provide the URI of the template
exactly as you would for any external deployment. To deploy a local template, you must first load your template
into the storage account for your Cloud Shell. This section describes how to load the template to your cloud shell
account, and deploy it as a local file. If you haven't used Cloud Shell, see Overview of Azure Cloud Shell for
information about setting it up.

1. Sign in to the Azure portal.

2. Select your Cloud Shell resource group. The name pattern is cloud-shell-storage-<region> .

https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://docs.microsoft.com/en-us/azure/cloud-shell/overview
https://portal.azure.com

3. Select the storage account for your Cloud Shell.

4. Select Blobs.

5. Select + Container.

6. Give your container a name and an access level. The sample template in this article contains no sensitive
information, so allow anonymous read access. Select OK.

7. Select the container you created.

8. Select Upload.

az group create --name examplegroup --location "South Central US"
az group deployment create --resource-group examplegroup \
 --template-uri <copied URL> \
 --parameters storageAccountType=Standard_GRS

Redeploy when deployment fails

9. Find and upload your template.

10. After it has uploaded, select the template.

11. Copy the URL.

12. Open the prompt.

In the Cloud Shell, use the following commands:

This feature is also known as Rollback on error. When a deployment fails, you can automatically redeploy an
earlier, successful deployment from your deployment history. To specify redeployment, use the
--rollback-on-error parameter in the deployment command. This functionality is useful if you've got a known

az group deployment create \
 --name ExampleDeployment \
 --resource-group ExampleGroup \
 --template-file storage.json \
 --parameters storageAccountType=Standard_GRS \
 --rollback-on-error

az group deployment create \
 --name ExampleDeployment02 \
 --resource-group ExampleGroup \
 --template-file storage.json \
 --parameters storageAccountType=Standard_GRS \
 --rollback-on-error ExampleDeployment01

Parameters

Inline parametersInline parameters

az group deployment create \
 --resource-group testgroup \
 --template-file demotemplate.json \
 --parameters exampleString='inline string' exampleArray='("value1", "value2")'

good state for your infrastructure deployment and want to revert to this state. There are a number of caveats and
restrictions:

The redeployment is run exactly as it was run previously with the same parameters. You can't change the
parameters.
The previous deployment is run using the complete mode. Any resources not included in the previous
deployment are deleted, and any resource configurations are set to their previous state. Make sure you fully
understand the deployment modes.
The redeployment only affects the resources, any data changes aren't affected.
This feature is only supported on Resource Group deployments, not subscription level deployments. For more
information about subscription level deployment, see Create resource groups and resources at the subscription
level.

To use this option, your deployments must have unique names so they can be identified in the history. If you don't
have unique names, the current failed deployment might overwrite the previously successful deployment in the
history. You can only use this option with root level deployments. Deployments from a nested template aren't
available for redeployment.

To redeploy the last successful deployment, add the --rollback-on-error parameter as a flag.

To redeploy a specific deployment, use the --rollback-on-error parameter and provide the name of the
deployment.

The specified deployment must have succeeded.

To pass parameter values, you can use either inline parameters or a parameter file. The preceding examples in this
article show inline parameters.

To pass inline parameters, provide the values in parameters . For example, to pass a string and array to a template
is a Bash shell, use:

If you are using Azure CLI with Windows Command Prompt (CMD) or PowerShell, pass the array in the format:
exampleArray="['value1','value2']" .

az group deployment create \
 --resource-group testgroup \
 --template-file demotemplate.json \
 --parameters exampleString=@stringContent.txt exampleArray=@arrayContent.json

[
 "value1",
 "value2"
]

Parameter filesParameter files

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountType": {
 "value": "Standard_GRS"
 }
 }
}

az group deployment create \
 --name ExampleDeployment \
 --resource-group ExampleGroup \
 --template-file storage.json \
 --parameters @storage.parameters.json

Parameter precedenceParameter precedence

You can also get the contents of file and provide that content as an inline parameter.

Getting a parameter value from a file is helpful when you need to provide configuration values. For example, you
can provide cloud-init values for a Linux virtual machine.

The arrayContent.json format is:

Rather than passing parameters as inline values in your script, you may find it easier to use a JSON file that
contains the parameter values. The parameter file must be a local file. External parameter files aren't supported
with Azure CLI.

The parameter file must be in the following format:

Notice that the parameters section includes a parameter name that matches the parameter defined in your
template (storageAccountType). The parameter file contains a value for the parameter. This value is automatically
passed to the template during deployment. You can create more than one parameter file, and then pass in the
appropriate parameter file for the scenario.

Copy the preceding example and save it as a file named storage.parameters.json .

To pass a local parameter file, use @ to specify a local file named storage.parameters.json.

You can use inline parameters and a local parameter file in the same deployment operation. For example, you can
specify some values in the local parameter file and add other values inline during deployment. If you provide
values for a parameter in both the local parameter file and inline, the inline value takes precedence.

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/using-cloud-init

az group deployment create \
 --resource-group testgroup \
 --template-file demotemplate.json \
 --parameters @demotemplate.parameters.json \
 --parameters exampleArray=@arrtest.json

Test a template deployment

az group deployment validate \
 --resource-group ExampleGroup \
 --template-file storage.json \
 --parameters @storage.parameters.json

{
 "error": null,
 "properties": {
 ...

{
 "error": {
 "code": "InvalidTemplate",
 "details": null,
 "message": "Deployment template validation failed: 'The provided value 'badSKU' for the template parameter
 'storageAccountType' at line '13' and column '20' is not valid. The parameter value is not part of the
allowed
 value(s): 'Standard_LRS,Standard_ZRS,Standard_GRS,Standard_RAGRS,Premium_LRS'.'.",
 "target": null
 },
 "properties": null
}

{
 "error": {
 "code": "InvalidTemplate",
 "details": null,
 "message": "Deployment template parse failed: 'After parsing a value an unexpected character was
encountered:
 \". Path 'variables', line 31, position 3.'.",
 "target": null
 },
 "properties": null
}

Next steps

To test your template and parameter values without actually deploying any resources, use az group deployment
validate.

If no errors are detected, the command returns information about the test deployment. In particular, notice that
the error value is null.

If an error is detected, the command returns an error message. For example, passing an incorrect value for the
storage account SKU, returns the following error:

If your template has a syntax error, the command returns an error indicating it couldn't parse the template. The
message indicates the line number and position of the parsing error.

https://docs.microsoft.com/cli/azure/group/deployment#az-group-deployment-validate

The examples in this article deploy resources to a resource group in your default subscription. To use a
different subscription, see Manage multiple Azure subscriptions.
To specify how to handle resources that exist in the resource group but aren't defined in the template, see
Azure Resource Manager deployment modes.
To understand how to define parameters in your template, see Understand the structure and syntax of Azure
Resource Manager templates.
For tips on resolving common deployment errors, see Troubleshoot common Azure deployment errors with
Azure Resource Manager.
For information about deploying a template that requires a SAS token, see Deploy private template with SAS
token.
To safely roll out your service to more than one region, see Azure Deployment Manager.

https://docs.microsoft.com/cli/azure/manage-azure-subscriptions-azure-cli

Deploy resources with Resource Manager templates
and Azure PowerShell
5/31/2019 • 9 minutes to read • Edit Online

NOTENOTE

Deployment scope

New-AzResourceGroupDeployment -ResourceGroupName <resource-group-name> -TemplateFile <path-to-template>

New-AzDeployment -Location <location> -TemplateFile <path-to-template>

Prerequisites

Learn how to use Azure PowerShell with Resource Manager templates to deploy your resources to Azure. For
more information about the concepts of deploying and managing your Azure solutions, see Azure Resource
Manager overview.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which
will continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install
Azure PowerShell.

You can target your deployment to either an Azure subscription or a resource group within a subscription. In
most cases, you'll target deployment to a resource group. Use subscription deployments to apply policies and
role assignments across the subscription. You also use subscription deployments to create a resource group and
deploy resources to it. Depending on the scope of the deployment, you use different commands.

To deploy to a resource group, use New-AzResourceGroupDeployment:

To deploy to a subscription, use New-AzDeployment:

Currently, management group deployments are only supported through the REST API. See Deploy resources
with Resource Manager templates and Resource Manager REST API.

The examples in this article use resource group deployments. For more information about subscription
deployments, see Create resource groups and resources at the subscription level.

You need a template to deploy. If you don't already have one, download and save an example template from the
Azure Quickstart templates repo. The local file name used in this article is c:\MyTemplates\azuredeploy.json.

Unless you use the Azure Cloud shell to deploy templates, you need to install Azure PowerShell and connect to
Azure:

Install Azure PowerShell cmdlets on your local computer. For more information, see Get started with
Azure PowerShell.
Connect to Azure by using Connect-AZAccount. If you have multiple Azure subscriptions, you might
also need to run Set-AzContext. For more information, see Use multiple Azure subscriptions.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-deploy.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/powershell/module/az.resources/new-azresourcegroupdeployment
https://docs.microsoft.com/powershell/module/az.resources/new-azdeployment
https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-create/azuredeploy.json
https://docs.microsoft.com/powershell/azure/get-started-azureps
https://docs.microsoft.com/powershell/module/az.accounts/connect-azaccount
https://docs.microsoft.com/powershell/module/Az.Accounts/Set-AzContext
https://docs.microsoft.com/powershell/azure/manage-subscriptions-azureps

Deploy local template

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment -ResourceGroupName $resourceGroupName `
 -TemplateFile c:\MyTemplates\azuredeploy.json

Deploy remote template

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment -ResourceGroupName $resourceGroupName `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-
account-create/azuredeploy.json

Deploy from Azure Cloud shell

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"

New-AzResourceGroup -Name $resourceGroupName -Location $location
New-AzResourceGroupDeployment -ResourceGroupName $resourceGroupName `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-
account-create/azuredeploy.json

The following example creates a resource group, and deploys a template from your local machine. The name of
the resource group can only include alphanumeric characters, periods, underscores, hyphens, and parenthesis. It
can be up to 90 characters. It can't end in a period.

The deployment can take a few minutes to complete.

Instead of storing Resource Manager templates on your local machine, you may prefer to store them in an
external location. You can store templates in a source control repository (such as GitHub). Or, you can store
them in an Azure storage account for shared access in your organization.

To deploy an external template, use the TemplateUri parameter. Use the URI in the example to deploy the
sample template from GitHub.

The preceding example requires a publicly accessible URI for the template, which works for most scenarios
because your template shouldn't include sensitive data. If you need to specify sensitive data (like an admin
password), pass that value as a secure parameter. However, if you don't want your template to be publicly
accessible, you can protect it by storing it in a private storage container. For information about deploying a
template that requires a shared access signature (SAS) token, see Deploy private template with SAS token. To
go through a tutorial, see Tutorial: Integrate Azure Key Vault in Resource Manager Template deployment.

You can use the Azure Cloud Shell to deploy your template. To deploy an external template, provide the URI of
the template. To deploy a local template, you must first load your template into the storage account for your
Cloud Shell. To upload files to the shell, select the Upload/Download files menu icon from the shell window.

To open the Cloud shell, browse to https://shell.azure.com, or select Try-It from the following code section:

To paste the code into the shell, right-click inside the shell and then select Paste.

https://shell.azure.com
https://shell.azure.com

 Redeploy when deployment fails

New-AzResourceGroupDeployment -Name ExampleDeployment02 `
 -ResourceGroupName $resourceGroupName `
 -TemplateFile c:\MyTemplates\azuredeploy.json `
 -RollbackToLastDeployment

New-AzResourceGroupDeployment -Name ExampleDeployment02 `
 -ResourceGroupName $resourceGroupName `
 -TemplateFile c:\MyTemplates\azuredeploy.json `
 -RollBackDeploymentName ExampleDeployment01

Pass parameter values

Inline parametersInline parameters

$arrayParam = "value1", "value2"
New-AzResourceGroupDeployment -ResourceGroupName testgroup `
 -TemplateFile c:\MyTemplates\demotemplate.json `
 -exampleString "inline string" `
 -exampleArray $arrayParam

This feature is also known as Rollback on error. When a deployment fails, you can automatically redeploy an
earlier, successful deployment from your deployment history. To specify redeployment, use either the
-RollbackToLastDeployment or -RollBackDeploymentName parameter in the deployment command. This

functionality is useful if you've got a known good state for your infrastructure deployment and want to revert to
this state. There are a number of caveats and restrictions:

The redeployment is run exactly as it was run previously with the same parameters. You can't change the
parameters.
The previous deployment is run using the complete mode. Any resources not included in the previous
deployment are deleted, and any resource configurations are set to their previous state. Make sure you fully
understand the deployment modes.
The redeployment only affects the resources, any data changes aren't affected.
This feature is only supported on Resource Group deployments, not subscription level deployments. For
more information about subscription level deployment, see Create resource groups and resources at the
subscription level.

To use this option, your deployments must have unique names so they can be identified in the history. If you
don't have unique names, the current failed deployment might overwrite the previously successful deployment
in the history. You can only use this option with root level deployments. Deployments from a nested template
aren't available for redeployment.

To redeploy the last successful deployment, add the -RollbackToLastDeployment parameter as a flag.

To redeploy a specific deployment, use the -RollBackDeploymentName parameter and provide the name of the
deployment.

The specified deployment must have succeeded.

To pass parameter values, you can use either inline parameters or a parameter file. The preceding examples in
this article show inline parameters.

To pass inline parameters, provide the names of the parameter with the New-AzResourceGroupDeployment

command. For example, to pass a string and array to a template, use:

$arrayParam = "value1", "value2"
New-AzResourceGroupDeployment -ResourceGroupName testgroup `
 -TemplateFile c:\MyTemplates\demotemplate.json `
 -exampleString $(Get-Content -Path c:\MyTemplates\stringcontent.txt -Raw) `
 -exampleArray $arrayParam

$hash1 = @{ Name = "firstSubnet"; AddressPrefix = "10.0.0.0/24"}
$hash2 = @{ Name = "secondSubnet"; AddressPrefix = "10.0.1.0/24"}
$subnetArray = $hash1, $hash2
New-AzResourceGroupDeployment -ResourceGroupName testgroup `
 -TemplateFile c:\MyTemplates\demotemplate.json `
 -exampleArray $subnetArray

Parameter filesParameter files

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountType": {
 "value": "Standard_GRS"
 }
 }
}

New-AzResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup `
 -TemplateFile c:\MyTemplates\azuredeploy.json `
 -TemplateParameterFile c:\MyTemplates\storage.parameters.json

You can also get the contents of file and provide that content as an inline parameter.

Getting a parameter value from a file is helpful when you need to provide configuration values. For example,
you can provide cloud-init values for a Linux virtual machine.

If you need to pass in an array of objects, create hash tables in PowerShell and add them to an array. Pass that
array as a parameter during deployment.

Rather than passing parameters as inline values in your script, you may find it easier to use a JSON file that
contains the parameter values. The parameter file can be a local file or an external file with an accessible URI.

The parameter file must be in the following format:

Notice that the parameters section includes a parameter name that matches the parameter defined in your
template (storageAccountType). The parameter file contains a value for the parameter. This value is
automatically passed to the template during deployment. You can create more than one parameter file, and then
pass in the appropriate parameter file for the scenario.

Copy the preceding example and save it as a file named storage.parameters.json .

To pass a local parameter file, use the TemplateParameterFile parameter :

To pass an external parameter file, use the TemplateParameterUri parameter :

https://docs.microsoft.com/en-us/azure/virtual-machines/linux/using-cloud-init

New-AzResourceGroupDeployment -Name ExampleDeployment -ResourceGroupName ExampleResourceGroup `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-
account-create/azuredeploy.json `
 -TemplateParameterUri https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-
storage-account-create/azuredeploy.parameters.json

Parameter precedenceParameter precedence

Parameter name conflictsParameter name conflicts

Test template deployments

Test-AzResourceGroupDeployment -ResourceGroupName ExampleResourceGroup `
 -TemplateFile c:\MyTemplates\azuredeploy.json -storageAccountType Standard_GRS

Test-AzResourceGroupDeployment -ResourceGroupName testgroup `
 -TemplateFile c:\MyTemplates\azuredeploy.json -storageAccountType badSku

Code : InvalidTemplate
Message : Deployment template validation failed: 'The provided value 'badSku' for the template parameter
'storageAccountType'
 at line '15' and column '24' is not valid. The parameter value is not part of the allowed
value(s):
 'Standard_LRS,Standard_ZRS,Standard_GRS,Standard_RAGRS,Premium_LRS'.'.
Details :

Test-AzResourceGroupDeployment : After parsing a value an unexpected character was encountered:
 ". Path 'variables', line 31, position 3.

You can use inline parameters and a local parameter file in the same deployment operation. For example, you
can specify some values in the local parameter file and add other values inline during deployment. If you
provide values for a parameter in both the local parameter file and inline, the inline value takes precedence.

However, when you use an external parameter file, you can't pass other values either inline or from a local file.
When you specify a parameter file in the TemplateParameterUri parameter, all inline parameters are ignored.
Provide all parameter values in the external file. If your template includes a sensitive value that you can't include
in the parameter file, either add that value to a key vault, or dynamically provide all parameter values inline.

If your template includes a parameter with the same name as one of the parameters in the PowerShell
command, PowerShell presents the parameter from your template with the postfix FromTemplate. For
example, a parameter named ResourceGroupName in your template conflicts with the ResourceGroupName
parameter in the New-AzResourceGroupDeployment cmdlet. You're prompted to provide a value for
ResourceGroupNameFromTemplate. In general, you should avoid this confusion by not naming parameters
with the same name as parameters used for deployment operations.

To test your template and parameter values without actually deploying any resources, use Test-AzureRm
ResourceGroupDeployment.

If no errors are detected, the command finishes without a response. If an error is detected, the command returns
an error message. For example, passing an incorrect value for the storage account SKU, returns the following
error :

If your template has a syntax error, the command returns an error indicating it couldn't parse the template. The
message indicates the line number and position of the parsing error.

https://docs.microsoft.com/powershell/module/az.resources/new-azresourcegroupdeployment
https://docs.microsoft.com/powershell/module/az.resources/test-azresourcegroupdeployment

Next steps
To safely roll out your service to more than one region, see Azure Deployment Manager.
To specify how to handle resources that exist in the resource group but aren't defined in the template, see
Azure Resource Manager deployment modes.
To understand how to define parameters in your template, see Understand the structure and syntax of Azure
Resource Manager templates.
For information about deploying a template that requires a SAS token, see Deploy private template with
SAS token.

Deploy resources with Resource Manager templates
and Resource Manager REST API
6/18/2019 • 5 minutes to read • Edit Online

Deployment scope

PUT
https://management.azure.com/subscriptions/{subscriptionId}/resourcegroups/{resourceGroupName}/providers/Micro
soft.Resources/deployments/{deploymentName}?api-version=2019-05-01

PUT
https://management.azure.com/subscriptions/{subscriptionId}/providers/Microsoft.Resources/deployments/{deploym
entName}?api-version=2019-05-01

PUT
https://management.azure.com/providers/Microsoft.Management/managementGroups/{groupId}/providers/Microsoft.Res
ources/deployments/{deploymentName}?api-version=2019-05-01

Deploy with the REST API

This article explains how to use the Resource Manager REST API with Resource Manager templates to deploy
your resources to Azure.

You can either include your template in the request body or link to a file. When using a file, it can be a local file or
an external file that is available through a URI. When your template is in a storage account, you can restrict access
to the template and provide a shared access signature (SAS) token during deployment.

You can target your deployment to a management group, an Azure subscription, or a resource group. In most
cases, you'll target deployments to a resource group. Use management group or subscription deployments to
apply policies and role assignments across the specified scope. You also use subscription deployments to create a
resource group and deploy resources to it. Depending on the scope of the deployment, you use different
commands.

To deploy to a resource group, use Deployments - Create. The request is sent to:

To deploy to a subscription, use Deployments - Create At Subscription Scope. The request is sent to:

To deploy to a management group, use Deployments - Create At Management Group Scope. The request is sent
to:

The examples in this article use resource group deployments. For more information about subscription
deployments, see Create resource groups and resources at the subscription level.

1. Set common parameters and headers, including authentication tokens.

2. If you don't have an existing resource group, create a resource group. Provide your subscription ID, the
name of the new resource group, and location that you need for your solution. For more information, see
Create a resource group.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-deploy-rest.md
https://docs.microsoft.com/rest/api/resources/deployments/createorupdate
https://docs.microsoft.com/rest/api/resources/deployments/createorupdateatsubscriptionscope
https://docs.microsoft.com/rest/api/resources/deployments/createorupdateatmanagementgroupscope
https://docs.microsoft.com/rest/api/azure/
https://docs.microsoft.com/rest/api/resources/resourcegroups/createorupdate

PUT
https://management.azure.com/subscriptions/<YourSubscriptionId>/resourcegroups/<YourResourceGroupName>?
api-version=2019-05-01

{
 "location": "West US",
 "tags": {
 "tagname1": "tagvalue1"
 }
}

PUT
https://management.azure.com/subscriptions/<YourSubscriptionId>/resourcegroups/<YourResourceGroupName>/
providers/Microsoft.Resources/deployments/<YourDeploymentName>?api-version=2019-05-01

{
 "properties": {
 "templateLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/template.json",
 "contentVersion": "1.0.0.0"
 },
 "parametersLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/parameters.json",
 "contentVersion": "1.0.0.0"
 },
 "mode": "Incremental"
 }
}

With a request body like:

3. Validate your deployment before executing it by running the Validate a template deployment operation.
When testing the deployment, provide parameters exactly as you would when executing the deployment
(shown in the next step).

4. To deploy a template, provide your subscription ID, the name of the resource group, the name of the
deployment in the request URI.

In the request body, provide a link to your template and parameter file. Notice the mode is set to
Incremental. To run a complete deployment, set mode to Complete. Be careful when using the complete
mode as you can inadvertently delete resources that aren't in your template.

If you want to log response content, request content, or both, include debugSetting in the request.

https://docs.microsoft.com/rest/api/resources/deployments/validate

{
 "properties": {
 "templateLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/template.json",
 "contentVersion": "1.0.0.0"
 },
 "parametersLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/parameters.json",
 "contentVersion": "1.0.0.0"
 },
 "mode": "Incremental",
 "debugSetting": {
 "detailLevel": "requestContent, responseContent"
 }
 }
}

You can set up your storage account to use a shared access signature (SAS) token. For more information,
see Delegating Access with a Shared Access Signature.

5. Instead of linking to files for the template and parameters, you can include them in the request body. The
following example shows the request body with the template and parameter inline:

https://docs.microsoft.com/rest/api/storageservices/delegating-access-with-a-shared-access-signature

{
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountType": {
 "type": "string",
 "defaultValue": "Standard_LRS",
 "allowedValues": [
 "Standard_LRS",
 "Standard_GRS",
 "Standard_ZRS",
 "Premium_LRS"
],
 "metadata": {
 "description": "Storage Account type"
 }
 },
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]",
 "metadata": {
 "description": "Location for all resources."
 }
 }
 },
 "variables": {
 "storageAccountName": "[concat(uniquestring(resourceGroup().id), 'standardsa')]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "apiVersion": "2018-02-01",
 "location": "[parameters('location')]",
 "sku": {
 "name": "[parameters('storageAccountType')]"
 },
 "kind": "StorageV2",
 "properties": {}
 }
],
 "outputs": {
 "storageAccountName": {
 "type": "string",
 "value": "[variables('storageAccountName')]"
 }
 }
 },
 "parameters": {
 "location": {
 "value": "eastus2"
 }
 }
 }
}

GET
https://management.azure.com/subscriptions/<YourSubscriptionId>/resourcegroups/<YourResourceGroupName>/
providers/Microsoft.Resources/deployments/<YourDeploymentName>?api-version=2018-05-01

6. To get the status of the template deployment, use Deployments - Get.

https://docs.microsoft.com/rest/api/resources/deployments/get

 Redeploy when deployment fails

{
 "properties": {
 "templateLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/template.json",
 "contentVersion": "1.0.0.0"
 },
 "mode": "Incremental",
 "parametersLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/parameters.json",
 "contentVersion": "1.0.0.0"
 },
 "onErrorDeployment": {
 "type": "LastSuccessful",
 }
 }
}

This feature is also known as Rollback on error. When a deployment fails, you can automatically redeploy an
earlier, successful deployment from your deployment history. To specify redeployment, use the onErrorDeployment

property in the request body. This functionality is useful if you've got a known good state for your infrastructure
deployment and want to revert to this state. There are a number of caveats and restrictions:

The redeployment is run exactly as it was run previously with the same parameters. You cannot change the
parameters.
The previous deployment is run using the complete mode. Any resources not included in the previous
deployment are deleted, and any resource configurations are set to their previous state. Make sure you fully
understand the deployment modes.
The redeployment only affects the resources, any data changes aren't affected.
This feature is only supported on Resource Group deployments, not subscription level deployments. For more
information about subscription level deployment, see Create resource groups and resources at the subscription
level.

To use this option, your deployments must have unique names so they can be identified in the history. If you don't
have unique names, the current failed deployment might overwrite the previously successful deployment in the
history. You can only use this option with root level deployments. Deployments from a nested template aren't
available for redeployment.

To redeploy the last successful deployment if the current deployment fails, use:

To redeploy a specific deployment if the current deployment fails, use:

{
 "properties": {
 "templateLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/template.json",
 "contentVersion": "1.0.0.0"
 },
 "mode": "Incremental",
 "parametersLink": {
 "uri": "http://mystorageaccount.blob.core.windows.net/templates/parameters.json",
 "contentVersion": "1.0.0.0"
 },
 "onErrorDeployment": {
 "type": "SpecificDeployment",
 "deploymentName": "<deploymentname>"
 }
 }
}

Parameter file

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentParameters.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "webSiteName": {
 "value": "ExampleSite"
 },
 "webSiteHostingPlanName": {
 "value": "DefaultPlan"
 },
 "webSiteLocation": {
 "value": "West US"
 },
 "adminPassword": {
 "reference": {
 "keyVault": {
 "id": "/subscriptions/{guid}/resourceGroups/{group-
name}/providers/Microsoft.KeyVault/vaults/{vault-name}"
 },
 "secretName": "sqlAdminPassword"
 }
 }
 }
}

Next steps

The specified deployment must have succeeded.

If you use a parameter file to pass parameter values during deployment, you need to create a JSON file with a
format similar to the following example:

The size of the parameter file can't be more than 64 KB.

If you need to provide a sensitive value for a parameter (such as a password), add that value to a key vault.
Retrieve the key vault during deployment as shown in the previous example. For more information, see Pass
secure values during deployment.

To specify how to handle resources that exist in the resource group but aren't defined in the template, see Azure
Resource Manager deployment modes.
To learn about handling asynchronous REST operations, see Track asynchronous Azure operations.

To learn more about templates, see Understand the structure and syntax of Azure Resource Manager
templates.

Deploy private Resource Manager template with SAS
token and Azure CLI
6/18/2019 • 2 minutes to read • Edit Online

Add private template to storage account

IMPORTANTIMPORTANT

az group create --name "ManageGroup" --location "South Central US"
az storage account create \
 --resource-group ManageGroup \
 --location "South Central US" \
 --sku Standard_LRS \
 --kind Storage \
 --name {your-unique-name}
connection=$(az storage account show-connection-string \
 --resource-group ManageGroup \
 --name {your-unique-name} \
 --query connectionString)
az storage container create \
 --name templates \
 --public-access Off \
 --connection-string $connection
az storage blob upload \
 --container-name templates \
 --file vmlinux.json \
 --name vmlinux.json \
 --connection-string $connection

Provide SAS token during deploymentProvide SAS token during deployment

When your template resides in a storage account, you can restrict access to the template and provide a shared
access signature (SAS) token during deployment. This topic explains how to use Azure PowerShell with Resource
Manager templates to provide a SAS token during deployment.

You can add your templates to a storage account and link to them during deployment with a SAS token.

By following the steps below, the blob containing the template is accessible to only the account owner. However, when you
create a SAS token for the blob, the blob is accessible to anyone with that URI. If another user intercepts the URI, that user is
able to access the template. Using a SAS token is a good way of limiting access to your templates, but you should not
include sensitive data like passwords directly in the template.

The following example sets up a private storage account container and uploads a template:

To deploy a private template in a storage account, generate a SAS token and include it in the URI for the template.
Set the expiry time to allow enough time to complete the deployment.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-cli-sas-token.md

expiretime=$(date -u -d '30 minutes' +%Y-%m-%dT%H:%MZ)
connection=$(az storage account show-connection-string \
 --resource-group ManageGroup \
 --name {your-unique-name} \
 --query connectionString)
token=$(az storage blob generate-sas \
 --container-name templates \
 --name vmlinux.json \
 --expiry $expiretime \
 --permissions r \
 --output tsv \
 --connection-string $connection)
url=$(az storage blob url \
 --container-name templates \
 --name vmlinux.json \
 --output tsv \
 --connection-string $connection)
az group deployment create --resource-group ExampleGroup --template-uri $url?$token

Next steps

For an example of using a SAS token with linked templates, see Using linked templates with Azure Resource
Manager.

For an introduction to deploying templates, see Deploy resources with Resource Manager templates and Azure
PowerShell.
For a complete sample script that deploys a template, see Deploy Resource Manager template script
To define parameters in template, see Authoring templates.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-samples-cli-deploy

Deploy private Resource Manager template with SAS
token and Azure PowerShell
2/14/2019 • 2 minutes to read • Edit Online

NOTENOTE

Add private template to storage account

IMPORTANTIMPORTANT

create a storage account for templates
New-AzResourceGroup -Name ManageGroup -Location "South Central US"
New-AzStorageAccount -ResourceGroupName ManageGroup -Name {your-unique-name} -Type Standard_LRS -Location
"West US"
Set-AzCurrentStorageAccount -ResourceGroupName ManageGroup -Name {your-unique-name}

create a container and upload template
New-AzStorageContainer -Name templates -Permission Off
Set-AzStorageBlobContent -Container templates -File c:\MyTemplates\storage.json

Provide SAS token during deployment

When your template resides in a storage account, you can restrict access to the template and provide a shared
access signature (SAS) token during deployment. This topic explains how to use Azure PowerShell with Resource
Manager templates to provide a SAS token during deployment.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

You can add your templates to a storage account and link to them during deployment with a SAS token.

By following the steps below, the blob containing the template is accessible to only the account owner. However, when you
create a SAS token for the blob, the blob is accessible to anyone with that URI. If another user intercepts the URI, that user is
able to access the template. Using a SAS token is a good way of limiting access to your templates, but you should not
include sensitive data like passwords directly in the template.

The following example sets up a private storage account container and uploads a template:

To deploy a private template in a storage account, generate a SAS token and include it in the URI for the template.
Set the expiry time to allow enough time to complete the deployment.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-powershell-sas-token.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Set-AzCurrentStorageAccount -ResourceGroupName ManageGroup -Name {your-unique-name}

get the URI with the SAS token
$templateuri = New-AzStorageBlobSASToken -Container templates -Blob storage.json -Permission r `
 -ExpiryTime (Get-Date).AddHours(2.0) -FullUri

provide URI with SAS token during deployment
New-AzResourceGroup -Name ExampleGroup -Location "South Central US"
New-AzResourceGroupDeployment -ResourceGroupName ExampleGroup -TemplateUri $templateuri

Next steps

For an example of using a SAS token with linked templates, see Using linked templates with Azure Resource
Manager.

For an introduction to deploying templates, see Deploy resources with Resource Manager templates and Azure
PowerShell.
For a complete sample script that deploys a template, see Deploy Resource Manager template script
To define parameters in template, see Authoring templates.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-samples-powershell-deploy

Deploy Azure resources to more than one
subscription or resource group
6/18/2019 • 6 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Specify a subscription and resource group

"resources": [
 {
 "apiVersion": "2017-05-10",
 "name": "nestedTemplate",
 "type": "Microsoft.Resources/deployments",
 "resourceGroup": "[parameters('secondResourceGroup')]",
 "subscriptionId": "[parameters('secondSubscriptionID')]",
 ...
 }
]

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

Typically, you deploy all the resources in your template to a single resource group. However, there are scenarios
where you want to deploy a set of resources together but place them in different resource groups or subscriptions.
For example, you may want to deploy the backup virtual machine for Azure Site Recovery to a separate resource
group and location. Resource Manager enables you to use nested templates to target different subscriptions and
resource groups than the subscription and resource group used for the parent template.

You can deploy to only five resource groups in a single deployment. Typically, this limitation means you can deploy to one
resource group specified for the parent template, and up to four resource groups in nested or linked deployments. However,
if your parent template contains only nested or linked templates and does not itself deploy any resources, then you can
include up to five resource groups in nested or linked deployments.

To target a different resource, use a nested or linked template. The Microsoft.Resources/deployments resource type
provides parameters for subscriptionId and resourceGroup . These properties enable you to specify a different
subscription and resource group for the nested deployment. All the resource groups must exist before running the
deployment. If you do not specify either the subscription ID or resource group, the subscription and resource
group from the parent template is used.

The account you use to deploy the template must have permissions to deploy to the specified subscription ID. If
the specified subscription exists in a different Azure Active Directory tenant, you must add guest users from
another directory.

To specify a different resource group and subscription, use:

If your resource groups are in the same subscription, you can remove the subscriptionId value.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-cross-resource-group-deployment.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-b2b-what-is-azure-ad-b2b

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storagePrefix": {
 "type": "string",
 "maxLength": 11
 },
 "secondResourceGroup": {
 "type": "string"
 },
 "secondSubscriptionID": {
 "type": "string",
 "defaultValue": ""
 },
 "secondStorageLocation": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "variables": {
 "firstStorageName": "[concat(parameters('storagePrefix'), uniqueString(resourceGroup().id))]",
 "secondStorageName": "[concat(parameters('storagePrefix'),
uniqueString(parameters('secondSubscriptionID'), parameters('secondResourceGroup')))]"
 },
 "resources": [
 {
 "apiVersion": "2017-05-10",
 "name": "nestedTemplate",
 "type": "Microsoft.Resources/deployments",
 "resourceGroup": "[parameters('secondResourceGroup')]",
 "subscriptionId": "[parameters('secondSubscriptionID')]",
 "properties": {
 "mode": "Incremental",
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-
01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('secondStorageName')]",
 "apiVersion": "2017-06-01",
 "location": "[parameters('secondStorageLocation')]",
 "sku":{
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {
 }
 }
]
 },
 "parameters": {}
 }
 },
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('firstStorageName')]",
 "apiVersion": "2017-06-01",
 "location": "[resourceGroup().location]",
 "sku":{
 "name": "Standard_LRS"

The following example deploys two storage accounts - one in the resource group specified during deployment,
and one in a resource group specified in the secondResourceGroup parameter :

 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {
 }
 }
]
}

Use the resourceGroup() and subscription() functions

"apiVersion": "2017-05-10",
"name": "embeddedTemplate",
"type": "Microsoft.Resources/deployments",
"resourceGroup": "crossResourceGroupDeployment",
"properties": {
 "mode": "Incremental",
 "template": {
 ...
 resourceGroup() and subscription() refer to parent resource group/subscription
 }
}

"apiVersion": "2017-05-10",
"name": "linkedTemplate",
"type": "Microsoft.Resources/deployments",
"resourceGroup": "crossResourceGroupDeployment",
"properties": {
 "mode": "Incremental",
 "templateLink": {
 ...
 resourceGroup() and subscription() in linked template refer to linked resource group/subscription
 }
}

Example templates

TEMPLATE DESCRIPTION

Cross subscription template Deploys one storage account to one resource group and one
storage account to a second resource group. Include a value
for the subscription ID when the second resource group is in a
different subscription.

If you set resourceGroup to the name of a resource group that does not exist, the deployment fails.

For cross resource group deployments, the resourceGroup() and subscription() functions resolve differently based
on how you specify the nested template.

If you embed one template within another template, the functions in the nested template resolve to the parent
resource group and subscription. An embedded template uses the following format:

If you link to a separate template, the functions in the linked template resolve to the nested resource group and
subscription. A linked template uses the following format:

The following templates demonstrate multiple resource group deployments. Scripts to deploy the templates are
shown after the table.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/crosssubscription.json

Cross resource group properties template Demonstrates how the resourceGroup() function resolves.
It does not deploy any resources.

TEMPLATE DESCRIPTION

PowerShellPowerShell

$firstRG = "primarygroup"
$secondRG = "secondarygroup"

New-AzResourceGroup -Name $firstRG -Location southcentralus
New-AzResourceGroup -Name $secondRG -Location eastus

New-AzResourceGroupDeployment `
 -ResourceGroupName $firstRG `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/crosssubscription.json `
 -storagePrefix storage `
 -secondResourceGroup $secondRG `
 -secondStorageLocation eastus

$firstRG = "primarygroup"
$secondRG = "secondarygroup"

$firstSub = "<first-subscription-id>"
$secondSub = "<second-subscription-id>"

Select-AzSubscription -Subscription $secondSub
New-AzResourceGroup -Name $secondRG -Location eastus

Select-AzSubscription -Subscription $firstSub
New-AzResourceGroup -Name $firstRG -Location southcentralus

New-AzResourceGroupDeployment `
 -ResourceGroupName $firstRG `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/crosssubscription.json `
 -storagePrefix storage `
 -secondResourceGroup $secondRG `
 -secondStorageLocation eastus `
 -secondSubscriptionID $secondSub

New-AzResourceGroup -Name parentGroup -Location southcentralus
New-AzResourceGroup -Name inlineGroup -Location southcentralus
New-AzResourceGroup -Name linkedGroup -Location southcentralus

New-AzResourceGroupDeployment `
 -ResourceGroupName parentGroup `
 -TemplateUri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/crossresourcegroupproperties.json

For PowerShell, to deploy two storage accounts to two resource groups in the same subscription, use:

For PowerShell, to deploy two storage accounts to two subscriptions, use:

For PowerShell, to test how the resource group object resolves for the parent template, inline template, and
linked template, use:

In the preceding example, both parentRG and inlineRG resolve to parentGroup. linkedRG resolves to
linkedGroup. The output from the preceding example is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/crossresourcegroupproperties.json

 Name Type Value
 =============== ========================= ==========
 parentRG Object {
 "id": "/subscriptions/<subscription-
id>/resourceGroups/parentGroup",
 "name": "parentGroup",
 "location": "southcentralus",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }
 inlineRG Object {
 "id": "/subscriptions/<subscription-
id>/resourceGroups/parentGroup",
 "name": "parentGroup",
 "location": "southcentralus",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }
 linkedRG Object {
 "id": "/subscriptions/<subscription-
id>/resourceGroups/linkedGroup",
 "name": "linkedGroup",
 "location": "southcentralus",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }

Azure CLIAzure CLI

firstRG="primarygroup"
secondRG="secondarygroup"

az group create --name $firstRG --location southcentralus
az group create --name $secondRG --location eastus
az group deployment create \
 --name ExampleDeployment \
 --resource-group $firstRG \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/crosssubscription.json \
 --parameters storagePrefix=tfstorage secondResourceGroup=$secondRG secondStorageLocation=eastus

For Azure CLI, to deploy two storage accounts to two resource groups in the same subscription, use:

For Azure CLI, to deploy two storage accounts to two subscriptions, use:

firstRG="primarygroup"
secondRG="secondarygroup"

firstSub="<first-subscription-id>"
secondSub="<second-subscription-id>"

az account set --subscription $secondSub
az group create --name $secondRG --location eastus

az account set --subscription $firstSub
az group create --name $firstRG --location southcentralus

az group deployment create \
 --name ExampleDeployment \
 --resource-group $firstRG \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/crosssubscription.json \
 --parameters storagePrefix=storage secondResourceGroup=$secondRG secondStorageLocation=eastus
secondSubscriptionID=$secondSub

az group create --name parentGroup --location southcentralus
az group create --name inlineGroup --location southcentralus
az group create --name linkedGroup --location southcentralus

az group deployment create \
 --name ExampleDeployment \
 --resource-group parentGroup \
 --template-uri https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/crossresourcegroupproperties.json

For Azure CLI, to test how the resource group object resolves for the parent template, inline template, and linked
template, use:

In the preceding example, both parentRG and inlineRG resolve to parentGroup. linkedRG resolves to
linkedGroup. The output from the preceding example is:

...
"outputs": {
 "inlineRG": {
 "type": "Object",
 "value": {
 "id": "/subscriptions/<subscription-id>/resourceGroups/parentGroup",
 "location": "southcentralus",
 "name": "parentGroup",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }
 },
 "linkedRG": {
 "type": "Object",
 "value": {
 "id": "/subscriptions/<subscription-id>/resourceGroups/linkedGroup",
 "location": "southcentralus",
 "name": "linkedGroup",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }
 },
 "parentRG": {
 "type": "Object",
 "value": {
 "id": "/subscriptions/<subscription-id>/resourceGroups/parentGroup",
 "location": "southcentralus",
 "name": "parentGroup",
 "properties": {
 "provisioningState": "Succeeded"
 }
 }
 }
},
...

Next steps
To understand how to define parameters in your template, see Understand the structure and syntax of Azure
Resource Manager templates.
For tips on resolving common deployment errors, see Troubleshoot common Azure deployment errors with
Azure Resource Manager.
For information about deploying a template that requires a SAS token, see Deploy private template with SAS
token.

Integrate Resource Manager templates with Azure
Pipelines
6/18/2019 • 5 minutes to read • Edit Online

Prepare your project

Create pipeline

Visual Studio provides the Azure Resource Group project for creating templates and deploying them to your Azure
subscription. You can integrate this project with Azure Pipelines for continuous integration and continuous
deployment (CI/CD).

There are two ways to deploy templates with Azure Pipelines:

Add task that runs an Azure PowerShell script. This option has the advantage of providing consistency
throughout the development life cycle because you use the same script that is included in the Visual Studio
project (Deploy-AzureResourceGroup.ps1). The script stages artifacts from your project to a storage account
that Resource Manager can access. Artifacts are items in your project such as linked templates, scripts, and
application binaries. Then, the script deploys the template.

Add tasks to copy and deploy tasks. This option offers a convenient alternative to the project script. You
configure two tasks in the pipeline. One task stages the artifacts and the other task deploys the template.

This article shows both approaches.

This article assumes your Visual Studio project and Azure DevOps organization are ready for creating the pipeline.
The following steps show how to make sure you're ready:

You have an Azure DevOps organization. If you don't have one, create one for free. If your team already has
an Azure DevOps organization, make sure you're an administrator of the Azure DevOps project that you
want to use.

You've configured a service connection to your Azure subscription. The tasks in the pipeline execute under
the identity of the service principal. For steps to create the connection, see Create a DevOps project.

You have a Visual Studio project that was created from the Azure Resource Group starter template. For
information about creating that type of project, see Creating and deploying Azure resource groups through
Visual Studio.

Your Visual Studio project is connected to an Azure DevOps project.

1. If you haven't added a pipeline previously, you need to create a new pipeline. From your Azure DevOps
organization, select Pipelines and New pipeline.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/vs-resource-groups-project-devops-pipelines.md
https://docs.microsoft.com/azure/devops/pipelines/get-started/pipelines-sign-up?view=azure-devops
https://docs.microsoft.com/azure/devops/pipelines/library/connect-to-azure?view=azure-devops
https://docs.microsoft.com/azure/devops/repos/git/share-your-code-in-git-vs-2017?view=azure-devops

2. Specify where your code is stored. The following image shows selecting Azure Repos Git.

3. From that source, select the repository that has the code for your project.

Azure PowerShell task

pool:
 name: Hosted Windows 2019 with VS2019
 demands: azureps

steps:
- task: AzurePowerShell@3
 inputs:
 azureSubscription: 'demo-deploy-sp'
 ScriptPath: 'AzureResourceGroupDemo/Deploy-AzureResourceGroup.ps1'
 ScriptArguments: -ResourceGroupName 'demogroup' -ResourceGroupLocation 'centralus'
 azurePowerShellVersion: LatestVersion

4. Select the type of pipeline to create. You can select Starter pipeline.

You're ready to either add an Azure PowerShell task or the copy file and deploy tasks.

This section shows how to configure continuous deployment by using a single task that runs the PowerShell script
in your project. The following YAML file creates an Azure PowerShell task:

When you set the task to AzurePowerShell@3 , the pipeline uses commands from the AzureRM module to
authenticate the connection. By default, the PowerShell script in the Visual Studio project uses the AzureRM
module. If you've updated your script to use the Az module, set the task to AzurePowerShell@4 .

https://docs.microsoft.com/azure/devops/pipelines/tasks/deploy/azure-powershell?view=azure-devops
https://docs.microsoft.com/powershell/azure/new-azureps-module-az

steps:
- task: AzurePowerShell@4

inputs:
 azureSubscription: '<your-connection-name>'

ScriptPath: '<your-relative-path>/<script-file-name>.ps1'

ScriptArguments: -ResourceGroupName '<resource-group-name>' -ResourceGroupLocation '<location>'

ScriptArguments: -ResourceGroupName '<resource-group-name>' -ResourceGroupLocation '<location>' -
UploadArtifacts -ArtifactStagingDirectory '$(Build.StagingDirectory)' -StorageAccountName '<your-storage-
account>'

For azureSubscription , provide the name of the service connection you created.

For scriptPath , provide the relative path from the pipeline file to your script. You can look in your repository to
see the path.

If you don't need to stage artifacts, just pass the name and location of a resource group to use for deployment. The
Visual Studio script creates the resource group if it doesn't already exist.

If you need to stage artifacts to an existing storage account, use:

Now, that you understand how to create the task, let's go through the steps to edit the pipeline.

pool:
 name: Hosted Windows 2019 with VS2019
 demands: azureps

steps:
- task: AzurePowerShell@3
 inputs:
 azureSubscription: 'demo-deploy-sp'
 ScriptPath: 'AzureResourceGroupDemo/Deploy-AzureResourceGroup.ps1'
 ScriptArguments: -ResourceGroupName 'demogroup' -ResourceGroupLocation 'centralus' -UploadArtifacts
-ArtifactStagingDirectory '$(Build.StagingDirectory)' -StorageAccountName 'stage3a4176e058d34bb88cc'
 azurePowerShellVersion: LatestVersion

1. Open your pipeline, and replace the contents with your YAML:

2. Select Save.

Copy and deploy tasks

- task: AzureFileCopy@3
 displayName: 'Stage files'
 inputs:
 SourcePath: 'AzureResourceGroup1'
 azureSubscription: 'demo-deploy-sp'
 Destination: 'AzureBlob'
 storage: 'stage3a4176e058d34bb88cc'
 ContainerName: 'democontainer'
 outputStorageUri: 'artifactsLocation'
 outputStorageContainerSasToken: 'artifactsLocationSasToken'
 sasTokenTimeOutInMinutes: '240'

3. Provide a message for the commit, and commit directly to master.

4. When you select Save, the build pipeline is automatically run. Go back to the summary for your build
pipeline, and watch the status.

You can select the currently running pipeline to see details about the tasks. When it finishes, you see the results for
each step.

This section shows how to configure continuous deployment by using a two tasks to stage the artifacts and deploy
the template.

The following YAML shows the Azure file copy task:

There are several parts of this task to revise for your environment. The SourcePath indicates the location of the
artifacts relative to the pipeline file. In this example, the files exist in a folder named AzureResourceGroup1 which
was the name of the project.

https://docs.microsoft.com/azure/devops/pipelines/tasks/deploy/azure-file-copy?view=azure-devops

SourcePath: '<path-to-artifacts>'

azureSubscription: '<your-connection-name>'

storage: '<your-storage-account-name>'
ContainerName: '<container-name>'

- task: AzureResourceGroupDeployment@2
 displayName: 'Deploy template'
 inputs:
 azureSubscription: 'demo-deploy-sp'
 resourceGroupName: 'demogroup'
 location: 'centralus'
 templateLocation: 'URL of the file'
 csmFileLink: '$(artifactsLocation)WebSite.json$(artifactsLocationSasToken)'
 csmParametersFileLink: '$(artifactsLocation)WebSite.parameters.json$(artifactsLocationSasToken)'
 overrideParameters: '-_artifactsLocation $(artifactsLocation) -_artifactsLocationSasToken
"$(artifactsLocationSasToken)"'

azureSubscription: '<your-connection-name>'

resourceGroupName: '<resource-group-name>'
location: '<location>'

For azureSubscription , provide the name of the service connection you created.

For storage and container name, provide the names of the storage account and container you want to use for
storing the artifacts. The storage account must exist.

The following YAML shows the Azure resource group deployment task:

There are several parts of this task to revise for your environment. For azureSubscription , provide the name of the
service connection you created.

For resourceGroupName and location , provide the name and location of the resource group you want to deploy to.
The task creates the resource group if it doesn't exist.

The deployment task links to a template named WebSite.json and a parameters file named
WebSite.parameters.json. Use the names of your template and parameter files.

Now, that you understand how to create the tasks, let's go through the steps to edit the pipeline.

1. Open your pipeline, and replace the contents with your YAML:

https://docs.microsoft.com/azure/devops/pipelines/tasks/deploy/azure-resource-group-deployment?view=azure-devops

Next steps

pool:
 name: Hosted Windows 2019 with VS2019

steps:
- task: AzureFileCopy@3
 displayName: 'Stage files'
 inputs:
 SourcePath: 'AzureResourceGroup1'
 azureSubscription: 'demo-deploy-sp'
 Destination: 'AzureBlob'
 storage: 'stage3a4176e058d34bb88cc'
 ContainerName: 'democontainer'
 outputStorageUri: 'artifactsLocation'
 outputStorageContainerSasToken: 'artifactsLocationSasToken'
 sasTokenTimeOutInMinutes: '240'
- task: AzureResourceGroupDeployment@2
 displayName: 'Deploy template'
 inputs:
 azureSubscription: 'demo-deploy-sp'
 resourceGroupName: demogroup
 location: 'centralus'
 templateLocation: 'URL of the file'
 csmFileLink: '$(artifactsLocation)WebSite.json$(artifactsLocationSasToken)'
 csmParametersFileLink: '$(artifactsLocation)WebSite.parameters.json$(artifactsLocationSasToken)'
 overrideParameters: '-_artifactsLocation $(artifactsLocation) -_artifactsLocationSasToken
"$(artifactsLocationSasToken)"'

2. Select Save.

3. Provide a message for the commit, and commit directly to master.

4. When you select Save, the build pipeline is automatically run. Go back to the summary for your build
pipeline, and watch the status.

You can select the currently running pipeline to see details about the tasks. When it finishes, you see the results for
each step.

For step-by-step process on using Azure Pipelines with Resource Manager templates, see Tutorial: Continuous
integration of Azure Resource Manager templates with Azure Pipelines.

Single and multi-resource export to template in
Azure portal
6/20/2019 • 3 minutes to read • Edit Online

Choose the right export option

FROM RESOURCE GROUP OR RESOURCE BEFORE DEPLOYMENT OR FROM HISTORY

Template is snapshot of the resources' current state. It
includes any manual changes you made after deployment.

Template only shows state of resources at the time of
deployment. Any manual changes you made after deployment
aren't included.

You can select which resources from a resource group to
export.

All resources for a specific deployment are included. You can't
pick a subset of those resources or add resources that were
added at a different time.

Template includes all properties for the resources, including
some properties you wouldn't normally set during
deployment. You might want to remove or clean up these
properties before reusing the template.

Template includes only the properties needed for the
deployment. The template is ready-to-use.

Template probably doesn't include all of the parameters you
need for reuse. Most property values are hard-coded in the
template. To redeploy the template in other environments,
you need to add parameters that increase the ability to
configure the resources.

Template includes parameters that make it easy to redeploy in
different environments.

To assist with creating Azure Resource Manager templates, you can export a template from existing resources. The
exported template helps you understand the JSON syntax and properties that deploy your resources. To automate
future deployments, start with the exported template and modify it for your scenario.

Resource Manager enables you to pick one or more resources for exporting to a template. You can focus on exactly
the resources you need in the template.

This article shows how to export templates through the portal. You can also use Azure CLI, Azure PowerShell, or
REST API.

There are two ways to export a template:

Export from resource group or resource. This option generates a new template from existing resources.
The exported template is a "snapshot" of the current state of the resource group. You can export an entire
resource group or specific resources within that resource group.

Export before deployment or from history. This option retrieves an exact copy of a template used for
deployment.

Depending on the option you choose, the exported templates have different qualities.

Export the template from a resource group or resource, when:

You need to capture changes to the resources that were made after the original deployment.
You want to select which resources are exported.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/export-template-portal.md
https://docs.microsoft.com/rest/api/resources/resourcegroups/exporttemplate

Export template from resource group

Export the template before deployment or from the history, when:

You want an easy-to-reuse template.
You don't need to include changes you made after the original deployment.

To export one or more resources from a resource group:

1. Select the resource group that contains the resources you want to export.

2. To export all resources in the resource group, select all and then Export template. The Export template
option only becomes enabled after you've selected at least one resource.

3. To pick specific resources for export, select the checkboxes next to those resources. Then, select Export
template.

4. The exported template is displayed, and is available to download.

Export template from resource
To export one resource:

1. Select the resource group containing the resource you want to export.

2. Select the resource to export.

3. For that resource, select Export template in the left pane.

Export template before deployment

4. The exported template is displayed, and is available to download. The template only contains the single
resource.

1. Select the Azure service you want to deploy.

2. Fill in the values for the new service.

3. After passing validation, but before starting the deployment, select Download a template for
automation.

4. The template is displayed and is available for download.

Export template after deployment
You can export the template that was used to deploy existing resources. The template you get is exactly the one
that was used for deployment.

1. Select the resource group you want to export.

2. Select the link under Deployments.

3. Select one of the deployments from the deployment history.

Next steps

4. Select Template. The template used for this deployment is displayed, and is available for download.

Learn how to export templates with Azure CLI, Azure PowerShell, or REST API.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.
To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/rest/api/resources/resourcegroups/exporttemplate
https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Move resources to a new resource group or
subscription
7/10/2019 • 5 minutes to read • Edit Online

Checklist before moving resources

This article shows you how to move Azure resources to either another Azure subscription or another resource
group under the same subscription. You can use the Azure portal, Azure PowerShell, Azure CLI, or the REST API
to move resources.

Both the source group and the target group are locked during the move operation. Write and delete operations
are blocked on the resource groups until the move completes. This lock means you can't add, update, or delete
resources in the resource groups, but it doesn't mean the resources are frozen. For example, if you move a SQL
Server and its database to a new resource group, an application that uses the database experiences no downtime.
It can still read and write to the database.

Moving a resource only moves it to a new resource group or subscription. It doesn't change the location of the
resource.

There are some important steps to do before moving a resource. By verifying these conditions, you can avoid
errors.

(Get-AzSubscription -SubscriptionName <your-source-subscription>).TenantId
(Get-AzSubscription -SubscriptionName <your-destination-subscription>).TenantId

1. The resources you want to move must support the move operation. For a list of which resources support
move, see Move operation support for resources.

2. Some services have specific limitations or requirements when moving resources. If you've moving any of
the following services, check that guidance before moving.

App Services move guidance
Azure DevOps Services move guidance
Classic deployment model move guidance - Classic Compute, Classic Storage, Classic Virtual
Networks, and Cloud Services
Recovery Services move guidance
Virtual Machines move guidance
Virtual Networks move guidance

3. The source and destination subscriptions must be active. If you have trouble enabling an account that has
been disabled, create an Azure support request. Select Subscription Management for the issue type.

4. The source and destination subscriptions must exist within the same Azure Active Directory tenant. To
check that both subscriptions have the same tenant ID, use Azure PowerShell or Azure CLI.

For Azure PowerShell, use:

For Azure CLI, use:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-move-resources.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/move-support-resources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/move-limitations/app-service-move-limitations
https://docs.microsoft.com/azure/devops/organizations/billing/change-azure-subscription?toc=/azure/azure-resource-manager/toc.json
https://docs.microsoft.com/en-us/azure/azure-resource-manager/move-limitations/classic-model-move-limitations
https://docs.microsoft.com/en-us/azure/backup/backup-azure-move-recovery-services-vault
https://docs.microsoft.com/en-us/azure/azure-resource-manager/move-limitations/virtual-machines-move-limitations
https://docs.microsoft.com/en-us/azure/azure-resource-manager/move-limitations/virtual-network-move-limitations
https://docs.microsoft.com/en-us/azure/azure-supportability/how-to-create-azure-support-request
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-create-new-tenant

Validate move

az account show --subscription <your-source-subscription> --query tenantId
az account show --subscription <your-destination-subscription> --query tenantId

Set-AzContext -Subscription <destination-subscription-name-or-id>
Get-AzResourceProvider -ListAvailable | Select-Object ProviderNamespace, RegistrationState

Register-AzResourceProvider -ProviderNamespace Microsoft.Batch

az account set -s <destination-subscription-name-or-id>
az provider list --query "[].{Provider:namespace, Status:registrationState}" --out table

az provider register --namespace Microsoft.Batch

If the tenant IDs for the source and destination subscriptions aren't the same, use the following methods to
reconcile the tenant IDs:

Transfer ownership of an Azure subscription to another account
How to associate or add an Azure subscription to Azure Active Directory

5. The destination subscription must be registered for the resource provider of the resource being moved. If
not, you receive an error stating that the subscription is not registered for a resource type. You might
see this error when moving a resource to a new subscription, but that subscription has never been used
with that resource type.

For PowerShell, use the following commands to get the registration status:

To register a resource provider, use:

For Azure CLI, use the following commands to get the registration status:

To register a resource provider, use:

6. The account moving the resources must have at least the following permissions:

Microsoft.Resources/subscriptions/resourceGroups/moveResources/action on the source
resource group.
Microsoft.Resources/subscriptions/resourceGroups/write on the destination resource group.

7. Before moving the resources, check the subscription quotas for the subscription you're moving the
resources to. If moving the resources means the subscription will exceed its limits, you need to review
whether you can request an increase in the quota. For a list of limits and how to request an increase, see
Azure subscription and service limits, quotas, and constraints.

The validate move operation lets you test your move scenario without actually moving the resources. Use this
operation to check if the move will succeed. Validation is automatically called when you send a move request. Use
this operation only when you need to predetermine the results. To run this operation, you need the:

name of the source resource group
resource ID of the target resource group
resource ID of each resource to move
the access token for your account

https://docs.microsoft.com/en-us/azure/billing/billing-subscription-transfer
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-how-subscriptions-associated-directory
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits
https://docs.microsoft.com/rest/api/resources/resources/validatemoveresources
https://docs.microsoft.com/rest/api/azure/#acquire-an-access-token

POST https://management.azure.com/subscriptions/<subscription-id>/resourceGroups/<source-
group>/validateMoveResources?api-version=2019-05-10
Authorization: Bearer <access-token>
Content-type: application/json

{
 "resources": ["<resource-id-1>", "<resource-id-2>"],
 "targetResourceGroup": "/subscriptions/<subscription-id>/resourceGroups/<target-group>"
}

Response Code: 202
cache-control: no-cache
pragma: no-cache
expires: -1
location: https://management.azure.com/subscriptions/<subscription-id>/operationresults/<operation-id>?api-
version=2018-02-01
retry-after: 15
...

GET <location-url>
Authorization: Bearer <access-token>

{"error":{"code":"ResourceMoveProviderValidationFailed","message":"<message>"...}}

Use the portal

Send the following request:

With a request body:

If the request is formatted correctly, the operation returns:

The 202 status code indicates the validation request was accepted, but it hasn't yet determined if the move
operation will succeed. The location value contains a URL that you use to check the status of the long-running
operation.

To check the status, send the following request:

While the operation is still running, you continue to receive the 202 status code. Wait the number of seconds
indicated in the retry-after value before trying again. If the move operation validates successfully, you receive
the 204 status code. If the move validation fails, you receive an error message, such as:

To move resources, select the resource group with those resources, and then select the Move button.

Select whether you're moving the resources to a new resource group or a new subscription.

Select the resources to move and the destination resource group. Acknowledge that you need to update scripts
for these resources and select OK. If you selected the edit subscription icon in the previous step, you must also
select the destination subscription.

Use Azure PowerShell

In Notifications, you see that the move operation is running.

When it has completed, you're notified of the result.

If you get an error, see Troubleshoot moving Azure resources to new resource group or subscription.

To move existing resources to another resource group or subscription, use the Move-AzResource command. The
following example shows how to move several resources to a new resource group.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/troubleshoot-move
https://docs.microsoft.com/powershell/module/az.resources/move-azresource

$webapp = Get-AzResource -ResourceGroupName OldRG -ResourceName ExampleSite
$plan = Get-AzResource -ResourceGroupName OldRG -ResourceName ExamplePlan
Move-AzResource -DestinationResourceGroupName NewRG -ResourceId $webapp.ResourceId, $plan.ResourceId

Use Azure CLI

webapp=$(az resource show -g OldRG -n ExampleSite --resource-type "Microsoft.Web/sites" --query id --output
tsv)
plan=$(az resource show -g OldRG -n ExamplePlan --resource-type "Microsoft.Web/serverfarms" --query id --
output tsv)
az resource move --destination-group newgroup --ids $webapp $plan

Use REST API

POST https://management.azure.com/subscriptions/{source-subscription-id}/resourcegroups/{source-resource-
group-name}/moveResources?api-version={api-version}

{
 "resources": ["<resource-id-1>", "<resource-id-2>"],
 "targetResourceGroup": "/subscriptions/<subscription-id>/resourceGroups/<target-group>"
}

Next steps

To move to a new subscription, include a value for the DestinationSubscriptionId parameter.

If you get an error, see Troubleshoot moving Azure resources to new resource group or subscription.

To move existing resources to another resource group or subscription, use the az resource move command.
Provide the resource IDs of the resources to move. The following example shows how to move several resources
to a new resource group. In the --ids parameter, provide a space-separated list of the resource IDs to move.

To move to a new subscription, provide the --destination-subscription-id parameter.

If you get an error, see Troubleshoot moving Azure resources to new resource group or subscription.

To move existing resources to another resource group or subscription, use the Move resources operation.

In the request body, you specify the target resource group and the resources to move.

If you get an error, see Troubleshoot moving Azure resources to new resource group or subscription.

For a list of which resources support move, see Move operation support for resources.

https://docs.microsoft.com/en-us/azure/azure-resource-manager/troubleshoot-move
https://docs.microsoft.com/cli/azure/resource?view=azure-cli-latest#az-resource-move
https://docs.microsoft.com/en-us/azure/azure-resource-manager/troubleshoot-move
https://docs.microsoft.com/rest/api/resources/Resources/MoveResources
https://docs.microsoft.com/en-us/azure/azure-resource-manager/troubleshoot-move
https://docs.microsoft.com/en-us/azure/azure-resource-manager/move-support-resources

Move operation support for resources
7/15/2019 • 11 minutes to read • Edit Online

Microsoft.AAD
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

domainservices No No

microsoft.aadiam
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

tenants No No

Microsoft.AlertsManagement
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

actionrules Yes Yes

Microsoft.AnalysisServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

servers Yes Yes

Microsoft.ApiManagement
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

service Yes Yes

Microsoft.AppConfiguration
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

configurationstores Yes Yes

Microsoft.AppService

This article lists whether an Azure resource type supports the move operation. It also provides information about
special conditions to consider when moving a resource.

Jump to a resource provider namespace:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/move-support-resources.md

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

apiapps No No

appidentities No No

gateways No No

IMPORTANTIMPORTANT

Microsoft.Authorization
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

policyassignments No No

Microsoft.Automation
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

automationaccounts Yes Yes

automationaccounts/configurations Yes Yes

automationaccounts/runbooks Yes Yes

IMPORTANTIMPORTANT

Microsoft.AzureActiveDirectory
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

b2cdirectories Yes Yes

Microsoft.AzureStack
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

registrations Yes Yes

Microsoft.Backup

See App Service move guidance.

Runbooks must exist in the same resource group as the Automation Account.

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

backupvault No No

Microsoft.Batch
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

batchaccounts Yes Yes

Microsoft.BatchAI
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

clusters No No

fileservers No No

jobs No No

workspaces No No

Microsoft.BingMaps
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

mapapis No No

Microsoft.BizTalkServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

biztalk Yes Yes

Microsoft.Blockchain
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

blockchainmembers Yes Yes

Microsoft.Blueprint
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

blueprintassignments No No

Microsoft.BotService

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

botservices Yes Yes

Microsoft.Cache
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

redis Yes Yes

IMPORTANTIMPORTANT

Microsoft.Cdn
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

profiles Yes Yes

profiles/endpoints Yes Yes

Microsoft.CertificateRegistration
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

certificateorders Yes Yes

IMPORTANTIMPORTANT

Microsoft.ClassicCompute
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

domainnames Yes No

virtualmachines Yes No

IMPORTANTIMPORTANT

Microsoft.ClassicNetwork

If the Azure Cache for Redis instance is configured with a virtual network, the instance can't be moved to a different
subscription. See Virtual Networks move limitations.

See App Service move guidance.

See Classic deployment move guidance. Classic deployment resources can be moved across subscriptions with an operation
specific to that scenario.

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

networksecuritygroups No No

reservedips No No

virtualnetworks No No

IMPORTANTIMPORTANT

Microsoft.ClassicStorage
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

storageaccounts Yes No

IMPORTANTIMPORTANT

Microsoft.CognitiveServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts Yes Yes

Microsoft.Compute
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

availabilitysets Yes Yes

disks Yes Yes

galleries No No

galleries/images No No

galleries/images/versions No No

hostgroups No No

hostgroups/hosts No No

images Yes Yes

See Classic deployment move guidance. Classic deployment resources can be moved across subscriptions with an operation
specific to that scenario.

See Classic deployment move guidance. Classic deployment resources can be moved across subscriptions with an operation
specific to that scenario.

proximityplacementgroups No No

restorepointcollections No No

sharedvmimages No No

sharedvmimages/versions No No

snapshots Yes Yes

virtualmachines Yes Yes

virtualmachines/extensions Yes Yes

virtualmachinescalesets Yes Yes

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

IMPORTANTIMPORTANT

Microsoft.Container
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

containergroups No No

Microsoft.ContainerInstance
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

containergroups No No

Microsoft.ContainerRegistry
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

registries Yes Yes

registries/buildtasks Yes Yes

registries/replications Yes Yes

registries/tasks Yes Yes

registries/webhooks Yes Yes

Microsoft.ContainerService

See Virtual Machines move guidance.

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

containerservices No No

managedclusters No No

openshiftmanagedclusters No No

Microsoft.ContentModerator
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

applications Yes Yes

Microsoft.CortanaAnalytics
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts No No

Microsoft.CostManagement
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

connectors Yes Yes

Microsoft.CustomerInsights
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

hubs Yes Yes

Microsoft.DataBox
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

jobs No No

Microsoft.DataBoxEdge
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

databoxedgedevices No No

Microsoft.Databricks

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

workspaces No No

Microsoft.DataCatalog
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

catalogs Yes Yes

datacatalogs No No

Microsoft.DataConnect
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

connectionmanagers No No

Microsoft.DataExchange
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

packages No No

plans No No

Microsoft.DataFactory
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

datafactories Yes Yes

factories Yes Yes

Microsoft.DataLake
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

datalakeaccounts No No

Microsoft.DataLakeAnalytics
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts Yes Yes

Microsoft.DataLakeStore

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts Yes Yes

Microsoft.DataMigration
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

services No No

services/projects No No

slots No No

Microsoft.DBforMariaDB
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

servers Yes Yes

Microsoft.DBforMySQL
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

servers Yes Yes

Microsoft.DBforPostgreSQL
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

servergroups No No

servers Yes Yes

serversv2 Yes Yes

Microsoft.DeploymentManager
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

artifactsources Yes Yes

rollouts Yes Yes

servicetopologies Yes Yes

servicetopologies/services Yes Yes

servicetopologies/services/serviceunits Yes Yes

steps Yes Yes

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

Microsoft.Devices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

elasticpools No No

elasticpools/iothubtenants No No

iothubs Yes Yes

provisioningservices Yes Yes

Microsoft.DevSpaces
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

controllers No No

Microsoft.DevTestLab
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

labcenters No No

labs Yes No

labs/environments Yes Yes

labs/servicerunners Yes Yes

labs/virtualmachines Yes No

schedules Yes Yes

microsoft.dns
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

dnszones No No

dnszones/a No No

dnszones/aaaa No No

dnszones/cname No No

dnszones/mx No No

dnszones/ptr No No

dnszones/srv No No

dnszones/txt No No

trafficmanagerprofiles No No

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

Microsoft.DocumentDB
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

databaseaccounts Yes Yes

Microsoft.DomainRegistration
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

domains Yes Yes

Microsoft.EnterpriseKnowledgeGraph
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

services Yes Yes

Microsoft.EventGrid
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

domains Yes Yes

topics Yes Yes

Microsoft.EventHub
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

clusters Yes Yes

namespaces Yes Yes

Microsoft.Genomics

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts No No

Microsoft.HanaOnAzure
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

hanainstances Yes Yes

Microsoft.HDInsight
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

clusters Yes Yes

IMPORTANTIMPORTANT

Microsoft.HealthcareApis
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

services Yes Yes

Microsoft.HybridCompute
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

machines No No

Microsoft.HybridData
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

datamanagers Yes Yes

Microsoft.ImportExport
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

jobs Yes Yes

You can move HDInsight clusters to a new subscription or resource group. However, you can't move across subscriptions the
networking resources linked to the HDInsight cluster (such as the virtual network, NIC, or load balancer). In addition, you
can't move to a new resource group a NIC that is attached to a virtual machine for the cluster.

When moving an HDInsight cluster to a new subscription, first move other resources (like the storage account). Then, move
the HDInsight cluster by itself.

microsoft.insights
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts No No

actiongroups Yes Yes

activitylogalerts No No

alertrules Yes Yes

autoscalesettings Yes Yes

components Yes Yes

guestdiagnosticsettings No No

metricalerts No No

notificationgroups No No

notificationrules No No

scheduledqueryrules Yes Yes

webtests Yes Yes

workbooks Yes Yes

IMPORTANTIMPORTANT

Microsoft.IoTCentral
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

iotapps Yes Yes

Microsoft.IoTSpaces
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

checknameavailability Yes Yes

graph Yes Yes

Microsoft.KeyVault

Make sure moving to new subscription doesn't exceed subscription quotas.

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

hsmpools No No

vaults Yes Yes

IMPORTANTIMPORTANT

Microsoft.Kusto
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

clusters Yes Yes

Microsoft.LabServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

labaccounts No No

Microsoft.LocationBasedServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts Yes Yes

Microsoft.LocationServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts No No

Microsoft.Logic
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

hostingenvironments No No

integrationaccounts Yes Yes

integrationserviceenvironments No No

isolatedenvironments No No

workflows Yes Yes

Key Vaults used for disk encryption can't be moved to a resource group in the same subscription or across subscriptions.

Microsoft.MachineLearning
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

commitmentplans Yes Yes

webservices Yes No

workspaces Yes Yes

Microsoft.MachineLearningCompute
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

operationalizationclusters Yes Yes

Microsoft.MachineLearningExperimentation
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts No No

accounts/workspaces No No

accounts/workspaces/projects No No

teamaccounts No No

teamaccounts/workspaces No No

teamaccounts/workspaces/projects No No

Microsoft.MachineLearningModelManagement
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts Yes Yes

Microsoft.MachineLearningOperationalization
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

hostingaccounts No No

Microsoft.MachineLearningServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

workspaces No No

Microsoft.ManagedIdentity
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

userassignedidentities No No

Microsoft.Maps
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts Yes Yes

Microsoft.MarketplaceApps
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

classicdevservices No No

Microsoft.Media
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

mediaservices Yes Yes

mediaservices/liveevents Yes Yes

mediaservices/streamingendpoints Yes Yes

Microsoft.Migrate
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

assessmentprojects No No

migrateprojects No No

projects No No

Microsoft.NetApp
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

netappaccounts No No

netappaccounts/capacitypools No No

netappaccounts/capacitypools/volumes No No

netappaccounts/capacitypools/volumes/
mounttargets

No No

netappaccounts/capacitypools/volumes/
snapshots

No No

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

Microsoft.Network
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

applicationgateways No No

applicationgatewaywebapplicationfirewa
llpolicies

No No

applicationsecuritygroups Yes Yes

azurefirewalls Yes Yes

bastionhosts No No

connections Yes Yes

ddoscustompolicies Yes Yes

ddosprotectionplans No No

dnszones Yes Yes

expressroutecircuits No No

expressroutecrossconnections No No

expressroutegateways No No

expressrouteports No No

frontdoors No No

frontdoorwebapplicationfirewallpolicies No No

loadbalancers Yes - Basic SKU
No - Standard SKU

Yes - Basic SKU
No - Standard SKU

localnetworkgateways Yes Yes

natgateways Yes Yes

networkintentpolicies Yes Yes

networkinterfaces Yes Yes

networkprofiles No No

networksecuritygroups Yes Yes

networkwatchers Yes Yes

networkwatchers/connectionmonitors Yes Yes

networkwatchers/lenses Yes Yes

networkwatchers/pingmeshes Yes Yes

p2svpngateways No No

privatednszones Yes Yes

privatednszones/virtualnetworklinks Yes Yes

privateendpoints No No

privatelinkservices No No

publicipaddresses Yes - Basic SKU
No - Standard SKU

Yes - Basic SKU
No - Standard SKU

publicipprefixes Yes Yes

routefilters No No

routetables Yes Yes

securegateways Yes Yes

serviceendpointpolicies Yes Yes

trafficmanagerprofiles Yes Yes

virtualhubs No No

virtualnetworkgateways Yes Yes

virtualnetworks Yes Yes

virtualnetworktaps No No

virtualwans No No

vpngateways No No

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

vpnsites No No

webapplicationfirewallpolicies Yes Yes

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

IMPORTANTIMPORTANT

Microsoft.NotificationHubs
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

namespaces Yes Yes

namespaces/notificationhubs Yes Yes

Microsoft.OperationalInsights
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

workspaces Yes Yes

IMPORTANTIMPORTANT

Microsoft.OperationsManagement
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

managementconfigurations Yes Yes

solutions Yes Yes

views Yes Yes

Microsoft.Peering
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

peerings No No

Microsoft.Portal

See Virtual Networks move guidance.

Make sure moving to new subscription doesn't exceed subscription quotas.

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

dashboards Yes Yes

Microsoft.PortalSdk
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

rootresources No No

Microsoft.PowerBI
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

workspacecollections Yes Yes

Microsoft.PowerBIDedicated
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

capacities Yes Yes

Microsoft.ProjectOxford
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

accounts No No

Microsoft.RecoveryServices
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

vaults Yes Yes

IMPORTANTIMPORTANT

Microsoft.Relay
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

namespaces Yes Yes

Microsoft.SaaS

See Recovery Services move guidance.

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

applications Yes No

Microsoft.Scheduler
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

flows Yes Yes

jobcollections Yes Yes

Microsoft.Search
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

searchservices Yes Yes

IMPORTANTIMPORTANT

Microsoft.Security
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

iotsecuritysolutions Yes Yes

Microsoft.ServerManagement
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

gateways No No

nodes No No

Microsoft.ServiceBus
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

namespaces Yes Yes

Microsoft.ServiceFabric
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

applications No No

You can't move several Search resources in different regions in one operation. Instead, move them in separate operations.

clusters Yes Yes

containergroups No No

containergroupsets No No

edgeclusters No No

networks No No

secretstores No No

volumes No No

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

Microsoft.ServiceFabricMesh
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

applications Yes Yes

containergroups No No

gateways Yes Yes

networks Yes Yes

secrets Yes Yes

volumes Yes Yes

Microsoft.SignalRService
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

signalr Yes Yes

Microsoft.SiteRecovery
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

siterecoveryvault No No

IMPORTANTIMPORTANT

Microsoft.Solutions

See Recovery Services move guidance.

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

appliancedefinitions No No

appliances No No

applicationdefinitions No No

applications No No

jitrequests No No

Microsoft.Sql
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

instancepools No No

managedinstances No No

managedinstances/databases No No

servers Yes Yes

servers/databases Yes Yes

servers/elasticpools Yes Yes

virtualclusters Yes Yes

IMPORTANTIMPORTANT

Microsoft.SqlVirtualMachine
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

sqlvirtualmachinegroups Yes Yes

sqlvirtualmachines Yes Yes

Microsoft.SqlVM
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

dwvm No No

A database and server must be in the same resource group. When you move a SQL server, all its databases are also moved.
This behavior applies to Azure SQL Database and Azure SQL Data Warehouse databases.

Microsoft.Storage
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

storageaccounts Yes Yes

Microsoft.StorageCache
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

caches No No

Microsoft.StorageSync
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

storagesyncservices Yes Yes

Microsoft.StorageSyncDev
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

storagesyncservices No No

Microsoft.StorageSyncInt
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

storagesyncservices No No

Microsoft.StorSimple
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

managers No No

Microsoft.StreamAnalytics
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

streamingjobs Yes Yes

IMPORTANTIMPORTANT

Microsoft.StreamAnalyticsExplorer

Stream Analytics jobs can't be moved when in running state.

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

environments No No

environments/eventsources No No

instances No No

instances/environments No No

instances/environments/eventsources No No

Microsoft.TerraformOSS
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

providerregistrations No No

resources No No

Microsoft.TimeSeriesInsights
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

environments Yes Yes

environments/eventsources Yes Yes

environments/referencedatasets Yes Yes

Microsoft.Token
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

stores No No

Microsoft.VirtualMachineImages
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

imagetemplates No No

microsoft.visualstudio
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

account Yes Yes

account/extension Yes Yes

account/project Yes Yes

RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

IMPORTANTIMPORTANT

Microsoft.VMwareCloudSimple
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

dedicatedcloudnodes Yes Yes

dedicatedcloudservices Yes Yes

virtualmachines Yes Yes

Microsoft.Web
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

certificates No Yes

connectiongateways Yes Yes

connections Yes Yes

customapis Yes Yes

hostingenvironments No No

serverfarms Yes Yes

sites Yes Yes

sites/premieraddons Yes Yes

sites/slots Yes Yes

IMPORTANTIMPORTANT

Microsoft.WindowsIoT
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

deviceservices No No

To change the subscription for Azure DevOps, see change the Azure subscription used for billing.

See App Service move guidance.

https://docs.microsoft.com/azure/devops/organizations/billing/change-azure-subscription?toc=/azure/azure-resource-manager/toc.json

 Microsoft.WindowsVirtualDesktop
RESOURCE TYPE RESOURCE GROUP SUBSCRIPTION

applicationgroups No No

hostpools No No

workspaces No No

Third-party services

Next steps

Third-party services currently don't support the move operation.

For commands to move resources, see Move resources to new resource group or subscription.

To get the same data as a file of comma-separated values, download move-support-resources.csv.

https://github.com/tfitzmac/resource-capabilities/blob/master/move-support-resources.csv

Troubleshoot moving Azure resources to new
resource group or subscription
7/10/2019 • 2 minutes to read • Edit Online

Upgrade a subscription

Service limitations

Large requests

Next steps

This article provides suggestions to help resolve problems when moving resources.

If you actually want to upgrade your Azure subscription (such as switching from free to pay-as-you-go), you need
to convert your subscription.

To upgrade a free trial, see Upgrade your Free Trial or Microsoft Imagine Azure subscription to Pay-As-You-Go.
To change a pay-as-you-go account, see Change your Azure Pay-As-You-Go subscription to a different offer.

If you can't convert the subscription, create an Azure support request. Select Subscription Management for the
issue type.

Some services require additional considerations when moving resources. If you're moving the following services,
make sure you check the guidance and limitations.

App Services
Azure DevOps Services
Classic deployment model
Recovery Services
Virtual Machines
Virtual Networks

When possible, break large moves into separate move operations. Resource Manager immediately returns an error
when there are more than 800 resources in a single operation. However, moving less than 800 resources may also
fail by timing out.

For commands to move resources, see Move resources to new resource group or subscription.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/troubleshoot-move.md
https://docs.microsoft.com/en-us/azure/billing/billing-upgrade-azure-subscription
https://docs.microsoft.com/en-us/azure/billing/billing-how-to-switch-azure-offer
https://docs.microsoft.com/en-us/azure/azure-supportability/how-to-create-azure-support-request
https://docs.microsoft.com/azure/devops/organizations/billing/change-azure-subscription?toc=/azure/azure-resource-manager/toc.json

Move guidance for App Service resources
7/10/2019 • 2 minutes to read • Edit Online

Move in same subscription

Move across subscriptions

The steps to move App Service resources differ based on whether you're moving the resources within a
subscription or to a new subscription.

When moving a Web App within the same subscription, you can't move third-party SSL certificates. However, you
can move a Web App to the new resource group without moving its third-party certificate, and your app's SSL
functionality still works.

If you want to move the SSL certificate with the Web App, follow these steps:

1. Delete the third-party certificate from the Web App, but keep a copy of your certificate
2. Move the Web App.
3. Upload the third-party certificate to the moved Web App.

When moving a Web App across subscriptions, the following limitations apply:

The destination resource group must not have any existing App Service resources. App Service resources
include:

All App Service resources in the resource group must be moved together.
App Service resources can only be moved from the resource group in which they were originally created. If an
App Service resource is no longer in its original resource group, move it back to its original resource group.
Then, move the resource across subscriptions.

Web Apps
App Service plans
Uploaded or imported SSL certificates
App Service Environments

If you don't remember the original resource group, you can find it through diagnostics. For your web app, select
Diagnose and solve problems. Then, select Configuration and Management.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/move-limitations/app-service-move-limitations.md

Select Migration Options.

Select the option for recommended steps to move the web app.

Move App Service Certificate

Move support

Next steps

You see the recommended actions to take before moving the resources. The information includes the original
resource group for the web app.

You can move your App Service Certificate to a new resource group or subscription. If your App Service
Certificate is bound to a web app, you must take some steps before moving the resources to a new subscription.
Delete the SSL binding and private certificate from the web app before moving the resources. The App Service
Certificate doesn't need to be deleted, just the private certificate in the web app.

To determine which App Service resources can be moved, see move support status for:

Microsoft.AppService
Microsoft.CertificateRegistration
Microsoft.DomainRegistration
Microsoft.Web

For commands to move resources, see Move resources to new resource group or subscription.

Move guidance for Classic deployment model
resources
7/10/2019 • 2 minutes to read • Edit Online

Move in the same subscription

Move across subscriptions

The steps to move resources deployed through the classic model differ based on whether you're moving the
resources within a subscription or to a new subscription.

When moving resources from one resource group to another resource group within the same subscription, the
following restrictions apply:

Virtual networks (classic) can't be moved.
Virtual machines (classic) must be moved with the cloud service.
Cloud service can only be moved when the move includes all its virtual machines.
Only one cloud service can be moved at a time.
Only one storage account (classic) can be moved at a time.
Storage account (classic) can't be moved in the same operation with a virtual machine or a cloud service.

To move classic resources to a new resource group within the same subscription, use the standard move
operations through the portal, Azure PowerShell, Azure CLI, or REST API. You use the same operations as you
use for moving Resource Manager resources.

When moving resources to a new subscription, the following restrictions apply:

All classic resources in the subscription must be moved in the same operation.
The target subscription must not have any other classic resources.
The move can only be requested through a separate REST API for classic moves. The standard Resource
Manager move commands don't work when moving classic resources to a new subscription.

To move classic resources to a new subscription, use the REST operations that are specific to classic resources. To
use REST, do the following steps:

POST
https://management.azure.com/subscriptions/{sourceSubscriptionId}/providers/Microsoft.ClassicCompute/va
lidateSubscriptionMoveAvailability?api-version=2016-04-01

{
 "role": "source"
}

1. Check if the source subscription can participate in a cross-subscription move. Use the following operation:

In the request body, include:

The response for the validation operation is in the following format:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/move-limitations/classic-model-move-limitations.md

Next steps

{
 "status": "{status}",
 "reasons": [
 "reason1",
 "reason2"
]
}

POST
https://management.azure.com/subscriptions/{destinationSubscriptionId}/providers/Microsoft.ClassicCompu
te/validateSubscriptionMoveAvailability?api-version=2016-04-01

{
 "role": "target"
}

POST https://management.azure.com/subscriptions/{subscription-
id}/providers/Microsoft.ClassicCompute/moveSubscriptionResources?api-version=2016-04-01

{
 "target": "/subscriptions/{target-subscription-id}"
}

2. Check if the destination subscription can participate in a cross-subscription move. Use the following
operation:

In the request body, include:

The response is in the same format as the source subscription validation.

3. If both subscriptions pass validation, move all classic resources from one subscription to another
subscription with the following operation:

In the request body, include:

The operation may run for several minutes.

If you have trouble moving classic resources, contact Support.

For commands to move resources, see Move resources to new resource group or subscription.

https://portal.azure.com/#blade/Microsoft_Azure_Support/HelpAndSupportBlade/overview

Move a Recovery Services vault across Azure
Subscriptions and Resource Groups
7/31/2019 • 5 minutes to read • Edit Online

Supported region

Prerequisites for moving Recovery Services vault

This article explains how to move a Recovery Services vault configured for Azure Backup across Azure
subscriptions, or to another resource group in the same subscription. You can use the Azure portal or PowerShell
to move a Recovery Services vault.

Resource move for Recovery Services vault is supported in Australia East, Australia South East, Canada Central,
Canada East, South East Asia, East Asia, Central US, North Central US, East US, East US2, South central US, West
Central US, West Central US2, West US, Central India, South India, Japan East, Japan West, Korea Central, Korea
South, North Europe, West Europe, South Africa North, South Africa West, UK South, and UK West.

During vault move across resource groups, both the source and target resource groups are locked preventing
the write and delete operations. For more information, see this article.
Only admin subscription has the permissions to move a vault.
For moving vault across subscriptions, the target subscription must reside in the same tenant as the source
subscription and its state should be enabled.
You must have permission to perform write operations on the target resource group.
Moving the vault only changes the resource group. The Recovery Services vault will reside on the same
location and it cannot be changed.
You can move only one Recovery Services vault, per region, at a time.
If a VM doesn’t move with the Recovery Services vault across subscriptions, or to a new resource group, the
current VM recovery points will remain intact in the vault until they expire.
Whether the VM is moved with the vault or not, you can always restore the VM from the retained backup
history in the vault.
The Azure Disk Encryption requires that the key vault and VMs reside in the same Azure region and
subscription.
To move a virtual machine with managed disks, see this article.
The options for moving resources deployed through the Classic model differ depending on whether you are
moving the resources within a subscription, or to a new subscription. For more information, see this article.
Backup policies defined for the vault are retained after the vault moves across subscriptions or to a new
resource group.
Moving vault with the Azure Files, Azure File Sync, or SQL in IaaS VMs across subscriptions and resource
groups is not supported.
If you move a vault containing VM backup data, across subscriptions, you must move your VMs to the same
subscription, and use the same target resource group to continue backups.

https://github.com/Microsoft/azure-docs/blob/master/articles/backup/backup-azure-move-recovery-services-vault.md
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-move-resources
https://azure.microsoft.com/blog/move-managed-disks-and-vms-now-available/
https://docs.microsoft.com/azure/azure-resource-manager/resource-group-move-resources

NOTENOTE

Use Azure portal to move Recovery Services vault to different resource
group

Recovery Services vaults configured to use with Azure Site Recovery can’t move, yet. If you have configured any VMs
(Azure IaaS, Hyper-V, VMware) or physical machines for disaster recovery using the Azure Site Recovery, the move
operation will be blocked. The resource move feature for Site Recovery service is not yet available.

To move a recovery services vault and its associated resources to different resource group

1. Sign in to the Azure portal.

2. Open the list of Recovery Services vaults and select the vault you want to move. When the vault
dashboard opens, it appears as shown in the following image.

If you do not see the Essentials information for your vault, click the drop-down icon. You should now see
the Essentials information for your vault.

3. In the vault overview menu, click change next to the Resource group, to open the Move resources blade.

https://portal.azure.com/

Use Azure portal to move Recovery Services vault to a different
subscription

4. In the Move resources blade, for the selected vault it is recommended to move the optional related
resources by selecting the checkbox as shown in the following image.

5. To add the target resource group, in the Resource group drop-down list select an existing resource group
or click create a new group option.

6. After adding the resource group, confirm I understand that tools and scripts associated with moved
resources will not work until I update them to use new resource IDs option and then click OK to
complete moving the vault.

You can move a Recovery Services vault and its associated resources to a different subscription

1. Sign in to the Azure portal.

2. Open the list of Recovery Services vaults and select the vault you want to move. When the vault dashboard
opens, it appears as shown the following image.

https://portal.azure.com/

If you do not see the Essentials information for your vault, click the drop-down icon. You should now see
the Essentials information for your vault.

3. In the vault overview menu, click change next to Subscription, to open the Move resources blade.

4. Select the resources to be moved, here we recommend you to use the Select All option to select all the
listed optional resources.

NOTENOTE

Use PowerShell to move Recovery Services vault

$destinationRG = "<destinationResourceGroupName>"
$vault = Get-AzureRmRecoveryServicesVault -Name <vaultname> -ResourceGroupName <vaultRGname>
Move-AzureRmResource -DestinationResourceGroupName $destinationRG -ResourceId $vault.ID

Move-AzureRmResource -DestinationSubscriptionId "<destinationSubscriptionID>" -DestinationResourceGroupName
$destinationRG -ResourceId $vault.ID

Use CLI to move Recovery Services vault

5. Select the target subscription from the Subscription drop-down list, where you want the vault to be
moved.

6. To add the target resource group, in the Resource group drop-down list select an existing resource group
or click create a new group option.

7. Click I understand that tools and scripts associated with moved resources will not work until I
update them to use new resource IDs option to confirm, and then click OK.

Cross subscription backup (RS vault and protected VMs are in different subscriptions) is not a supported scenario. Also,
storage redundancy option from local redundant storage (LRS) to global redundant storage (GRS) and vice versa cannot be
modified during the vault move operation.

To move a Recovery Services vault to another resource group, use the Move-AzureRMResource cmdlet.
Move-AzureRMResource requires the resource name and type of resource. You can get both from the
Get-AzureRmRecoveryServicesVault cmdlet.

To move the resources to different subscription, include the -DestinationSubscriptionId parameter.

After executing the above cmdlets, you will be asked to confirm that you want to move the specified resources.
Type Y to confirm. After a successful validation, the resource moves.

To move a Recovery Services vault to another resource group, use the following cmdlet:

az resource move --destination-group <destinationResourceGroupName> --ids <VaultResourceID>

Post migration

Next steps

To move to a new subscription, provide the --destination-subscription-id parameter.

1. You need to set/verify the access controls for the resource groups.
2. The Backup reporting and monitoring feature needs to be configured again for the vault post the move

completes. The previous configuration will be lost during the move operation.

You can move many different types of resources between resource groups and subscriptions.

For more information, see Move resources to new resource group or subscription.

https://docs.microsoft.com/azure/azure-resource-manager/resource-group-move-resources

Move guidance for virtual machines
7/10/2019 • 2 minutes to read • Edit Online

Scenarios not supported

Virtual machines with Azure Backup

Next steps

This article describes the scenarios that aren't currently supported and the steps to move virtual machines with
backup.

The following scenarios aren't yet supported:

Managed Disks in Availability Zones can't be moved to a different subscription.
Virtual Machines with certificate stored in Key Vault can be moved to a new resource group in the same
subscription, but not across subscriptions.
Virtual Machine Scale Sets with Standard SKU Load Balancer or Standard SKU Public IP can't be moved.
Virtual machines created from Marketplace resources with plans attached can't be moved across resource
groups or subscriptions. Deprovision the virtual machine in the current subscription, and deploy again in the
new subscription.
Virtual machines in an existing virtual network but you aren't moving all resources in the virtual network.

To move virtual machines configured with Azure Backup, use the following workaround:

Find the location of your Virtual Machine.
Find a resource group with the following naming pattern: AzureBackupRG_<location of your VM>_1 for example,
AzureBackupRG_westus2_1
If in Azure portal, then check "Show hidden types"
If in PowerShell, use the Get-AzResource -ResourceGroupName AzureBackupRG_<location of your VM>_1 cmdlet
If in CLI, use the az resource list -g AzureBackupRG_<location of your VM>_1

Find the resource with type Microsoft.Compute/restorePointCollections that has the naming pattern
AzureBackup_<name of your VM that you're trying to move>_###########

Delete this resource. This operation deletes only the instant recovery points, not the backed-up data in the
vault.
After delete is complete, you can move the vault and virtual machine to the target subscription. After the move,
you can continue backups with no loss in data.
For information about moving Recovery Service vaults for backup, see Recovery Services limitations.

For commands to move resources, see Move resources to new resource group or subscription.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/move-limitations/virtual-machines-move-limitations.md

Move guidance for virtual networks
7/10/2019 • 2 minutes to read • Edit Online

Dependent resources

Peered virtual network

Subnet links

Next steps

This article describes how to move virtual networks for specific scenarios.

When moving a virtual network, you must also move its dependent resources. For VPN Gateways, you must
move IP addresses, virtual network gateways, and all associated connection resources. Local network gateways
can be in a different resource group.

To move a virtual machine with a network interface card, you must move all dependent resources. Move the
virtual network for the network interface card, all other network interface cards for the virtual network, and the
VPN gateways.

To move a peered virtual network, you must first disable the virtual network peering. Once disabled, you can
move the virtual network. After the move, reenable the virtual network peering.

You can't move a virtual network to a different subscription if the virtual network contains a subnet with resource
navigation links. For example, if an Azure Cache for Redis resource is deployed into a subnet, that subnet has a
resource navigation link.

For commands to move resources, see Move resources to new resource group or subscription.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/move-limitations/virtual-network-move-limitations.md

Use tags to organize your Azure resources
7/18/2019 • 11 minutes to read • Edit Online

NOTENOTE

Policies

TagsTags

You apply tags to your Azure resources giving metadata to logically organize them into a taxonomy. Each tag
consists of a name and a value pair. For example, you can apply the name "Environment" and the value
"Production" to all the resources in production.

After you apply tags, you can retrieve all the resources in your subscription with that tag name and value. Tags
enable you to retrieve related resources from different resource groups. This approach is helpful when you need to
organize resources for billing or management.

Your taxonomy should consider a self-service metadata tagging strategy in addition to an auto-tagging strategy to
reduce the burden on users and increase accuracy.

The following limitations apply to tags:

Not all resource types support tags. To determine if you can apply a tag to a resource type, see Tag support for
Azure resources.
Each resource or resource group can have a maximum of 50 tag name/value pairs. Currently, storage accounts
only support 15 tags, but that limit will be raised to 50 in a future release. If you need to apply more tags than
the maximum allowed number, use a JSON string for the tag value. The JSON string can contain many values
that are applied to a single tag name. A resource group can contain many resources that each have 50 tag
name/value pairs.
The tag name is limited to 512 characters, and the tag value is limited to 256 characters. For storage accounts,
the tag name is limited to 128 characters, and the tag value is limited to 256 characters.
Generalized VMs don't support tags.
Tags applied to the resource group are not inherited by the resources in that resource group.
Tags can't be applied to classic resources such as Cloud Services.
Tag names can't contain these characters: < , > , % , & , \ , ? , /

To apply tags to resources, the user must have write access to that resource type. To apply tags to all resource
types, use the Contributor role. To apply tags to only one resource type, use the contributor role for that resource.
For example, to apply tags to virtual machines, use the Virtual Machine Contributor.

This article provides steps for how to delete personal data from the device or service and can be used to support your
obligations under the GDPR. If you’re looking for general info about GDPR, see the GDPR section of the Service Trust portal.

You can use Azure Policy to enforce tagging rules and conventions. By creating a policy, you avoid the scenario of
resources being deployed to your subscription that don't comply with the expected tags for your organization.
Instead of manually applying tags or searching for resources that aren't compliant, you can create a policy that
automatically applies the needed tags during deployment. The following section shows example policies for tags.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-using-tags.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://docs.microsoft.com/en-us/azure/governance/policy/overview

Apply tag and its default value Appends a specified tag name and value, if that tag is not
provided. You specify the tag name and value to apply.

Billing Tags Policy Initiative Requires specified tag values for cost center and product
name. Uses built-in policies to apply and enforce required
tags. You specify the required values for the tags.

Enforce tag and its value Requires a specified tag name and value. You specify the tag
name and value to enforce.

Enforce tag and its value on resource groups Requires a tag and value on a resource group. You specify the
required tag name and value.

PowerShell

NOTENOTE

(Get-AzResourceGroup -Name examplegroup).Tags

Name Value
---- -----
Dept IT
Environment Test

(Get-AzResource -ResourceId /subscriptions/<subscription-id>/resourceGroups/<rg-
name>/providers/Microsoft.Storage/storageAccounts/<storage-name>).Tags

(Get-AzResource -ResourceName examplevnet -ResourceGroupName examplegroup).Tags

(Get-AzResourceGroup -Tag @{ Dept="Finance" }).ResourceGroupName

(Get-AzResource -Tag @{ Dept="Finance"}).Name

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To see the existing tags for a resource group, use:

That script returns the following format:

To see the existing tags for a resource that has a specified resource ID, use:

Or, to see the existing tags for a resource that has a specified name and resource group, use:

To get resource groups that have a specific tag, use:

To get resources that have a specific tag, use:

https://docs.microsoft.com/en-us/azure/governance/policy/samples/apply-tag-default-value
https://docs.microsoft.com/en-us/azure/governance/policy/samples/billing-tags-policy-initiative
https://docs.microsoft.com/en-us/azure/governance/policy/samples/enforce-tag-value
https://docs.microsoft.com/en-us/azure/governance/policy/samples/enforce-tag-on-resource-groups
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

(Get-AzResource -TagName Dept).Name

Set-AzResourceGroup -Name examplegroup -Tag @{ Dept="IT"; Environment="Test" }

$tags = (Get-AzResourceGroup -Name examplegroup).Tags
$tags.Add("Status", "Approved")
Set-AzResourceGroup -Tag $tags -Name examplegroup

$r = Get-AzResource -ResourceName examplevnet -ResourceGroupName examplegroup
Set-AzResource -Tag @{ Dept="IT"; Environment="Test" } -ResourceId $r.ResourceId -Force

$r = Get-AzResource -ResourceName examplevnet -ResourceGroupName examplegroup
$r.Tags.Add("Status", "Approved")
Set-AzResource -Tag $r.Tags -ResourceId $r.ResourceId -Force

$groups = Get-AzResourceGroup
foreach ($g in $groups)
{
 Get-AzResource -ResourceGroupName $g.ResourceGroupName | ForEach-Object {Set-AzResource -ResourceId
$_.ResourceId -Tag $g.Tags -Force }
}

To get resources that have a specific tag name, use:

Every time you apply tags to a resource or a resource group, you overwrite the existing tags on that resource or
resource group. Therefore, you must use a different approach based on whether the resource or resource group
has existing tags.

To add tags to a resource group without existing tags, use:

To add tags to a resource group that has existing tags, retrieve the existing tags, add the new tag, and reapply the
tags:

To add tags to a resource without existing tags, use:

To add tags to a resource that has existing tags, use:

To apply all tags from a resource group to its resources, and not keep existing tags on the resources, use the
following script:

To apply all tags from a resource group to its resources, and keep existing tags on resources that aren't duplicates,
use the following script:

$group = Get-AzResourceGroup "examplegroup"
if ($null -ne $group.Tags) {
 $resources = Get-AzResource -ResourceGroupName $group.ResourceGroupName
 foreach ($r in $resources)
 {
 $resourcetags = (Get-AzResource -ResourceId $r.ResourceId).Tags
 if ($resourcetags)
 {
 foreach ($key in $group.Tags.Keys)
 {
 if (-not($resourcetags.ContainsKey($key)))
 {
 $resourcetags.Add($key, $group.Tags[$key])
 }
 }
 Set-AzResource -Tag $resourcetags -ResourceId $r.ResourceId -Force
 }
 else
 {
 Set-AzResource -Tag $group.Tags -ResourceId $r.ResourceId -Force
 }
 }
}

Set-AzResourceGroup -Tag @{} -Name examplegroup

Azure CLI

az group show -n examplegroup --query tags

{
 "Dept" : "IT",
 "Environment" : "Test"
}

az resource show -n examplevnet -g examplegroup --resource-type "Microsoft.Network/virtualNetworks" --query
tags

az resource show --id <resource-id> --query tags

az group list --tag Dept=IT

To remove all tags, pass an empty hash table:

To see the existing tags for a resource group, use:

That script returns the following format:

Or, to see the existing tags for a resource that has a specified name, type, and resource group, use:

When looping through a collection of resources, you might want to show the resource by resource ID. A complete
example is shown later in this article. To see the existing tags for a resource that has a specified resource ID, use:

To get resource groups that have a specific tag, use az group list :

az resource list --tag Dept=Finance

az group update -n examplegroup --set tags.Environment=Test tags.Dept=IT

az resource tag --tags Dept=IT Environment=Test -g examplegroup -n examplevnet --resource-type
"Microsoft.Network/virtualNetworks"

jsonrtag=$(az resource show -g examplegroup -n examplevnet --resource-type "Microsoft.Network/virtualNetworks"
--query tags)
rt=$(echo $jsonrtag | tr -d '"{},' | sed 's/: /=/g')
az resource tag --tags $rt Project=Redesign -g examplegroup -n examplevnet --resource-type
"Microsoft.Network/virtualNetworks"

groups=$(az group list --query [].name --output tsv)
for rg in $groups
do
 jsontag=$(az group show -n $rg --query tags)
 t=$(echo $jsontag | tr -d '"{},' | sed 's/: /=/g')
 r=$(az resource list -g $rg --query [].id --output tsv)
 for resid in $r
 do
 az resource tag --tags $t --id $resid
 done
done

To get all the resources that have a particular tag and value, use az resource list :

Every time you apply tags to a resource or a resource group, you overwrite the existing tags on that resource or
resource group. Therefore, you must use a different approach based on whether the resource or resource group
has existing tags.

To add tags to a resource group without existing tags, use:

To add tags to a resource without existing tags, use:

To add tags to a resource that already has tags, retrieve the existing tags, reformat that value, and reapply the
existing and new tags:

To apply all tags from a resource group to its resources, and not keep existing tags on the resources, use the
following script:

To apply all tags from a resource group to its resources, and keep existing tags on resources, use the following
script:

groups=$(az group list --query [].name --output tsv)
for rg in $groups
do
 jsontag=$(az group show -n $rg --query tags)
 t=$(echo $jsontag | tr -d '"{},' | sed 's/: /=/g')
 r=$(az resource list -g $rg --query [].id --output tsv)
 for resid in $r
 do
 jsonrtag=$(az resource show --id $resid --query tags)
 rt=$(echo $jsonrtag | tr -d '"{},' | sed 's/: /=/g')
 az resource tag --tags trt --id $resid
 done
done

Templates

Apply a literal value to the tag nameApply a literal value to the tag name

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "resources": [
 {
 "apiVersion": "2019-04-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "location": "[parameters('location')]",
 "tags": {
 "Dept": "Finance",
 "Environment": "Production"
 },
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 }
]
}

Apply an object to the tag elementApply an object to the tag element

To tag a resource during deployment, add the tags element to the resource you're deploying. Provide the tag
name and value.

The following example shows a storage account with two tags (Dept and Environment) that are set to literal
values:

To set a tag to a datetime value, use the utcNow function.

You can define an object parameter that stores several tags, and apply that object to the tag element. Each property
in the object becomes a separate tag for the resource. The following example has a parameter named tagValues

that is applied to the tag element.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 },
 "tagValues": {
 "type": "object",
 "defaultValue": {
 "Dept": "Finance",
 "Environment": "Production"
 }
 }
 },
 "resources": [
 {
 "apiVersion": "2019-04-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "location": "[parameters('location')]",
 "tags": "[parameters('tagValues')]",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 }
]
}

Apply a JSON string to the tag nameApply a JSON string to the tag name

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "resources": [
 {
 "apiVersion": "2019-04-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "location": "[parameters('location')]",
 "tags": {
 "CostCenter": "{\"Dept\":\"Finance\",\"Environment\":\"Production\"}"
 },
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 }
]
}

To store many values in a single tag, apply a JSON string that represents the values. The entire JSON string is
stored as one tag that can't exceed 256 characters. The following example has a single tag named CostCenter that
contains several values from a JSON string:

Apply tags from resource groupApply tags from resource group

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "location": {
 "type": "string",
 "defaultValue": "[resourceGroup().location]"
 }
 },
 "resources": [
 {
 "apiVersion": "2019-04-01",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "location": "[parameters('location')]",
 "tags": {
 "Dept": "[resourceGroup().tags['Dept']]",
 "Environment": "[resourceGroup().tags['Environment']]"
 },
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "properties": {}
 }
]
}

Portal

To apply tags from a resource group to a resource, use the resourceGroup function. When getting the tag value,
use the tags.[tag-name] syntax instead of the tags.tag-name syntax, because some characters aren't parsed
correctly in the dot notation.

1. To view the tags for a resource or a resource group, looks for existing tags in the overview. If you have not
previously applied tags, the list is empty.

2. To add a tag, select Click here to add tags.

3. Provide a name and value. Select + to add the tag.

4. Continue adding tags as needed. When done, select Save.

5. The tags are now displayed in the overview.

6. To add or delete a tag, select change.

7. To delete a tag, select the trash icon. Then, select Save.

To bulk assign tags to multiple resources:

1. From any list of resources, select the checkbox for the resources you want to assign the tag.

2. Select Assign tags

3. After each name and value, select +. When done, select Assign.

To view all resources with a tag:

1. Select All services and Tags.

2. Select the tag for viewing resources.

3. All resources with that tag are displayed.

4. For quick access, pin the view to the dashboard.

5. The view is available from the dashboard.

REST API

Tags and billing

Next steps

The Azure portal and PowerShell both use the Resource Manager REST API behind the scenes. If you need to
integrate tagging into another environment, you can get tags by using GET on the resource ID and update the set
of tags by using a PATCH call.

You can use tags to group your billing data. For example, if you're running multiple VMs for different
organizations, use the tags to group usage by cost center. You can also use tags to categorize costs by runtime
environment, such as the billing usage for VMs running in the production environment.

You can retrieve information about tags through the Azure Resource Usage and RateCard APIs or the usage
comma-separated values (CSV) file. You download the usage file from the Azure Account Center or Azure portal.
For more information, see Download or view your Azure billing invoice and daily usage data. When downloading
the usage file from the Azure Account Center, select Version 2. For services that support tags with billing, the tags
appear in the Tags column.

For REST API operations, see Azure Billing REST API Reference.

Not all resource types support tags. To determine if you can apply a tag to a resource type, see Tag support for
Azure resources.
For an introduction to using the portal, see Using the Azure portal to manage your Azure resources.

https://docs.microsoft.com/rest/api/resources/
https://docs.microsoft.com/en-us/azure/billing/billing-usage-rate-card-overview
https://account.azure.com/Subscriptions
https://docs.microsoft.com/en-us/azure/billing/billing-download-azure-invoice-daily-usage-date
https://docs.microsoft.com/rest/api/billing/

Tag support for Azure resources
7/17/2019 • 17 minutes to read • Edit Online

Microsoft.AAD
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

DomainServices Yes Yes

DomainServices/oucontainer No No

microsoft.aadiam
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

diagnosticSettings No No

diagnosticSettingsCategories No No

Microsoft.Addons
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

supportProviders No No

Microsoft.ADHybridHealthService
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

aadsupportcases No No

addsservices No No

agents No No

anonymousapiusers No No

configuration No No

logs No No

This article describes whether a resource type supports tags. The column labeled Supports tags indicates whether
the resource type has a property for the tag. The column labeled Tag in cost report indicates whether that
resource type passes the tag to the cost report.

To get the same data as a file of comma-separated values, download tag-support.csv.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/tag-support.md
https://github.com/tfitzmac/resource-capabilities/blob/master/tag-support.csv

reports No No

services No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Advisor
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

configurations No No

generateRecommendations No No

recommendations No No

suppressions No No

Microsoft.AlertsManagement
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

actionRules No No

alerts No No

alertsList No No

alertsSummary No No

alertsSummaryList No No

smartDetectorAlertRules No No

smartDetectorRuntimeEnvironments No No

smartGroups No No

Microsoft.AnalysisServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

servers Yes Yes

Microsoft.ApiManagement
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

reportFeedback No No

service Yes Yes

validateServiceName No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Attestation
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

attestationProviders No No

Microsoft.Authorization
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

classicAdministrators No No

denyAssignments No No

elevateAccess No No

locks No No

permissions No No

policyAssignments No No

policyDefinitions No No

policySetDefinitions No No

providerOperations No No

roleAssignments No No

roleDefinitions No No

Microsoft.Automation
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

automationAccounts Yes Yes

automationAccounts/configurations Yes Yes

automationAccounts/jobs No No

automationAccounts/runbooks Yes Yes

automationAccounts/softwareUpdateC
onfigurations

No No

automationAccounts/webhooks No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Azure.Geneva
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

environments No No

environments/accounts No No

environments/accounts/namespaces No No

environments/accounts/namespaces/co
nfigurations

No No

Microsoft.AzureActiveDirectory
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

b2cDirectories Yes No

Microsoft.AzureStack
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

registrations Yes Yes

registrations/customerSubscriptions No No

registrations/products No No

Microsoft.Batch
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

batchAccounts Yes Yes

Microsoft.Billing
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

billingAccounts No No

billingAccounts/billingProfiles No No

billingAccounts/billingProfiles/billingSub
scriptions

No No

billingAccounts/billingProfiles/invoices No No

billingAccounts/billingProfiles/invoices/p
ricesheet

No No

billingAccounts/billingProfiles/operation
Status

No No

billingAccounts/billingProfiles/payment
Methods

No No

billingAccounts/billingProfiles/policies No No

billingAccounts/billingProfiles/pricesheet No No

billingAccounts/billingProfiles/products No No

billingAccounts/billingProfiles/transactio
ns

No No

billingAccounts/billingSubscriptions No No

billingAccounts/departments No No

billingAccounts/eligibleOffers No No

billingAccounts/enrollmentAccounts No No

billingAccounts/invoices No No

billingAccounts/invoiceSections No No

billingAccounts/invoiceSections/billingS
ubscriptions

No No

billingAccounts/invoiceSections/billingS
ubscriptions/transfer

No No

billingAccounts/invoiceSections/importR
equests

No No

billingAccounts/invoiceSections/initiateI
mportRequest

No No

billingAccounts/invoiceSections/initiateT
ransfer

No No

billingAccounts/invoiceSections/operati
onStatus

No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

billingAccounts/invoiceSections/product
s

No No

billingAccounts/invoiceSections/transfer
s

No No

billingAccounts/products No No

billingAccounts/projects No No

billingAccounts/projects/billingSubscript
ions

No No

billingAccounts/projects/importRequest
s

No No

billingAccounts/projects/initiateImportR
equest

No No

billingAccounts/projects/operationStatu
s

No No

billingAccounts/projects/products No No

billingAccounts/transactions No No

billingPeriods No No

BillingPermissions No No

billingProperty No No

BillingRoleAssignments No No

BillingRoleDefinitions No No

CreateBillingRoleAssignment No No

departments No No

enrollmentAccounts No No

importRequests No No

importRequests/acceptImportRequest No No

importRequests/declineImportRequest No No

invoices No No

transfers No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

transfers/acceptTransfer No No

transfers/declineTransfer No No

transfers/operationStatus No No

usagePlans No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.BingMaps
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

mapApis Yes Yes

updateCommunicationPreference No No

Microsoft.BizTalkServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

BizTalk Yes Yes

Microsoft.Blueprint
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

blueprintAssignments No No

blueprintAssignments/assignmentOper
ations

No No

blueprintAssignments/operations No No

blueprints No No

blueprints/artifacts No No

blueprints/versions No No

blueprints/versions/artifacts No No

Microsoft.BotService
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

botServices Yes Yes

botServices/channels No No

botServices/connections No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Cache
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Redis Yes Yes

RedisConfigDefinition No No

Microsoft.Capacity
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

appliedReservations No No

calculatePrice No No

catalogs No No

commercialReservationOrders No No

reservationOrders No No

reservationOrders/calculateRefund No No

reservationOrders/merge No No

reservationOrders/reservations No No

reservationOrders/reservations/revision
s

No No

reservationOrders/return No No

reservationOrders/split No No

reservationOrders/swap No No

reservations No No

resources No No

validateReservationOrder No No

Microsoft.Cdn

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

edgenodes No No

profiles Yes Yes

profiles/endpoints Yes Yes

profiles/endpoints/customdomains No No

profiles/endpoints/origins No No

validateProbe No No

Microsoft.CertificateRegistration
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

certificateOrders Yes Yes

certificateOrders/certificates No No

validateCertificateRegistrationInformati
on

No No

Microsoft.ClassicCompute
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

capabilities No No

domainNames No No

domainNames/capabilities No No

domainNames/internalLoadBalancers No No

domainNames/serviceCertificates No No

domainNames/slots No No

domainNames/slots/roles No No

moveSubscriptionResources No No

operatingSystemFamilies No No

operatingSystems No No

quotas No No

resourceTypes No No

validateSubscriptionMoveAvailability No No

virtualMachines No No

virtualMachines/diagnosticSettings No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.ClassicInfrastructureMigrate
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

classicInfrastructureResources No No

Microsoft.ClassicNetwork
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

capabilities No No

expressRouteCrossConnections No No

expressRouteCrossConnections/peering
s

No No

gatewaySupportedDevices No No

networkSecurityGroups No No

quotas No No

reservedIps No No

virtualNetworks No No

virtualNetworks/remoteVirtualNetwork
PeeringProxies

No No

virtualNetworks/virtualNetworkPeerings No No

Microsoft.ClassicStorage
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

capabilities No No

disks No No

images No No

osImages No No

osPlatformImages No No

publicImages No No

quotas No No

storageAccounts No No

storageAccounts/services No No

storageAccounts/services/diagnosticSet
tings

No No

storageAccounts/vmImages No No

vmImages No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.CognitiveServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

Microsoft.Commerce
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

RateCard No No

UsageAggregates No No

Microsoft.Compute
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

availabilitySets Yes Yes

disks Yes Yes

images Yes Yes

restorePointCollections Yes Yes

restorePointCollections/restorePoints No No

sharedVMImages Yes Yes

sharedVMImages/versions Yes Yes

snapshots Yes Yes

virtualMachines Yes Yes

virtualMachines/diagnosticSettings No No

virtualMachines/extensions Yes Yes

virtualMachineScaleSets Yes Yes

virtualMachineScaleSets/extensions No No

virtualMachineScaleSets/networkInterfa
ces

No No

virtualMachineScaleSets/publicIPAddres
ses

No No

virtualMachineScaleSets/virtualMachine
s

No No

virtualMachineScaleSets/virtualMachine
s/networkInterfaces

No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Consumption
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

AggregatedCost No No

Balances No No

Budgets No No

Charges No No

CostTags No No

credits No No

events No No

Forecasts No No

lots No No

Marketplaces No No

Pricesheets No No

products No No

ReservationDetails No No

ReservationRecommendations No No

ReservationSummaries No No

ReservationTransactions No No

Tags No No

Terms No No

UsageDetails No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.ContainerInstance
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

containerGroups Yes Yes

serviceAssociationLinks No No

Microsoft.ContainerRegistry
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

registries Yes Yes

registries/builds No No

registries/builds/cancel No No

registries/builds/getLogLink No No

registries/buildTasks Yes Yes

registries/buildTasks/steps No No

registries/eventGridFilters No No

registries/getBuildSourceUploadUrl No No

registries/GetCredentials No No

registries/importImage No No

registries/queueBuild No No

registries/regenerateCredential No No

registries/regenerateCredentials No No

registries/replications Yes Yes

registries/runs No No

registries/runs/cancel No No

registries/scheduleRun No No

registries/tasks Yes Yes

registries/updatePolicies No No

registries/webhooks Yes Yes

registries/webhooks/getCallbackConfig No No

registries/webhooks/ping No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.ContainerService
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

containerServices Yes Yes

managedClusters Yes Yes

Microsoft.ContentModerator
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

applications Yes Yes

updateCommunicationPreference No No

Microsoft.CortanaAnalytics
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

Microsoft.CostManagement
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Alerts No No

BillingAccounts No No

Connectors Yes Yes

Departments No No

Dimensions No No

EnrollmentAccounts No No

Query No No

register No No

Reportconfigs No No

Reports No No

Microsoft.CustomerInsights
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

hubs Yes Yes

hubs/authorizationPolicies No No

hubs/connectors No No

hubs/connectors/mappings No No

hubs/interactions No No

hubs/kpi No No

hubs/links No No

hubs/profiles No No

hubs/roleAssignments No No

hubs/roles No No

hubs/suggestTypeSchema No No

hubs/views No No

hubs/widgetTypes No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.DataBox
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

jobs Yes Yes

Microsoft.DataBoxEdge
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

DataBoxEdgeDevices Yes Yes

Microsoft.Databricks
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

workspaces Yes No

workspaces/virtualNetworkPeerings No No

Microsoft.DataCatalog
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

catalogs Yes Yes

Microsoft.DataConnect
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

connectionManagers Yes Yes

Microsoft.DataFactory
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

dataFactories Yes No

dataFactories/diagnosticSettings No No

dataFactorySchema No No

factories Yes No

factories/integrationRuntimes No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.DataLakeAnalytics
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

accounts/dataLakeStoreAccounts No No

accounts/storageAccounts No No

accounts/storageAccounts/containers No No

Microsoft.DataLakeStore
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

accounts/eventGridFilters No No

accounts/firewallRules No No

Microsoft.DataMigration
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

services Yes Yes

services/projects Yes Yes

Microsoft.DBforMariaDB
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

servers Yes Yes

servers/recoverableServers No No

servers/virtualNetworkRules No No

Microsoft.DBforMySQL
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

servers Yes Yes

servers/recoverableServers No No

servers/virtualNetworkRules No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.DBforPostgreSQL
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

servers Yes Yes

servers/advisors No No

servers/queryTexts No No

servers/recoverableServers No No

servers/topQueryStatistics No No

servers/virtualNetworkRules No No

servers/waitStatistics No No

Microsoft.Devices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

IotHubs Yes Yes

IotHubs/eventGridFilters No No

ProvisioningServices Yes Yes

usages No No

Microsoft.DevSpaces
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

controllers Yes Yes

Microsoft.DevTestLab
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

labs Yes Yes

labs/serviceRunners Yes Yes

labs/virtualMachines Yes Yes

schedules Yes Yes

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.DocumentDB
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

databaseAccountNames No No

databaseAccounts Yes Yes

Microsoft.DomainRegistration
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

domains Yes Yes

domains/domainOwnershipIdentifiers No No

generateSsoRequest No No

topLevelDomains No No

validateDomainRegistrationInformation No No

Microsoft.DynamicsLcs
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

lcsprojects No No

lcsprojects/clouddeployments No No

lcsprojects/connectors No No

Microsoft.EventGrid
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

domains Yes No

domains/topics No No

eventSubscriptions No No

extensionTopics No No

topics Yes No

topicTypes No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.EventHub
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

clusters Yes No

namespaces Yes No

namespaces/authorizationrules No No

namespaces/disasterrecoveryconfigs No No

namespaces/eventhubs No No

namespaces/eventhubs/authorizationru
les

No No

namespaces/eventhubs/consumergrou
ps

No No

Microsoft.Features
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

features No No

providers No No

Microsoft.Gallery
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

enroll No No

galleryitems No No

generateartifactaccessuri No No

myareas No No

myareas/areas No No

myareas/areas/areas No No

myareas/areas/areas/galleryitems No No

myareas/areas/galleryitems No No

myareas/galleryitems No No

register No No

resources No No

retrieveresourcesbyid No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.GuestConfiguration
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

guestConfigurationAssignments No No

software No No

Microsoft.HanaOnAzure
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

hanaInstances Yes Yes

Microsoft.HDInsight
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

clusters Yes Yes

clusters/applications No No

Microsoft.ImportExport
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

jobs Yes Yes

Microsoft.InformationProtection
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

labelGroups No No

labelGroups/labels No No

labelGroups/labels/conditions No No

labelGroups/labels/subLabels No No

labelGroups/labels/subLabels/condition
s

No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

microsoft.insights
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

actiongroups Yes Yes

activityLogAlerts Yes Yes

alertrules Yes Yes

automatedExportSettings No No

autoscalesettings Yes Yes

baseline No No

calculatebaseline No No

components Yes Yes

components/events No No

components/pricingPlans No No

components/query No No

diagnosticSettings No No

diagnosticSettingsCategories No No

eventCategories No No

eventtypes No No

extendedDiagnosticSettings No No

logDefinitions No No

logprofiles No No

logs No No

metricAlerts Yes Yes

migrateToNewPricingModel No No

myWorkbooks No No

queries No No

rollbackToLegacyPricingModel No No

scheduledqueryrules Yes Yes

vmInsightsOnboardingStatuses No No

webtests Yes Yes

workbooks Yes Yes

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Intune
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

diagnosticSettings No No

diagnosticSettingsCategories No No

Microsoft.IoTCentral
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

IoTApps Yes Yes

Microsoft.IoTSpaces
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Graph Yes Yes

Microsoft.KeyVault
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

deletedVaults No No

vaults Yes Yes

vaults/accessPolicies No No

vaults/secrets No No

Microsoft.Kusto
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

clusters Yes Yes

clusters/databases No No

clusters/databases/dataconnections No No

clusters/databases/eventhubconnection
s

No No

Microsoft.LabServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

labaccounts Yes Yes

users No No

Microsoft.LocationBasedServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

Microsoft.LocationServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

Microsoft.LogAnalytics
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

logs No No

Microsoft.Logic
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

integrationAccounts Yes Yes

workflows Yes Yes

Microsoft.MachineLearning

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

commitmentPlans Yes Yes

webServices Yes Yes

Workspaces Yes Yes

Microsoft.MachineLearningExperimentation
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

accounts/workspaces Yes Yes

accounts/workspaces/projects Yes Yes

teamAccounts Yes Yes

teamAccounts/workspaces Yes Yes

teamAccounts/workspaces/projects Yes Yes

Microsoft.MachineLearningModelManagement
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

Microsoft.MachineLearningServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

workspaces Yes Yes

workspaces/computes No No

Microsoft.ManagedIdentity
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Identities No No

userAssignedIdentities Yes

Microsoft.Management

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

getEntities No No

managementGroups No No

resources No No

startTenantBackfill No No

tenantBackfillStatus No No

Microsoft.Maps
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

accounts/eventGridFilters No No

Microsoft.Marketplace
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

offers No No

offerTypes No No

offerTypes/publishers No No

offerTypes/publishers/offers No No

offerTypes/publishers/offers/plans No No

offerTypes/publishers/offers/plans/agre
ements

No No

offerTypes/publishers/offers/plans/confi
gs

No No

offerTypes/publishers/offers/plans/confi
gs/importImage

No No

privategalleryitems No No

products No No

Microsoft.MarketplaceApps

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

classicDevServices Yes Yes

updateCommunicationPreference No No

Microsoft.MarketplaceOrdering
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

agreements No No

offertypes No No

Microsoft.Media
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

mediaservices Yes Yes

mediaservices/accountFilters No No

mediaservices/assets No No

mediaservices/assets/assetFilters No No

mediaservices/contentKeyPolicies No No

mediaservices/eventGridFilters No No

mediaservices/liveEventOperations No No

mediaservices/liveEvents Yes Yes

mediaservices/liveEvents/liveOutputs No No

mediaservices/liveOutputOperations No No

mediaservices/streamingEndpointOpera
tions

No No

mediaservices/streamingEndpoints Yes Yes

mediaservices/streamingLocators No No

mediaservices/streamingPolicies No No

mediaservices/transforms No No

mediaservices/transforms/jobs No No

Microsoft.Migrate
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

projects Yes Yes

Microsoft.Network
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

applicationGateways Yes No

applicationSecurityGroups Yes Yes

azureFirewallFqdnTags No No

azureFirewalls Yes No

bgpServiceCommunities No No

connections Yes Yes

ddosCustomPolicies Yes Yes

ddosProtectionPlans Yes Yes

dnsOperationStatuses No No

dnszones Yes Yes

dnszones/A No No

dnszones/AAAA No No

dnszones/all No No

dnszones/CAA No No

dnszones/CNAME No No

dnszones/MX No No

dnszones/NS No No

dnszones/PTR No No

dnszones/recordsets No No

dnszones/SOA No No

dnszones/SRV No No

dnszones/TXT No No

expressRouteCircuits Yes No

expressRouteServiceProviders No No

frontdoors Yes, but limited (see note below) Yes

frontdoorWebApplicationFirewallPolicies Yes, but limited (see note below) Yes

getDnsResourceReference No No

interfaceEndpoints Yes Yes

internalNotify No No

loadBalancers Yes No

localNetworkGateways Yes Yes

natGateways Yes Yes

networkIntentPolicies Yes Yes

networkInterfaces Yes Yes

networkProfiles Yes Yes

networkSecurityGroups Yes Yes

networkWatchers Yes No

networkWatchers/connectionMonitors Yes No

networkWatchers/lenses Yes No

networkWatchers/pingMeshes Yes No

privateLinkServices Yes Yes

publicIPAddresses Yes Yes

publicIPPrefixes Yes Yes

routeFilters Yes Yes

routeTables Yes Yes

serviceEndpointPolicies Yes Yes

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

trafficManagerGeographicHierarchies No No

trafficmanagerprofiles Yes Yes

trafficmanagerprofiles/heatMaps No No

virtualHubs Yes Yes

virtualNetworkGateways Yes Yes

virtualNetworks Yes Yes

virtualNetworks/subnets No No

virtualNetworkTaps Yes Yes

virtualWans Yes Yes

vpnGateways Yes No

vpnSites Yes Yes

webApplicationFirewallPolicies Yes Yes

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.NotificationHubs
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

namespaces Yes No

namespaces/notificationHubs Yes No

Microsoft.OperationalInsights
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

devices No No

linkTargets No No

storageInsightConfigs No No

workspaces Yes Yes

workspaces/dataSources No No

For Azure Front Door Service, you can apply tags when creating the resource, but updating or adding tags is not
currently supported.

workspaces/linkedServices No No

workspaces/query No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.OperationsManagement
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

managementassociations No No

managementconfigurations Yes Yes

solutions Yes Yes

views Yes Yes

Microsoft.PolicyInsights
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

policyEvents No No

policyStates No No

policyTrackedResources No No

remediations No No

Microsoft.Portal
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

consoles No No

dashboards Yes Yes

userSettings No No

Microsoft.PowerBI
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

workspaceCollections Yes Yes

Microsoft.PowerBIDedicated

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

capacities Yes Yes

Microsoft.ProjectOxford
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

accounts Yes Yes

Microsoft.RecoveryServices
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

backupProtectedItems No No

vaults Yes Yes

Microsoft.Relay
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

namespaces Yes Yes

namespaces/authorizationrules No No

namespaces/hybridconnections No No

namespaces/hybridconnections/authori
zationrules

No No

namespaces/wcfrelays No No

namespaces/wcfrelays/authorizationrule
s

No No

Microsoft.ResourceGraph
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

resources No No

subscriptionsStatus No No

Microsoft.ResourceHealth
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

availabilityStatuses No No

childAvailabilityStatuses No No

childResources No No

events No No

impactedResources No No

notifications No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Resources
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

deployments No No

deployments/operations No No

links No No

notifyResourceJobs No No

providers No No

resourceGroups No No

resources No No

subscriptions No No

subscriptions/providers No No

subscriptions/resourceGroups No No

subscriptions/resourcegroups/resources No No

subscriptions/resources No No

subscriptions/tagnames No No

subscriptions/tagNames/tagValues No No

tenants No No

Microsoft.SaaS
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

applications Yes Yes

saasresources No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.Scheduler
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

flows Yes Yes

jobcollections Yes Yes

Microsoft.Search
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

resourceHealthMetadata No No

searchServices Yes Yes

Microsoft.Security
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

advancedThreatProtectionSettings No No

alerts No No

allowedConnections No No

appliances No No

applicationWhitelistings No No

AutoProvisioningSettings No No

Compliances No No

dataCollectionAgents No No

discoveredSecuritySolutions No No

externalSecuritySolutions No No

InformationProtectionPolicies No No

jitNetworkAccessPolicies No No

monitoring No No

monitoring/antimalware No No

monitoring/baseline No No

monitoring/patch No No

policies No No

pricings No No

securityContacts No No

securitySolutions No No

securitySolutionsReferenceData No No

securityStatus No No

securityStatus/endpoints No No

securityStatus/subnets No No

securityStatus/virtualMachines No No

securityStatuses No No

securityStatusesSummaries No No

settings No No

tasks No No

topologies No No

workspaceSettings No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.SecurityGraph
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

diagnosticSettings No No

diagnosticSettingsCategories No No

Microsoft.ServiceBus
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

namespaces Yes No

namespaces/authorizationrules No No

namespaces/disasterrecoveryconfigs No No

namespaces/eventgridfilters No No

namespaces/queues No No

namespaces/queues/authorizationrules No No

namespaces/topics No No

namespaces/topics/authorizationrules No No

namespaces/topics/subscriptions No No

namespaces/topics/subscriptions/rules No No

premiumMessagingRegions No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.ServiceFabric
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

clusters Yes Yes

clusters/applications No No

Microsoft.ServiceFabricMesh
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

applications Yes Yes

gateways Yes Yes

networks Yes Yes

secrets Yes Yes

volumes Yes Yes

Microsoft.SignalRService
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

SignalR Yes Yes

Microsoft.Solutions
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

applianceDefinitions Yes Yes

appliances Yes Yes

applicationDefinitions Yes Yes

applications Yes Yes

jitRequests Yes Yes

Microsoft.SQL
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

managedInstances Yes Yes

managedInstances/databases Yes (see note below) Yes

managedInstances/databases/backupSh
ortTermRetentionPolicies

No No

managedInstances/databases/schemas/
tables/columns/sensitivityLabels

No No

managedInstances/databases/vulnerabil
ityAssessments

No No

managedInstances/databases/vulnerabil
ityAssessments/rules/baselines

No No

managedInstances/encryptionProtector No No

managedInstances/keys No No

managedInstances/restorableDroppedD
atabases/backupShortTermRetentionPol
icies

No No

managedInstances/vulnerabilityAssess
ments

No No

servers Yes Yes

servers/administrators No No

servers/communicationLinks No No

servers/databases Yes (see note below) Yes

servers/encryptionProtector No No

servers/firewallRules No No

servers/keys No No

servers/restorableDroppedDatabases No No

servers/serviceobjectives No No

servers/tdeCertificates No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

NOTENOTE

Microsoft.SqlVirtualMachine
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

SqlVirtualMachineGroups Yes Yes

SqlVirtualMachineGroups/AvailabilityGr
oupListeners

No No

SqlVirtualMachines Yes Yes

Microsoft.Storage
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

storageAccounts Yes Yes

storageAccounts/blobServices No No

storageAccounts/fileServices No No

storageAccounts/queueServices No No

storageAccounts/services No No

storageAccounts/tableServices No No

usages No No

Microsoft.StorageSync

The Master database doesn't support tags, but other databases, including Azure SQL Data Warehouse databases, support
tags. Azure SQL Data Warehouse databases must be in Active (not Paused) state.

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

storageSyncServices Yes Yes

storageSyncServices/registeredServers No No

storageSyncServices/syncGroups No No

storageSyncServices/syncGroups/cloudE
ndpoints

No No

storageSyncServices/syncGroups/server
Endpoints

No No

storageSyncServices/workflows No No

Microsoft.StorSimple
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

managers Yes Yes

Microsoft.StreamAnalytics
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

streamingjobs Yes (see note below) Yes

streamingjobs/diagnosticSettings No No

NOTENOTE

Microsoft.Subscription
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

CreateSubscription No No

SubscriptionDefinitions No No

SubscriptionOperations No No

microsoft.support
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

supporttickets No No

You can't add a tag when streamingjobs is running. Stop the resource to add a tag.

Microsoft.TerraformOSS
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

providerRegistrations Yes Yes

resources Yes Yes

Microsoft.TimeSeriesInsights
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

environments Yes No

environments/accessPolicies No No

environments/eventsources Yes No

environments/referenceDataSets Yes No

microsoft.visualstudio
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

account Yes Yes

account/extension Yes Yes

account/project Yes Yes

Microsoft.Web
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

apiManagementAccounts No No

apiManagementAccounts/apiAcls No No

apiManagementAccounts/apis No No

apiManagementAccounts/apis/apiAcls No No

apiManagementAccounts/apis/connecti
onAcls

No No

apiManagementAccounts/apis/connecti
ons

No No

apiManagementAccounts/apis/connecti
ons/connectionAcls

No No

apiManagementAccounts/apis/localized
Definitions

No No

apiManagementAccounts/connectionAc
ls

No No

apiManagementAccounts/connections No No

billingMeters No No

certificates Yes Yes

connectionGateways Yes Yes

connections Yes Yes

customApis Yes Yes

deletedSites No No

functions No No

hostingEnvironments Yes Yes

hostingEnvironments/multiRolePools No No

hostingEnvironments/multiRolePools/in
stances

No No

hostingEnvironments/workerPools No No

hostingEnvironments/workerPools/insta
nces

No No

publishingUsers No No

recommendations No No

resourceHealthMetadata No No

runtimes No No

serverFarms Yes Yes

serverFarms/workers No No

sites Yes Yes

sites/domainOwnershipIdentifiers No No

sites/hostNameBindings No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

sites/instances No No

sites/instances/extensions No No

sites/premieraddons Yes Yes

sites/recommendations No No

sites/resourceHealthMetadata No No

sites/slots Yes Yes

sites/slots/hostNameBindings No No

sites/slots/instances No No

sites/slots/instances/extensions No No

sourceControls No No

validate No No

verifyHostingEnvironmentVnet No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Microsoft.WindowsDefenderATP
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

diagnosticSettings No No

diagnosticSettingsCategories No No

Microsoft.WindowsIoT
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

DeviceServices Yes Yes

Microsoft.WorkloadMonitor
RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

components No No

componentsSummary No No

monitorInstances No No

monitorInstancesSummary No No

monitors No No

notificationSettings No No

RESOURCE TYPE SUPPORTS TAGS TAG IN COST REPORT

Next steps
To learn how to apply tags to resources, see Use tags to organize your Azure resources.

Manage Azure Resource Manager resource groups
by using the Azure portal
6/20/2019 • 3 minutes to read • Edit Online

NOTENOTE

What is a resource group

Create resource groups

Learn how to use the Azure portal with Azure Resource Manager to manage your Azure resource groups. For
managing Azure resources, see Manage Azure resources by using the Azure portal.

Other articles about managing resource groups:

Manage Azure resource groups by using Azure CLI
Manage Azure resource groups by using Azure PowerShell

This article provides steps for how to delete personal data from the device or service and can be used to support your
obligations under the GDPR. If you’re looking for general info about GDPR, see the GDPR section of the Service Trust portal.

A resource group is a container that holds related resources for an Azure solution. The resource group can include
all the resources for the solution, or only those resources that you want to manage as a group. You decide how you
want to allocate resources to resource groups based on what makes the most sense for your organization.
Generally, add resources that share the same lifecycle to the same resource group so you can easily deploy, update,
and delete them as a group.

The resource group stores metadata about the resources. Therefore, when you specify a location for the resource
group, you are specifying where that metadata is stored. For compliance reasons, you may need to ensure that
your data is stored in a particular region.

The resource group stores metadata about the resources. When you specify a location for the resource group,
you're specifying where that metadata is stored.

1. Sign in to the Azure portal.

2. Select Resource groups

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/manage-resource-groups-portal.md
https://portal.azure.com
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://portal.azure.com

3. Select Add.

4. Enter the following values:

Subscription: Select your Azure subscription.

Resource group: Enter a new resource group name.

Region: Select an Azure location, such as Central US.

5. Select Review + Create

6. Select Create. It takes a few seconds to create a resource group.

7. Select Refresh from the top menu to refresh the resource group list, and then select the newly created
resource group to open it. Or select Notification(the bell icon) from the top, and then select Go to
resource group to open the newly created resource group

List resource groups

Open resource groups

Delete resource groups

1. Sign in to the Azure portal.

2. To list the resource groups, select Resource groups

3. To customize the information displayed for the resource groups, select Edit columns. The following
screenshot shows the addition columns you could add to the display:

1. Sign in to the Azure portal.
2. Select Resource groups.
3. Select the resource group you want to open.

1. Open the resource group you want to delete. See Open resource groups.

2. Select Delete resource group.

https://portal.azure.com
https://portal.azure.com

Deploy resources to a resource group

Move to another resource group or subscription

Lock resource groups

Tag resource groups

For more information about how Azure Resource Manager orders the deletion of resources, see Azure Resource
Manager resource group deletion.

After you have created a Resource Manager template, you can use the Azure portal to deploy your Azure
resources. For creating a template, see Quickstart: Create and deploy Azure Resource Manager templates by using
the Azure portal. For deploying a template using the portal, see Deploy resources with Resource Manager
templates and Azure portal.

You can move the resources in the group to another resource group. For more information, see Move resources to
new resource group or subscription.

Locking prevents other users in your organization from accidentally deleting or modifying critical resources, such
as Azure subscription, resource group, or resource.

1. Open the resource group you want to delete. See Open resource groups.

2. In the left pane, select Locks.

3. To add a lock to the resource group, select Add.

4. Enter Lock name, Lock type, and Notes. The lock types include Read-only, and Delete.

For more information, see Lock resources to prevent unexpected changes.

You can apply tags to resource groups and resources to logically organize your assets. For information, see Using
tags to organize your Azure resources.

 Export resource groups to templates

Manage access to resource groups

Next steps

For information about exporting templates, see Single and multi-resource export to template - Portal.

Role-based access control (RBAC) is the way that you manage access to resources in Azure. For more information,
see Manage access using RBAC and the Azure portal.

To learn Azure Resource Manager, see Azure Resource Manager overview.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.
To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Manage Azure Resource Manager resource groups
by using Azure CLI
6/20/2019 • 3 minutes to read • Edit Online

What is a resource group

Create resource groups

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the location (i.e. centralus):" &&
read location &&
az group create --name $resourceGroupName --location $location

List resource groups

az group list

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
az group show --name $resourceGroupName

Learn how to use Azure CLI with Azure Resource Manager to manage your Azure resource groups. For managing
Azure resources, see Manage Azure resources by using Azure CLI.

Other articles about managing resource groups:

Manage Azure resource groups by using the Azure portal
Manage Azure resource groups by using Azure PowerShell

A resource group is a container that holds related resources for an Azure solution. The resource group can include
all the resources for the solution, or only those resources that you want to manage as a group. You decide how you
want to allocate resources to resource groups based on what makes the most sense for your organization.
Generally, add resources that share the same lifecycle to the same resource group so you can easily deploy, update,
and delete them as a group.

The resource group stores metadata about the resources. Therefore, when you specify a location for the resource
group, you are specifying where that metadata is stored. For compliance reasons, you may need to ensure that
your data is stored in a particular region.

The resource group stores metadata about the resources. When you specify a location for the resource group,
you're specifying where that metadata is stored.

The following CLI script creates a resource group, and then shows the resource group.

The following CLI script lists the resource groups under your subscription.

To get one resource group:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/manage-resource-groups-cli.md

Delete resource groups

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
az group delete --name $resourceGroupName

Deploy resources to an existing resource group

Deploy a resource group and resources

Redeploy when deployment fails

Move to another resource group or subscription

Lock resource groups

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
az lock create --name LockGroup --lock-type CanNotDelete --resource-group $resourceGroupName

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
az lock list --resource-group $resourceGroupName

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the lock name:" &&
read lockName &&
az lock delete --name $lockName --resource-group $resourceGroupName

The following CLI script deletes a resource group:

For more information about how Azure Resource Manager orders the deletion of resources, see Azure Resource
Manager resource group deletion.

See Deploy resources to an existing resource group.

You can create a resource group and deploy resources to the group by using a Resource Manager template. For
more information, see Create resource group and deploy resources.

This feature is also known as Rollback on error. For more information, see Redeploy when deployment fails.

You can move the resources in the group to another resource group. For more information, see Move resources.

Locking prevents other users in your organization from accidentally deleting or modifying critical resources, such
as Azure subscription, resource group, or resource.

The following script locks a resource group so the resource group can't be deleted.

The following script gets all locks for a resource group:

The following script deletes a lock:

For more information, see Lock resources with Azure Resource Manager.

Tag resource groups

Export resource groups to templates

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
az group export --name $resourceGroupName

Manage access to resource groups

Next steps

You can apply tags to resource groups and resources to logically organize your assets. For information, see Using
tags to organize your Azure resources.

After setting up your resource group successfully, you may want to view the Resource Manager template for the
resource group. Exporting the template offers two benefits:

Automate future deployments of the solution because the template contains all the complete infrastructure.
Learn template syntax by looking at the JavaScript Object Notation (JSON) that represents your solution.

The script displays the template on the console. Copy the JSON, and save as a file.

For more information, see Single and multi-resource export to template in Azure portal .

Role-based access control (RBAC) is the way that you manage access to resources in Azure. For more information,
see Manage access using RBAC and Azure CLI.

To learn Azure Resource Manager, see Azure Resource Manager overview.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.
To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Manage Azure Resource Manager resource groups
by using Azure PowerShell
7/10/2019 • 4 minutes to read • Edit Online

What is a resource group

Create resource groups

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"

New-AzResourceGroup -Name $resourceGroupName -Location $location

Get-AzResourceGroup -Name $resourceGroupName

List resource groups

Get-AzResourceGroup

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"

Get-AzResourceGroup -Name $resourceGroupName

Learn how to use Azure PowerShell with Azure Resource Manager to manage your Azure resource groups. For
managing Azure resources, see Manage Azure resources by using Azure PowerShell.

Other articles about managing resource groups:

Manage Azure resource groups by using the Azure portal
Manage Azure resource groups by using Azure CLI

A resource group is a container that holds related resources for an Azure solution. The resource group can include
all the resources for the solution, or only those resources that you want to manage as a group. You decide how you
want to allocate resources to resource groups based on what makes the most sense for your organization.
Generally, add resources that share the same lifecycle to the same resource group so you can easily deploy, update,
and delete them as a group.

The resource group stores metadata about the resources. Therefore, when you specify a location for the resource
group, you're specifying where that metadata is stored. For compliance reasons, you may need to ensure that your
data is stored in a particular region.

The resource group stores metadata about the resources. When you specify a location for the resource group,
you're specifying where that metadata is stored.

The following PowerShell script creates a resource group, and then shows the resource group.

The following PowerShell script lists the resource groups under your subscription.

To get one resource group:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/manage-resource-groups-powershell.md

Delete resource groups

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"

Remove-AzResourceGroup -Name $resourceGroupName

Deploy resources to an existing resource group

Deploy a resource group and resources

Redeploy when deployment fails

Move to another resource group or subscription

Lock resource groups

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"

New-AzResourceLock -LockName LockGroup -LockLevel CanNotDelete -ResourceGroupName $resourceGroupName

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"

Get-AzResourceLock -ResourceGroupName $resourceGroupName

Tag resource groups

The following PowerShell script deletes a resource group:

For more information about how Azure Resource Manager orders the deletion of resources, see Azure Resource
Manager resource group deletion.

See Deploy resources to an existing resource group.

To validate a resource group deployment, see Test-AzResourceGroupDeployment.

You can create a resource group and deploy resources to the group by using a Resource Manager template. For
more information, see Create resource group and deploy resources.

This feature is also known as Rollback on error. For more information, see Redeploy when deployment fails.

You can move the resources in the group to another resource group. For more information, see Move resources to
new resource group or subscription.

Locking prevents other users in your organization from accidentally deleting or modifying critical resources, such
as Azure subscription, resource group, or resource.

The following script locks a resource group so the resource group can't be deleted.

The following script gets all locks for a resource group:

For more information, see Lock resources with Azure Resource Manager.

You can apply tags to resource groups and resources to logically organize your assets. For information, see Using
tags to organize your Azure resources.

https://docs.microsoft.com/powershell/module/Az.Resources/Test-AzResourceGroupDeployment?view=azps-1.3.0

 Export resource groups to templates

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"

Export-AzResourceGroup -ResourceGroupName $resourceGroupName

$resource = Get-AzResource `
 -ResourceGroupName <resource-group-name> `
 -ResourceName <resource-name> `
 -ResourceType <resource-type>
Export-AzResourceGroup `
 -ResourceGroupName <resource-group-name> `
 -Resource $resource.ResourceId

Export-AzResourceGroup `
 -ResourceGroupName <resource-group-name> `
 -Resource @($resource1.ResourceId, $resource2.ResourceId)

"parameters": {
 "serverfarms_demoHostPlan_name": {
 "defaultValue": null,
 "type": "String"
 },
 "sites_webSite3bwt23ktvdo36_name": {
 "defaultValue": null,
 "type": "String"
 }
}

After setting up your resource group, you can view a Resource Manager template for the resource group.
Exporting the template offers two benefits:

Automate future deployments of the solution because the template contains the complete infrastructure.
Learn template syntax by looking at the JavaScript Object Notation (JSON) that represents your solution.

To export all resources in a resource group, use the Export-AzResourceGroup cmdlet and provide the resource
group name.

It saves the template as a local file.

Instead of exporting all resources in the resource group, you can select which resources to export.

To export one resource, pass that resource ID.

To export more than one resource, pass the resource IDs in an array.

When exporting the template, you can specify whether parameters are used in the template. By default, parameters
for resource names are included but they don't have a default value. You must pass that parameter value during
deployment.

In the resource, the parameter is used for the name.

https://docs.microsoft.com/powershell/module/az.resources/Export-AzResourceGroup

"resources": [
 {
 "type": "Microsoft.Web/serverfarms",
 "apiVersion": "2016-09-01",
 "name": "[parameters('serverfarms_demoHostPlan_name')]",
 ...
 }
]

"parameters": {
 "serverfarms_demoHostPlan_name": {
 "defaultValue": "demoHostPlan",
 "type": "String"
 },
 "sites_webSite3bwt23ktvdo36_name": {
 "defaultValue": "webSite3bwt23ktvdo36",
 "type": "String"
 }
}

"resources": [
 {
 "type": "Microsoft.Web/serverfarms",
 "apiVersion": "2016-09-01",
 "name": "demoHostPlan",
 ...
 }
]

Manage access to resource groups

Next steps

If you use the -IncludeParameterDefaultValue parameter when exporting the template, the template parameter
includes a default value that is set to the current value. You can either use that default value or overwrite the default
value by passing in a different value.

If you use the -SkipResourceNameParameterization parameter when exporting the template, parameters for resource
names aren't included in the template. Instead, the resource name is set directly on the resource to its current value.
You can't customize the name during deployment.

For more information, see Single and multi-resource export to template in Azure portal .

Role-based access control (RBAC) is the way that you manage access to resources in Azure. For more information,
see Manage access using RBAC and Azure PowerShell.

To learn Azure Resource Manager, see Azure Resource Manager overview.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.
To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-powershell
https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Manage Azure resources by using the Azure portal
6/18/2019 • 3 minutes to read • Edit Online

NOTENOTE

Deploy resources to a resource group

Open resources

Learn how to use the Azure portal with Azure Resource Manager to manage your Azure resources. For managing
resource groups, see Manage Azure resource groups by using the Azure portal.

Other articles about managing resources:

Manage Azure resources by using Azure CLI
Manage Azure resources by using Azure PowerShell

This article provides steps for how to delete personal data from the device or service and can be used to support your
obligations under the GDPR. If you’re looking for general info about GDPR, see the GDPR section of the Service Trust portal.

After you have created a Resource Manager template, you can use the Azure portal to deploy your Azure
resources. For creating a template, see Quickstart: Create and deploy Azure Resource Manager templates by
using the Azure portal. For deploying a template using the portal, see Deploy resources with Resource Manager
templates and Azure portal.

Azure resources are organized by Azure services and by resource groups. The following procedures shows how
to open a storage account called mystorage0207. The virtual machine resides in a resource group called
mystorage0207rg.

To open a resource by the service type:

1. Sign in to the Azure portal.

2. In the left pane, select the Azure service. In this case, Storage accounts. If you don't see the service listed,
select All services, and then select the service type.

3. Select the resource you want to open.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/manage-resources-portal.md
https://portal.azure.com
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://portal.azure.com

Manage resources

Delete resources

A storage account looks like:

To open a resource by resource group:

1. Sign in to the Azure portal.
2. In the left pane, select Resource groups to list the resource within the group.
3. Select the resource you want to open.

When viewing a resource in the portal, you see the options for managing that particular resource.

The screenshot shows the management options for an Azure virtual machine. You can perform operations such as
starting, restarting, and stopping a virtual machine.

1. Open the resource in the portal. For the steps, see Open resources.

2. Select Delete. The following screenshot shows the management options for a virtual machine.

https://portal.azure.com

Move resources

Lock resources

Tag resources

3. Type the name of the resource to confirm the deletion, and then select Delete.

For more information about how Azure Resource Manager orders the deletion of resources, see Azure Resource
Manager resource group deletion.

1. Open the resource in the portal. For the steps, see Open resources.

2. Select Move. The following screenshot shows the management options for a storage account.

3. Select Move to another resource group or Moeve to another subscription depending on your needs.

For more information, see Move resources to new resource group or subscription.

Locking prevents other users in your organization from accidentally deleting or modifying critical resources, such
as Azure subscription, resource group, or resource.

1. Open the resource in the portal. For the steps, see Open resources.

2. Select Locks. The following screenshot shows the management options for a storage account.

3. Select Add, and then specify the lock properties.

For more information, see Lock resources with Azure Resource Manager.

Tagging helps organizing your resource group and resources logically.

1. Open the resource in the portal. For the steps, see Open resources.

2. Select Tags. The following screenshot shows the management options for a storage account.

Monitor resources

Manage access to resources

Next steps

3. Specify the tag properties, and then select Save.

For information, see Using tags to organize your Azure resources.

When you open a resource, the portal presents default graphs and tables for monitoring that resource type. The
following screenshot shows the graphs for a virtual machine:

You can select the pin icon on the upper right corner of the graphs to pin the graph to the dashboard. To learn
about working with dashboards, see Creating and sharing dashboards in the Azure portal.

Role-based access control (RBAC) is the way that you manage access to resources in Azure. For more
information, see Manage access using RBAC and the Azure portal.

To learn Azure Resource Manager, see Azure Resource Manager overview.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.

https://docs.microsoft.com/en-us/azure/azure-portal/azure-portal-dashboards
https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Manage Azure resources by using Azure CLI
6/18/2019 • 3 minutes to read • Edit Online

Deploy resources to an existing resource group

Deploy a resourceDeploy a resource

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the location (i.e. centralus):" &&
read location &&
echo "Enter the storage account name:" &&
read storageAccountName &&
az storage account create --resource-group $resourceGroupName --name $storageAccountName --location $location
--sku Standard_LRS --kind StorageV2 &&
az storage account show --resource-group $resourceGroupName --name $storageAccountName

Deploy a templateDeploy a template

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the location (i.e. centralus):" &&
read location &&
az group deployment create --resource-group $resourceGroupName --template-uri
"https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-account-
create/azuredeploy.json"

Deploy a resource group and resources

Deploy resources to multiple subscriptions or resource groups

Learn how to use Azure CLI with Azure Resource Manager to manage your Azure resources. For managing
resource groups, see Manage Azure resource groups by using Azure CLI.

Other articles about managing resources:

Manage Azure resources by using the Azure portal
Manage Azure resources by using Azure PowerShell

You can deploy Azure resources directly by using Azure PowerShell, or deploy a Resource Manager template to
create Azure resources.

The following script creates a storage account.

The following script creates deploy a Quickstart template to create a storage account. For more information, see
Quickstart: Create Azure Resource Manager templates by using Visual Studio Code.

For more information, see Deploy resources with Resource Manager templates and Azure CLI.

You can create a resource group and deploy resources to the group. For more information, see Create resource
group and deploy resources.

Typically, you deploy all the resources in your template to a single resource group. However, there are scenarios
where you want to deploy a set of resources together but place them in different resource groups or

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/manage-resources-cli.md

Delete resources

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the storage account name:" &&
read storageAccountName &&
az storage account delete --resource-group $resourceGroupName --name $storageAccountName

Move resources

echo "Enter the source Resource Group name:" &&
read srcResourceGroupName &&
echo "Enter the destination Resource Group name:" &&
read destResourceGroupName &&
echo "Enter the storage account name:" &&
read storageAccountName &&
storageAccount=$(az resource show --resource-group $srcResourceGroupName --name $storageAccountName --
resource-type Microsoft.Storage/storageAccounts --query id --output tsv) &&
az resource move --destination-group $destResourceGroupName --ids $storageAccount

Lock resources

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the storage account name:" &&
read storageAccountName &&
az lock create --name LockSite --lock-type CanNotDelete --resource-group $resourceGroupName --resource-name
$storageAccountName --resource-type Microsoft.Storage/storageAccounts

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the storage account name:" &&
read storageAccountName &&
az lock list --resource-group $resourceGroupName --resource-name $storageAccountName --resource-type
Microsoft.Storage/storageAccounts --parent ""

subscriptions. For more information, see Deploy Azure resources to multiple subscriptions or resource groups.

The following script shows how to delete a storage account.

For more information about how Azure Resource Manager orders the deletion of resources, see Azure Resource
Manager resource group deletion.

The following script shows how to remove a storage account from one resource group to another resource group.

For more information, see Move resources to new resource group or subscription.

Locking prevents other users in your organization from accidentally deleting or modifying critical resources, such
as Azure subscription, resource group, or resource.

The following script locks a storage account so the account can't be deleted.

The following script gets all locks for a storage account:

The following script deletes a lock of a storage account:

echo "Enter the Resource Group name:" &&
read resourceGroupName &&
echo "Enter the storage account name:" &&
read storageAccountName &&
lockId=$(az lock show --name LockSite --resource-group $resourceGroupName --resource-type
Microsoft.Storage/storageAccounts --resource-name $storageAccountName --output tsv --query id)&&
az lock delete --ids $lockId

Tag resources

Manage access to resources

Next steps

For more information, see Lock resources with Azure Resource Manager.

Tagging helps organizing your resource group and resources logically. For information, see Using tags to organize
your Azure resources.

Role-based access control (RBAC) is the way that you manage access to resources in Azure. For more information,
see Manage access using RBAC and Azure CLI.

To learn Azure Resource Manager, see Azure Resource Manager overview.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.
To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-cli
https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Manage Azure resources by using Azure PowerShell
6/18/2019 • 3 minutes to read • Edit Online

Deploy resources to an existing resource group

Deploy a resourceDeploy a resource

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"

Create the storage account.
$storageAccount = New-AzStorageAccount -ResourceGroupName $resourceGroupName `
 -Name $storageAccountName `
 -Location $location `
 -SkuName "Standard_LRS"

Retrieve the context.
$ctx = $storageAccount.Context

Deploy a templateDeploy a template

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$location = Read-Host -Prompt "Enter the location (i.e. centralus)"
$templateUri = "https://raw.githubusercontent.com/Azure/azure-quickstart-templates/master/101-storage-
account-create/azuredeploy.json"
New-AzResourceGroupDeployment -ResourceGroupName $resourceGroupName -TemplateUri $templateUri -Location
$location

Deploy a resource group and resources

Deploy resources to multiple subscriptions or resource groups

Learn how to use Azure PowerShell with Azure Resource Manager to manage your Azure resources. For
managing resource groups, see Manage Azure resource groups by using Azure PowerShell.

Other articles about managing resources:

Manage Azure resources by using the Azure portal
Manage Azure resources by using Azure CLI

You can deploy Azure resources directly by using Azure PowerShell, or deploy a Resource Manager template to
create Azure resources.

The following script creates a storage account.

The following script creates deploy a Quickstart template to create a storage account. For more information, see
Quickstart: Create Azure Resource Manager templates by using Visual Studio Code.

For more information, see Deploy resources with Resource Manager templates and Azure PowerShell.

You can create a resource group and deploy resources to the group. For more information, see Create resource
group and deploy resources.

Typically, you deploy all the resources in your template to a single resource group. However, there are scenarios

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/manage-resources-powershell.md

Delete resources

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"

Remove-AzStorageAccount -ResourceGroupName $resourceGroupName -AccountName $storageAccountName

Move resources

$srcResourceGroupName = Read-Host -Prompt "Enter the source Resource Group name"
$destResourceGroupName = Read-Host -Prompt "Enter the destination Resource Group name"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"

$storageAccount = Get-AzResource -ResourceGroupName $srcResourceGroupName -ResourceName $storageAccountName
Move-AzResource -DestinationResourceGroupName $destResourceGroupName -ResourceId $storageAccount.ResourceId

Lock resources

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"

New-AzResourceLock -LockName LockStorage -LockLevel CanNotDelete -ResourceGroupName $resourceGroupName -
ResourceName $storageAccountName -ResourceType Microsoft.Storage/storageAccounts

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"

Get-AzResourceLock -ResourceGroupName $resourceGroupName -ResourceName $storageAccountName -ResourceType
Microsoft.Storage/storageAccounts

where you want to deploy a set of resources together but place them in different resource groups or
subscriptions. For more information, see Deploy Azure resources to multiple subscriptions or resource groups.

The following script shows how to delete a storage account.

For more information about how Azure Resource Manager orders the deletion of resources, see Azure Resource
Manager resource group deletion.

The following script shows how to remove a storage account from one resource group to another resource group.

For more information, see Move resources to new resource group or subscription.

Locking prevents other users in your organization from accidentally deleting or modifying critical resources, such
as Azure subscription, resource group, or resource.

The following script locks a storage account so the account can't be deleted.

The following script gets all locks for a storage account:

The following script deletes a lock of a storage account:

$resourceGroupName = Read-Host -Prompt "Enter the Resource Group name"
$storageAccountName = Read-Host -Prompt "Enter the storage account name"

$lockId = (Get-AzResourceLock -ResourceGroupName $resourceGroupName -ResourceName $storageAccountName -
ResourceType Microsoft.Storage/storageAccounts).LockId
Remove-AzResourceLock -LockId $lockId

Tag resources

Manage access to resources

Next steps

For more information, see Lock resources with Azure Resource Manager.

Tagging helps organizing your resource group and resources logically. For information, see Using tags to organize
your Azure resources.

Role-based access control (RBAC) is the way that you manage access to resources in Azure. For more
information, see Manage access using RBAC and Azure PowerShell.

To learn Azure Resource Manager, see Azure Resource Manager overview.
To learn the Resource Manager template syntax, see Understand the structure and syntax of Azure Resource
Manager templates.
To learn how to develop templates, see the step-by-step tutorials.
To view the Azure Resource Manager template schemas, see template reference.

https://docs.microsoft.com/en-us/azure/role-based-access-control/overview
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-powershell
https://docs.microsoft.com/azure/azure-resource-manager/
https://docs.microsoft.com/azure/templates/

Lock resources to prevent unexpected changes
6/17/2019 • 6 minutes to read • Edit Online

NOTENOTE

How locks are applied

Who can create or delete locks

As an administrator, you may need to lock a subscription, resource group, or resource to prevent other users in
your organization from accidentally deleting or modifying critical resources. You can set the lock level to
CanNotDelete or ReadOnly. In the portal, the locks are called Delete and Read-only respectively.

CanNotDelete means authorized users can still read and modify a resource, but they can't delete the
resource.
ReadOnly means authorized users can read a resource, but they can't delete or update the resource. Applying
this lock is similar to restricting all authorized users to the permissions granted by the Reader role.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which
will continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install
Azure PowerShell.

When you apply a lock at a parent scope, all resources within that scope inherit the same lock. Even resources
you add later inherit the lock from the parent. The most restrictive lock in the inheritance takes precedence.

Unlike role-based access control, you use management locks to apply a restriction across all users and roles. To
learn about setting permissions for users and roles, see Azure Role-based Access Control.

Resource Manager locks apply only to operations that happen in the management plane, which consists of
operations sent to https://management.azure.com . The locks don't restrict how resources perform their own
functions. Resource changes are restricted, but resource operations aren't restricted. For example, a ReadOnly
lock on a SQL Database prevents you from deleting or modifying the database. It doesn't prevent you from
creating, updating, or deleting data in the database. Data transactions are permitted because those operations
aren't sent to https://management.azure.com .

Applying ReadOnly can lead to unexpected results because some operations that don't seem to modify the
resource actually require actions that are blocked by the lock. The ReadOnly lock can be applied to the resource
or to the resource group containing the resource. Some common examples of the operations that are blocked by
a ReadOnly lock are:

A ReadOnly lock on a storage account prevents all users from listing the keys. The list keys operation is
handled through a POST request because the returned keys are available for write operations.

A ReadOnly lock on an App Service resource prevents Visual Studio Server Explorer from displaying files
for the resource because that interaction requires write access.

A ReadOnly lock on a resource group that contains a virtual machine prevents all users from starting or
restarting the virtual machine. These operations require a POST request.

To create or delete management locks, you must have access to Microsoft.Authorization/* or

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-lock-resources.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal

Managed Applications and locks

Microsoft.Authorization/locks/* actions. Of the built-in roles, only Owner and User Access Administrator are
granted those actions.

Some Azure services, such as Azure Databricks, use managed applications to implement the service. In that case,
the service creates two resource groups. One resource group contains an overview of the service and isn't
locked. The other resource group contains the infrastructure for the service and is locked.

If you try to delete the infrastructure resource group, you get an error stating that the resource group is locked. If
you try to delete the lock for the infrastructure resource group, you get an error stating that the lock can't be
deleted because it's owned by a system application.

Instead, delete the service, which also deletes the infrastructure resource group.

For managed applications, select the service you deployed.

Notice the service includes a link for a Managed Resource Group. That resource group holds the infrastructure
and is locked. It can't be directly deleted.

To delete everything for the service, including the locked infrastructure resource group, select Delete for the
service.

https://docs.microsoft.com/en-us/azure/managed-applications/overview

Portal
1. In the Settings blade for the resource, resource group, or subscription that you wish to lock, select Locks.

2. To add a lock, select Add. If you want to create a lock at a parent level, select the parent. The currently
selected resource inherits the lock from the parent. For example, you could lock the resource group to
apply a lock to all its resources.

3. Give the lock a name and lock level. Optionally, you can add notes that describe the lock.

4. To delete the lock, select the ellipsis and Delete from the available options.

Template
When using a Resource Manager template to deploy a lock, you use different values for the name and type
depending on the scope of the lock.

When applying a lock to a resource, use the following formats:

name - {resourceName}/Microsoft.Authorization/{lockName}

type - {resourceProviderNamespace}/{resourceType}/providers/locks

When applying a lock to a resource group or subscription, use the following formats:

name - {lockName}

type - Microsoft.Authorization/locks

The following example shows a template that creates an app service plan, a web site, and a lock on the web site.
The resource type of the lock is the resource type of the resource to lock and /providers/locks. The name of the
lock is created by concatenating the resource name with /Microsoft.Authorization/ and the name of the lock.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "hostingPlanName": {
 "type": "string"
 }
 },
 "variables": {
 "siteName": "[concat('ExampleSite', uniqueString(resourceGroup().id))]"
 },
 "resources": [
 {
 "apiVersion": "2016-09-01",
 "type": "Microsoft.Web/serverfarms",
 "name": "[parameters('hostingPlanName')]",
 "location": "[resourceGroup().location]",
 "sku": {
 "tier": "Free",
 "name": "f1",
 "capacity": 0
 },
 "properties": {
 "targetWorkerCount": 1
 }
 },
 {
 "apiVersion": "2016-08-01",
 "name": "[variables('siteName')]",
 "type": "Microsoft.Web/sites",
 "location": "[resourceGroup().location]",
 "dependsOn": [
 "[resourceId('Microsoft.Web/serverfarms', parameters('hostingPlanName'))]"
],
 "properties": {
 "serverFarmId": "[parameters('hostingPlanName')]"
 }
 },
 {
 "type": "Microsoft.Web/sites/providers/locks",
 "apiVersion": "2016-09-01",
 "name": "[concat(variables('siteName'), '/Microsoft.Authorization/siteLock')]",
 "dependsOn": [
 "[resourceId('Microsoft.Web/sites', variables('siteName'))]"
],
 "properties": {
 "level": "CanNotDelete",
 "notes": "Site should not be deleted."
 }
 }
]
}

PowerShell

New-AzResourceLock -LockLevel CanNotDelete -LockName LockSite -ResourceName examplesite -ResourceType
Microsoft.Web/sites -ResourceGroupName exampleresourcegroup

For an example of setting a lock on a resource group, see Create a resource group and lock it.

You lock deployed resources with Azure PowerShell by using the New-AzResourceLock command.

To lock a resource, provide the name of the resource, its resource type, and its resource group name.

https://github.com/Azure/azure-quickstart-templates/tree/master/subscription-level-deployments/create-rg-lock-role-assignment
https://docs.microsoft.com/powershell/module/az.resources/new-azresourcelock

New-AzResourceLock -LockName LockGroup -LockLevel CanNotDelete -ResourceGroupName exampleresourcegroup

Get-AzResourceLock

Get-AzResourceLock -ResourceName examplesite -ResourceType Microsoft.Web/sites -ResourceGroupName
exampleresourcegroup

Get-AzResourceLock -ResourceGroupName exampleresourcegroup

$lockId = (Get-AzResourceLock -ResourceGroupName exampleresourcegroup -ResourceName examplesite -ResourceType
Microsoft.Web/sites).LockId
Remove-AzResourceLock -LockId $lockId

Azure CLI

az lock create --name LockSite --lock-type CanNotDelete --resource-group exampleresourcegroup --resource-name
examplesite --resource-type Microsoft.Web/sites

az lock create --name LockGroup --lock-type CanNotDelete --resource-group exampleresourcegroup

az lock list

az lock list --resource-group exampleresourcegroup --resource-name examplesite --namespace Microsoft.Web --
resource-type sites --parent ""

az lock list --resource-group exampleresourcegroup

To lock a resource group, provide the name of the resource group.

To get information about a lock, use Get-AzResourceLock. To get all the locks in your subscription, use:

To get all locks for a resource, use:

To get all locks for a resource group, use:

To delete a lock, use:

You lock deployed resources with Azure CLI by using the az lock create command.

To lock a resource, provide the name of the resource, its resource type, and its resource group name.

To lock a resource group, provide the name of the resource group.

To get information about a lock, use az lock list. To get all the locks in your subscription, use:

To get all locks for a resource, use:

To get all locks for a resource group, use:

https://docs.microsoft.com/powershell/module/az.resources/get-azresourcelock
https://docs.microsoft.com/cli/azure/lock#az-lock-create
https://docs.microsoft.com/cli/azure/lock#az-lock-list

lockid=$(az lock show --name LockSite --resource-group exampleresourcegroup --resource-type
Microsoft.Web/sites --resource-name examplesite --output tsv --query id)
az lock delete --ids $lockid

REST API

PUT https://management.azure.com/{scope}/providers/Microsoft.Authorization/locks/{lock-name}?api-version=
{api-version}

{
 "properties": {
 "level": "CanNotDelete",
 "notes": "Optional text notes."
 }
}

Next steps

To delete a lock, use:

You can lock deployed resources with the REST API for management locks. The REST API enables you to create
and delete locks, and retrieve information about existing locks.

To create a lock, run:

The scope could be a subscription, resource group, or resource. The lock-name is whatever you want to call the
lock. For api-version, use 2016-09-01.

In the request, include a JSON object that specifies the properties for the lock.

To learn about logically organizing your resources, see Using tags to organize your resources
You can apply restrictions and conventions across your subscription with customized policies. For more
information, see What is Azure Policy?.
For guidance on how enterprises can use Resource Manager to effectively manage subscriptions, see Azure
enterprise scaffold - prescriptive subscription governance.

https://docs.microsoft.com/rest/api/resources/managementlocks
https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/azure/architecture/cloud-adoption-guide/subscription-governance

Use Resource Manager authentication API to access
subscriptions
6/18/2019 • 14 minutes to read • Edit Online

What the web app does

If you're a software developer who needs to create an app that manages a customer's Azure resources, this article
shows you how to authenticate with the Azure Resource Manager APIs and gain access to resources in other
subscriptions.

Your app can access the Resource Manager APIs in couple of ways:

1. User + app access: for apps that access resources for a signed-in user. This approach works for apps, such as
web apps and command-line tools, that deal with only "interactive management" of Azure resources.

2. App-only access: for apps that run daemon services and scheduled jobs. The app's identity is granted direct
access to the resources. This approach works for apps that need long-term headless (unattended) access to
Azure.

This article provides step-by-step instructions to create an app that employs both these authorization methods. It
shows how to do each step with REST API or C#. The complete ASP.NET MVC application is available at
https://github.com/dushyantgill/VipSwapper/tree/master/CloudSense.

The web app:

1. Signs-in an Azure user.
2. Asks user to grant the web app access to Resource Manager.
3. Gets user + app access token for accessing Resource Manager.
4. Uses token (from step 3) to assign the app's service principal to a role in the subscription. This step gives the

app long-term access to the subscription.
5. Gets app-only access token.
6. Uses token (from step 5) to manage resources in the subscription through Resource Manager.

Here's the flow of the web application.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-api-authentication.md
https://github.com/dushyantgill/VipSwapper/tree/master/CloudSense

As a user, you provide the subscription ID for the subscription you want to use:

Select the account to use for logging in.

Provide your credentials.

Grant the app access to your Azure subscriptions:

Manage your connected subscriptions:

Register application

Optional configuration - certificate credentialOptional configuration - certificate credential

Get tenant ID from subscription ID

Before you start coding, register your web app with Azure Active Directory (AD). The app registration creates a
central identity for your app in Azure AD. It holds basic information about your application like OAuth Client ID,
Reply URLs, and credentials that your application uses to authenticate and access Azure Resource Manager APIs.
The app registration also records the various delegated permissions that your application needs when accessing
Microsoft APIs for the user.

To register your app, see Quickstart: Register an application with the Microsoft identity platform. Give your app a
name, and select Accounts in any organizational directory for the supported account types. For redirect URL,
provide a domain associated with your Azure Active Directory.

To sign in as the AD application, you need the application ID and a secret. The application ID is displayed in the
overview for the application. To create a secret and request API permissions, see Quickstart: Configure a client
application to access web APIs. Provide a new client secret. For API permissions, select Azure Service
Management. Select Delegated permissions and user_impersonation.

Azure AD also supports certificate credentials for applications: you create a self-signed cert, keep the private key,
and add the public key to your Azure AD application registration. For authentication, your application sends a small
payload to Azure AD signed using your private key, and Azure AD validates the signature using the public key that
you registered.

For information about creating an AD app with a certificate, see Use Azure PowerShell to create a service principal
to access resources or Use Azure CLI to create a service principal to access resources.

To request a token that can be used to call Resource Manager, your application needs to know the tenant ID of the
Azure AD tenant that hosts the Azure subscription. Most likely, your users know their subscription IDs, but they
might not know their tenant IDs for Azure Active Directory. To get the user's tenant ID, ask the user for the
subscription ID. Provide that subscription ID when sending a request about the subscription:

https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-register-app
https://docs.microsoft.com/en-us/azure/active-directory/develop/quickstart-configure-app-access-web-apis
https://docs.microsoft.com/en-us/azure/active-directory/develop/howto-authenticate-service-principal-powershell
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-group-authenticate-service-principal-cli

https://management.azure.com/subscriptions/{subscription-id}?api-version=2015-01-01

Get user + app access token

Auth request (OAuth 2.0)Auth request (OAuth 2.0)

https://login.microsoftonline.com/{tenant-id}/OAuth2/Authorize

https://login.microsoftonline.com/{tenant-id}/OAuth2/Authorize?client_id=a0448380-c346-4f9f-b897-
c18733de9394&response_mode=query&response_type=code&redirect_uri=http%3a%2f%2fwww.vipswapper.com%2fcloudsense%2
fAccount%2fSignIn&resource=https%3a%2f%2fgraph.windows.net%2f&domain_hint=live.com

code=AAABAAAAiL****FDMZBUwZ8eCAA&session_state=2d16bbce-d5d1-443f-acdf-75f6b0ce8850

Auth request (Open ID Connect)Auth request (Open ID Connect)

 https://login.microsoftonline.com/{tenant-id}/OAuth2/Authorize?client_id=a0448380-c346-4f9f-b897-
c18733de9394&response_mode=form_post&response_type=code+id_token&redirect_uri=http%3a%2f%2fwww.vipswapper.com%2
fcloudsense%2fAccount%2fSignIn&resource=https%3a%2f%2fgraph.windows.net%2f&scope=openid+profile&nonce=63567Dc4M
DAw&domain_hint=live.com&state=M_12tMyKaM8

The request fails because the user hasn't logged in yet, but you can retrieve the tenant ID from the response. In that
exception, retrieve the tenant ID from the response header value for WWW-Authenticate. You see this
implementation in the GetDirectoryForSubscription method.

Your application redirects the user to Azure AD with an OAuth 2.0 Authorize Request - to authenticate the user's
credentials and get back an authorization code. Your application uses the authorization code to get an access token
for Resource Manager. The ConnectSubscription method creates the authorization request.

This article shows the REST API requests to authenticate the user. You can also use helper libraries to authenticate
in your code. For more information about these libraries, see Azure Active Directory Authentication Libraries. For
guidance on integrating identity management in an application, see Azure Active Directory developer's guide.

Issue an Open ID Connect/OAuth2.0 Authorize Request to the Azure AD Authorize endpoint:

The query string parameters that are available for this request are described in the request an authorization code
article.

The following example shows how to request OAuth2.0 authorization:

Azure AD authenticates the user, and, if necessary, asks the user to grant permission to the app. It returns the
authorization code to the Reply URL of your application. Depending on the requested response_mode, Azure AD
either sends back the data in query string or as post data.

If you not only wish to access Azure Resource Manager for the user, but also allow the user to sign in to your
application using their Azure AD account, issue an Open ID Connect Authorize Request. With Open ID Connect,
your application also receives an id_token from Azure AD that your app can use to sign in the user.

The query string parameters that are available for this request are described in the Send the sign-in request article.

An example Open ID Connect request is:

Azure AD authenticates the user, and, if necessary, asks the user to grant permission to the app. It returns the
authorization code to the Reply URL of your application. Depending on the requested response_mode, Azure AD
either sends back the data in query string or as post data.

https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L20
https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/Controllers/HomeController.cs#L42
https://docs.microsoft.com/en-us/azure/active-directory/active-directory-authentication-libraries
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-overview
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-oauth-code
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-openid-connect-code

code=AAABAAAAiL*****I4rDWd7zXsH6WUjlkIEQxIAA&id_token=eyJ0eXAiOiJKV1Q*****T3GrzzSFxg&state=M_12tMyKaM8&session_
state=2d16bbce-d5d1-443f-acdf-75f6b0ce8850

Token request (OAuth2.0 Code Grant Flow)Token request (OAuth2.0 Code Grant Flow)

https://login.microsoftonline.com/{tenant-id}/OAuth2/Token

POST https://login.microsoftonline.com/7fe877e6-a150-4992-bbfe-f517e304dfa0/oauth2/token HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: 1012

grant_type=authorization_code&code=AAABAAAAiL9Kn2Z*****L1nVMH3Z5ESiAA&redirect_uri=http%3A%2F%2Flocalhost%3A620
80%2FAccount%2FSignIn&client_id=a0448380-c346-4f9f-b897-c18733de9394&client_secret=olna84E8*****goScOg%3D

POST https://login.microsoftonline.com/7fe877e6-a150-4992-bbfe-f517e304dfa0/oauth2/token HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: 1012

grant_type=authorization_code&code=AAABAAAAiL9Kn2Z*****L1nVMH3Z5ESiAA&redirect_uri=http%3A%2F%2Flocalhost%3A620
80%2FAccount%2FSignIn&client_id=a0448380-c346-4f9f-b897-
c18733de9394&client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-
bearer&client_assertion=eyJhbG*****Y9cYo8nEjMyA

HTTP/1.1 200 OK

{"token_type":"Bearer","expires_in":"3599","expires_on":"1432039858","not_before":"1432035958","resource":"http
s://management.core.windows.net/","access_token":"eyJ0eXAiOiJKV1Q****M7Cw6JWtfY2lGc5A","refresh_token":"AAABAAA
AiL9Kn2Z****55j-sjnyYgAA","scope":"user_impersonation","id_token":"eyJ0eXAiOiJKV*****-drP1J3P-
HnHi9Rr46kGZnukEBH4dsg"}

Handle code grant token responseHandle code grant token response

An example Open ID Connect response is:

Now that your application has received the authorization code from Azure AD, it's time to get the access token for
Azure Resource Manager. Post an OAuth2.0 Code Grant Token Request to the Azure AD Token endpoint:

The query string parameters that are available for this request are described in the use the authorization code
article.

The following example shows a request for code grant token with password credential:

When working with certificate credentials, create a JSON Web Token (JWT) and sign (RSA SHA256) using the
private key of your application's certificate credential. Building this token is shown in the [client credential flow]
(../active-directory/develop/v1-oauth2-client-creds-grant-flow.md#second-case-access-token-request-with a-
certificate). For reference, see the Active Directory Auth Library (.NET) code to sign Client Assertion JWT tokens.

See the Open ID Connect spec for details on client authentication.

The following example shows a request for code grant token with certificate credential:

An example response for code grant token:

A successful token response contains the (user + app) access token for Azure Resource Manager. Your application
uses this access token to access Resource Manager for the user. The lifetime of access tokens issued by Azure AD is
one hour. It's unlikely that your web application needs to renew the (user + app) access token. If it needs to renew

https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-oauth-code
https://github.com/AzureAD/azure-activedirectory-library-for-dotnet/blob/dev/src/ADAL.PCL.Desktop/CryptographyHelper.cs
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

https://login.microsoftonline.com/{tenant-id}/OAuth2/Token

POST https://login.microsoftonline.com/7fe877e6-a150-4992-bbfe-f517e304dfa0/oauth2/token HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Content-Length: 1012

grant_type=refresh_token&refresh_token=AAABAAAAiL9Kn2Z****55j-sjnyYgAA&client_id=a0448380-c346-4f9f-b897-
c18733de9394&client_secret=olna84E8*****goScOg%3D

Check if user can assign access to subscription

GET https://management.azure.com/subscriptions/83cfe939-2402-4581-b761-
4f59b0a041e4/providers/microsoft.authorization/permissions?api-version=2015-07-01 HTTP/1.1

Authorization: Bearer eyJ0eXAiOiJKV1QiLC***lwO1mM7Cw6JWtfY2lGc5A

HTTP/1.1 200 OK

{"value":[{"actions":["*"],"notActions":
["Microsoft.Authorization/*/Write","Microsoft.Authorization/*/Delete"]},{"actions":["*/read"],"notActions":
[]}]}

the access token, use the refresh token that your application receives in the token response. Post an OAuth2.0
Token Request to the Azure AD Token endpoint:

The parameters to use with the refresh request are described in refreshing the access token.

The following example shows how to use the refresh token:

Although refresh tokens can be used to get new access tokens for Azure Resource Manager, they aren't suitable for
offline access by your application. The refresh tokens lifetime is limited, and refresh tokens are bound to the user. If
the user leaves the organization, the application using the refresh token loses access. This approach isn't suitable
for applications that are used by teams to manage their Azure resources.

Your application now has a token to access Azure Resource Manager for the user. The next step is to connect your
app to the subscription. After connecting, your app can manage those subscriptions even when the user isn't
present (long-term offline access).

For each subscription to connect, call the Resource Manager list permissions API to determine whether the user
has access management rights for the subscription.

The UserCanManagerAccessForSubscription method of the ASP.NET MVC sample app implements this call.

The following example shows how to request a user's permissions on a subscription. 83cfe939-2402-4581-b761-
4f59b0a041e4 is the ID of the subscription.

An example of the response to get user's permissions on subscription is:

The permissions API returns multiple permissions. Each permission consists of allowed actions (actions) and
disallowed actions (notactions). If an action is present in the allowed actions of any permission and not present in
the disallowed actions of that permission, the user is allowed to do that action.
microsoft.authorization/roleassignments/write is the action that grants access management rights. Your
application must parse the permissions result to look for a regex match on this action string in the actions and
notactions of each permission.

https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-protocols-oauth-code
https://docs.microsoft.com/rest/api/authorization/permissions
https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L44

Get app-only access token

Get app-only access token for Azure AD Graph APIGet app-only access token for Azure AD Graph API

POST https://login.microsoftonline.com/62e173e9-301e-423e-bcd4-29121ec1aa24/oauth2/token HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Content-Length: 187</pre>
<pre>grant_type=client_credentials&client_id=a0448380-c346-4f9f-b897-
c18733de9394&resource=https%3A%2F%2Fgraph.windows.net%2F &client_secret=olna8C*****Og%3D

HTTP/1.1 200 OK

{"token_type":"Bearer","expires_in":"3599","expires_on":"1432039862","not_before":"1432035962","resource":"http
s://graph.windows.net/","access_token":"eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsIng1dCI6Ik1uQ19WWmNBVGZNNXBPWWlKSE1
iYTlnb0VLWSIsImtpZCI6Ik1uQ19WWmNBVGZNNXBPWWlKSE1iYTlnb0VLWSJ9.eyJhdWQiOiJodHRwczovL2dyYXBoLndpbmRv****G5gUTV-
kKorR-pg"}

Get ObjectId of application service principal in user Azure ADGet ObjectId of application service principal in user Azure AD

Now, you know if the user can assign access to the Azure subscription. The next steps are:

1. Assign the appropriate RBAC role to your application's identity on the subscription.
2. Validate the access assignment by querying for the application's permission on the subscription or by accessing

Resource Manager using app-only token.
3. Record the connection in your applications "connected subscriptions" data structure - persisting the ID of the

subscription.

Let's look closer at the first step. To assign the appropriate RBAC role to the application's identity, you must
determine:

The object ID of your application's identity in the user's Azure Active Directory
The identifier of the RBAC role that your application requires on the subscription

When your application authenticates a user from an Azure AD, it creates a service principal object for your
application in that Azure AD. Azure allows RBAC roles to be assigned to service principals to grant direct access to
corresponding applications on Azure resources. This action is exactly what you wish to do. Query the Azure AD
Graph API to determine the identifier of the service principal of your application in the signed-in user's Azure AD.

You only have an access token for Azure Resource Manager - you need a new access token to call the Azure AD
Graph API. Every application in Azure AD has permission to query its own service principal object, so an app-only
access token is sufficient.

To authenticate your app and get a token to Azure AD Graph API, issue a Client Credential Grant OAuth2.0 flow
token request to Azure AD token endpoint
(https://login.microsoftonline.com/{directory_domain_name}/OAuth2/Token).

The GetObjectIdOfServicePrincipalInOrganization method of the ASP.net MVC sample application gets an app-
only access token for Graph API using the Active Directory Authentication Library for .NET.

The query string parameters that are available for this request are described in the Request an Access Token article.

An example request for client credential grant token:

An example response for client credential grant token:

Now, use the app-only access token to query the Azure AD Graph Service Principals API to determine the Object
ID of the application's service principal in the directory.

The GetObjectIdOfServicePrincipalInOrganization method of the ASP.net MVC sample application implements

https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureADGraphAPIUtil.cs
https://docs.microsoft.com/en-us/azure/active-directory/develop/v1-oauth2-client-creds-grant-flow
https://docs.microsoft.com/previous-versions/azure/ad/graph/api/entity-and-complex-type-reference#serviceprincipal-entity
https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureADGraphAPIUtil.cs#

GET https://graph.windows.net/62e173e9-301e-423e-bcd4-29121ec1aa24/servicePrincipals?api-
version=1.5&$filter=appId%20eq%20'a0448380-c346-4f9f-b897-c18733de9394' HTTP/1.1

Authorization: Bearer eyJ0eXAiOiJK*****-kKorR-pg

HTTP/1.1 200 OK

{"odata.metadata":"https://graph.windows.net/62e173e9-301e-423e-bcd4-
29121ec1aa24/$metadata#directoryObjects/Microsoft.DirectoryServices.ServicePrincipal","value":
[{"odata.type":"Microsoft.DirectoryServices.ServicePrincipal","objectType":"ServicePrincipal","objectId":"9b501
8d4-6951-42ed-8a92-
f11ec283ccec","deletionTimestamp":null,"accountEnabled":true,"appDisplayName":"CloudSense","appId":"a0448380-
c346-4f9f-b897-c18733de9394","appOwnerTenantId":"62e173e9-301e-423e-bcd4-
29121ec1aa24","appRoleAssignmentRequired":false,"appRoles":
[],"displayName":"CloudSense","errorUrl":null,"homepage":"http://www.vipswapper.com/cloudsense","keyCredentials
":[],"logoutUrl":null,"oauth2Permissions":[{"adminConsentDescription":"Allow the application to access
CloudSense on behalf of the signed-in user.","adminConsentDisplayName":"Access CloudSense","id":"b7b7338e-683a-
4796-b95e-60c10380de1c","isEnabled":true,"type":"User","userConsentDescription":"Allow the application to
access CloudSense on your behalf.","userConsentDisplayName":"Access
CloudSense","value":"user_impersonation"}],"passwordCredentials":
[],"preferredTokenSigningKeyThumbprint":null,"publisherName":"vipswapper"quot;,"replyUrls":
["http://www.vipswapper.com/cloudsense","http://www.vipswapper.com","http://vipswapper.com","http://vipswapper.
azurewebsites.net","http://localhost:62080"],"samlMetadataUrl":null,"servicePrincipalNames":
["http://www.vipswapper.com/cloudsense","a0448380-c346-4f9f-b897-c18733de9394"],"tags":
["WindowsAzureActiveDirectoryIntegratedApp"]}]}

Get Azure RBAC role identifierGet Azure RBAC role identifier

this call.

The following example shows how to request an application's service principal. a0448380-c346-4f9f-b897-
c18733de9394 is the client ID of the application.

The following example shows a response to the request for an application's service principal

To assign the appropriate RBAC role to your service principal, you must determine the identifier of the Azure
RBAC role.

The right RBAC role for your application:

If your application only monitors the subscription, without making any changes, it requires only reader
permissions on the subscription. Assign the Reader role.
If your application manages Azure the subscription, creating/modifying/deleting entities, it requires one of the
contributor permissions.

To manage a particular type of resource, assign the resource-specific contributor roles (Virtual Machine
Contributor, Virtual Network Contributor, Storage Account Contributor, etc.)
To manage any resource type, assign the Contributor role.

The role assignment for your application is visible to users, so select the least-required privilege.

Call the Resource Manager role definition API to list all Azure RBAC roles and then iterate over the result to find
the role definition by name.

The GetRoleId method of the ASP.net MVC sample app implements this call.

The following request example shows how to get Azure RBAC role identifier. 09cbd307-aa71-4aca-b346-
5f253e6e3ebb is the ID of the subscription.

https://docs.microsoft.com/rest/api/authorization/roledefinitions
https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L246

GET https://management.azure.com/subscriptions/09cbd307-aa71-4aca-b346-
5f253e6e3ebb/providers/Microsoft.Authorization/roleDefinitions?api-version=2015-07-01 HTTP/1.1

Authorization: Bearer eyJ0eXAiOiJKV*****fY2lGc5

HTTP/1.1 200 OK

{"value":[{"properties":{"roleName":"API Management Service
Contributor","type":"BuiltInRole","description":"Lets you manage API Management services, but not access to
them.","scope":"/","permissions":[{"actions":
["Microsoft.ApiManagement/Services/*","Microsoft.Authorization/*/read","Microsoft.Resources/subscriptions/resou
rces/read","Microsoft.Resources/subscriptions/resourceGroups/read","Microsoft.Resources/subscriptions/resourceG
roups/resources/read","Microsoft.Resources/subscriptions/resourceGroups/deployments/*","Microsoft.Insights/aler
tRules/*","Microsoft.Support/*"],"notActions":[]}]},"id":"/subscriptions/09cbd307-aa71-4aca-b346-
5f253e6e3ebb/providers/Microsoft.Authorization/roleDefinitions/312a565d-c81f-4fd8-895a-
4e21e48d571c","type":"Microsoft.Authorization/roleDefinitions","name":"312a565d-c81f-4fd8-895a-4e21e48d571c"},
{"properties":{"roleName":"Application Insights Component Contributor","type":"BuiltInRole","description":"Lets
you manage Application Insights components, but not access to them.","scope":"/","permissions":[{"actions":
["Microsoft.Insights/components/*","Microsoft.Insights/webtests/*","Microsoft.Authorization/*/read","Microsoft.
Resources/subscriptions/resources/read","Microsoft.Resources/subscriptions/resourceGroups/read","Microsoft.Reso
urces/subscriptions/resourceGroups/resources/read","Microsoft.Resources/subscriptions/resourceGroups/deployment
s/*","Microsoft.Insights/alertRules/*","Microsoft.Support/*"],"notActions":[]}]},"id":"/subscriptions/09cbd307-
aa71-4aca-b346-5f253e6e3ebb/providers/Microsoft.Authorization/roleDefinitions/ae349356-3a1b-4a5e-921d-
050484c6347e","type":"Microsoft.Authorization/roleDefinitions","name":"ae349356-3a1b-4a5e-921d-050484c6347e"}]}

/subscriptions/{subscription_id}/providers/Microsoft.Authorization/roleDefinitions/{well-known-role-guid}

ROLE GUID

Reader acdd72a7-3385-48ef-bd42-f606fba81ae7

Contributor b24988ac-6180-42a0-ab88-20f7382dd24c

Virtual Machine Contributor d73bb868-a0df-4d4d-bd69-98a00b01fccb

Virtual Network Contributor b34d265f-36f7-4a0d-a4d4-e158ca92e90f

Storage Account Contributor 86e8f5dc-a6e9-4c67-9d15-de283e8eac25

Website Contributor de139f84-1756-47ae-9be6-808fbbe84772

Web Plan Contributor 2cc479cb-7b4d-49a8-b449-8c00fd0f0a4b

SQL Server Contributor 6d8ee4ec-f05a-4a1d-8b00-a9b17e38b437

SQL DB Contributor 9b7fa17d-e63e-47b0-bb0a-15c516ac86ec

Assign RBAC role to applicationAssign RBAC role to application

The response is in the following format:

You don't need to call this API on an ongoing basis. Once you've determined the well-known GUID of the role
definition, you can construct the role definition ID as:

Here are the identifiers of commonly used built-in roles:

You have everything you need to assign the appropriate RBAC role to your service principal by using the Resource

https://docs.microsoft.com/rest/api/authorization/roleassignments

PUT https://management.azure.com/subscriptions/09cbd307-aa71-4aca-b346-
5f253e6e3ebb/providers/microsoft.authorization/roleassignments/4f87261d-2816-465d-8311-70a27558df4c?api-
version=2015-07-01 HTTP/1.1

Authorization: Bearer eyJ0eXAiOiJKV1QiL*****FlwO1mM7Cw6JWtfY2lGc5
Content-Type: application/json
Content-Length: 230

{"properties": {"roleDefinitionId":"/subscriptions/09cbd307-aa71-4aca-b346-
5f253e6e3ebb/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-
20f7382dd24c","principalId":"c3097b31-7309-4c59-b4e3-770f8406bad2"}}

GUID DESCRIPTION

09cbd307-aa71-4aca-b346-5f253e6e3ebb the ID of the subscription

c3097b31-7309-4c59-b4e3-770f8406bad2 the object ID of the service principal of the application

b24988ac-6180-42a0-ab88-20f7382dd24c the ID of the contributor role

4f87261d-2816-465d-8311-70a27558df4c a new guid created for the new role assignment

HTTP/1.1 201 Created

{"properties":{"roleDefinitionId":"/subscriptions/09cbd307-aa71-4aca-b346-
5f253e6e3ebb/providers/Microsoft.Authorization/roleDefinitions/b24988ac-6180-42a0-ab88-
20f7382dd24c","principalId":"c3097b31-7309-4c59-b4e3-770f8406bad2","scope":"/subscriptions/09cbd307-aa71-4aca-
b346-5f253e6e3ebb"},"id":"/subscriptions/09cbd307-aa71-4aca-b346-
5f253e6e3ebb/providers/Microsoft.Authorization/roleAssignments/4f87261d-2816-465d-8311-
70a27558df4c","type":"Microsoft.Authorization/roleAssignments","name":"4f87261d-2816-465d-8311-70a27558df4c"}

Get app-only access token for Azure Resource ManagerGet app-only access token for Azure Resource Manager

https://management.core.windows.net/

Get Application's Permissions on SubscriptionGet Application's Permissions on Subscription

Manager create role assignment API.

The GrantRoleToServicePrincipalOnSubscription method of the ASP.net MVC sample app implements this call.

An example request to assign RBAC role to application:

In the request, the following values are used:

The response is in the following format:

To validate that app can access the subscription, do a test task on the subscription using an app-only token.

To get an app-only access token, follow instructions from section Get app-only access token for Azure AD Graph
API, with a different value for the resource parameter :

The ServicePrincipalHasReadAccessToSubscription method of the ASP.NET MVC sample application gets an app-
only access token for Azure Resource Manager using the Active Directory Authentication Library for .net.

To check that your application can access an Azure subscription, you may also call the Resource Manager
Permissions API. This approach is similar to how you determined whether the user has Access Management rights
for the subscription. However, this time, call the permissions API with the app-only access token that you received
in the previous step.

https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L170
https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L110
https://docs.microsoft.com/rest/api/authorization/permissions

Manage connected subscriptions

The ServicePrincipalHasReadAccessToSubscription method of the ASP.NET MVC sample app implements this call.

When the appropriate RBAC role is assigned to your application's service principal on the subscription, your
application can keep monitoring/managing it using app-only access tokens for Azure Resource Manager.

If a subscription owner removes your application's role assignment using the portal or command-line tools, your
application is no longer able to access that subscription. In that case, you should notify the user that the connection
with the subscription was severed from outside the application and give them an option to "repair" the connection.
"Repair" would re-create the role assignment that was deleted offline.

Just as you enabled the user to connect subscriptions to your application, you must allow the user to disconnect
subscriptions too. From an access management point of view, disconnect means removing the role assignment that
the application's service principal has on the subscription. Optionally, any state in the application for the
subscription might be removed too. Only users with access management permission on the subscription can
disconnect the subscription.

The RevokeRoleFromServicePrincipalOnSubscription method of the ASP.net MVC sample app implements this
call.

That's it - users can now easily connect and manage their Azure subscriptions with your application.

https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L110
https://github.com/dushyantgill/VipSwapper/blob/master/CloudSense/CloudSense/AzureResourceManagerUtil.cs#L200

Programmatically create Azure Enterprise
subscriptions (preview)
7/31/2019 • 7 minutes to read • Edit Online

NOTENOTE

Prerequisites

Find accounts you have access to

As an Azure customer on Enterprise Agreement (EA), you can create EA (MS-AZR-0017P) and EA Dev/Test (MS-
AZR-0148P) subscriptions programmatically. In this article, you learn how to create subscriptions
programmatically using Azure Resource Manager.

When you create an Azure subscription from this API, that subscription is governed by the agreement under which
you obtained Microsoft Azure services from Microsoft or an authorized reseller. To learn more, see Microsoft
Azure Legal Information.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

You must have an Owner role on the Enrollment Account you wish to create subscriptions under. There are two
ways to get these roles:

Your Enrollment Administrator can make you an Account Owner (sign in required) which makes you an
Owner of the Enrollment Account. Follow the instructions in the invitation email you receive to manually
create an initial subscription. Confirm account ownership and manually create an initial EA subscription
before proceeding to the next step. Just adding the account to the enrollment isn't enough.

An existing Owner of the Enrollment Account can grant you access. Similarly, if you want to use a service
principal to create the EA subscription, you must grant that service principal the ability to create
subscriptions.

After you're added to an Azure EA enrollment as an Account Owner, Azure uses the account-to-enrollment
relationship to determine where to bill the subscription charges. All subscriptions created under the account are
billed towards the EA enrollment that the account is in. To create subscriptions, you must pass in values about the
enrollment account and the user principals to own the subscription.

To run the following commands, you must be logged in to the Account Owner's home directory, which is the
directory that subscriptions are created in by default.

REST
PowerShell
Azure CLI

Request to list all enrollment accounts you have access to:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/programmatically-create-subscription.md
https://azure.microsoft.com/pricing/enterprise-agreement/
https://azure.microsoft.com/support/legal/
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://ea.azure.com/helpdocs/addNewAccount

GET https://management.azure.com/providers/Microsoft.Billing/enrollmentAccounts?api-version=2018-03-01-preview

{
 "value": [
 {
 "id": "/providers/Microsoft.Billing/enrollmentAccounts/747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "name": "747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "type": "Microsoft.Billing/enrollmentAccounts",
 "properties": {
 "principalName": "SignUpEngineering@contoso.com"
 }
 },
 {
 "id": "/providers/Microsoft.Billing/enrollmentAccounts/4cd2fcf6-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "name": "4cd2fcf6-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "type": "Microsoft.Billing/enrollmentAccounts",
 "properties": {
 "principalName": "BillingPlatformTeam@contoso.com"
 }
 }
]
}

Create subscriptions under a specific enrollment account

Azure responds with a list of all enrollment accounts you have access to:

Use the principalName property to identify the account that you want subscriptions to be billed to. Copy the name

of that account. For example, if you wanted to create subscriptions under the SignUpEngineering@contoso.com
enrollment account, you'd copy 747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx . This is the object ID of the enrollment
account. Paste this value somewhere so that you can use it in the next step as enrollmentAccountObjectId .

The following example creates a subscription named Dev Team Subscription in the enrollment account selected in
the previous step. The subscription offer is MS-AZR-0017P (regular Microsoft Enterprise Agreement). It also
optionally adds two users as RBAC Owners for the subscription.

REST
PowerShell
Azure CLI

Make the following request, replacing <enrollmentAccountObjectId> with the name copied from the first step (
747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx). If you'd like to specify owners, learn how to get user object IDs.

POST
https://management.azure.com/providers/Microsoft.Billing/enrollmentAccounts/<enrollmentAccountObjectId>/provid
ers/Microsoft.Subscription/createSubscription?api-version=2018-03-01-preview

{
 "displayName": "Dev Team Subscription",
 "offerType": "MS-AZR-0017P",
 "owners": [
 {
 "objectId": "<userObjectId>"
 },
 {
 "objectId": "<servicePrincipalObjectId>"
 }
]
}

ELEMENT NAME REQUIRED TYPE DESCRIPTION

displayName No String The display name of the
subscription. If not specified,
it's set to the name of the
offer, like "Microsoft Azure
Enterprise."

offerType Yes String The offer of the subscription.
The two options for EA are
MS-AZR-0017P (production
use) and MS-AZR-0148P
(dev/test, needs to be
turned on using the EA
portal).

owners No String The Object ID of any user
that you'd like to add as an
RBAC Owner on the
subscription when it's
created.

Limitations of Azure Enterprise subscription creation API

Next steps

In the response, you get back a subscriptionOperation object for monitoring. When the subscription creation is
finished, the subscriptionOperation object would return a subscriptionLink object, which has the subscription ID.

Only Azure Enterprise subscriptions can be created using this API.
There's a limit of 200 subscriptions per enrollment account. After that, subscriptions can only be created
through the Account Center. If you want to create more subscriptions through the API, create another
enrollment account.
Users who aren't Account Owners, but were added to an enrollment account via RBAC, can't create
subscriptions using the Account Center.
You can't select the tenant for the subscription to be created in. The subscription is always created in the home
tenant of the Account Owner. To move the subscription to a different tenant, see change subscription tenant.

For an example on creating subscriptions using .NET, see sample code on GitHub.
Now that you've created a subscription, you can grant that ability to other users and service principals. For

https://azure.microsoft.com/pricing/enterprise-agreement/
https://azure.microsoft.com/offers/ms-azr-0148p/
https://ea.azure.com/helpdocs/DevOrTestOffer
https://docs.microsoft.com/en-us/azure/active-directory/fundamentals/active-directory-how-subscriptions-associated-directory
https://github.com/Azure-Samples/create-azure-subscription-dotnet-core

more information, see Grant access to create Azure Enterprise subscriptions (preview).
To learn more about managing large numbers of subscriptions using management groups, see Organize your
resources with Azure management groups

https://docs.microsoft.com/en-us/azure/azure-resource-manager/management-groups-overview

Grant access to create Azure Enterprise subscriptions
(preview)
6/18/2019 • 5 minutes to read • Edit Online

NOTENOTE

Grant access

As an Azure customer on Enterprise Agreement (EA), you can give another user or service principal permission to
create subscriptions billed to your account. In this article, you learn how to use Role-Based Access Control (RBAC)
to share the ability to create subscriptions, and how to audit subscription creations. You must have the Owner role
on the account you wish to share.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To create subscriptions under an enrollment account, users must have the RBAC Owner role on that account. You
can grant a user or a group of users the RBAC Owner role on an enrollment account by following these steps:

GET https://management.azure.com/providers/Microsoft.Billing/enrollmentAccounts?api-version=2018-03-01-
preview

1. Get the object ID of the enrollment account you want to grant access to

To grant others the RBAC Owner role on an enrollment account, you must either be the Account Owner or
an RBAC Owner of the account.

REST
PowerShell
Azure CLI

Request to list all enrollment accounts you have access to:

Azure responds with a list of all enrollment accounts you have access to:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/grant-access-to-create-subscription.md
https://azure.microsoft.com/pricing/enterprise-agreement/
https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-configure
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/azure/role-based-access-control/built-in-roles

{
 "value": [
 {
 "id": "/providers/Microsoft.Billing/enrollmentAccounts/747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "name": "747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "type": "Microsoft.Billing/enrollmentAccounts",
 "properties": {
 "principalName": "SignUpEngineering@contoso.com"
 }
 },
 {
 "id": "/providers/Microsoft.Billing/enrollmentAccounts/4cd2fcf6-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "name": "4cd2fcf6-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "type": "Microsoft.Billing/enrollmentAccounts",
 "properties": {
 "principalName": "BillingPlatformTeam@contoso.com"
 }
 }
]
}

Use the principalName property to identify the account that you want to grant RBAC Owner access to.
Copy the name of that account. For example, if you wanted to grant RBAC Owner access to the
SignUpEngineering@contoso.com enrollment account, you'd copy 747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx .
This is the object ID of the enrollment account. Paste this value somewhere so that you can use it in the next
step as enrollmentAccountObjectId .

Use the principalName property to identify the account that you want to grant RBAC Owner access to.
Copy the name of that account. For example, if you wanted to grant RBAC Owner access to the
SignUpEngineering@contoso.com enrollment account, you'd copy 747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx .
This is the object ID of the enrollment account. Paste this value somewhere so that you can use it in the next
step as enrollmentAccountObjectId .

 2. Get object ID of the user or group you want to give the RBAC Owner role to

a. In the Azure portal, search on Azure Active Directory.
b. If you want to grant a user access, click on Users in the menu on the left. If you want to grant access to a

group, click Groups.
c. Select the User or Group you want to give the RBAC Owner role to.
d. If you selected a User, you'll find the object ID in the Profile page. If you selected a Group, the object ID

will be in the Overview page. Copy the ObjectID by clicking the icon to the right of the text box. Paste
this somewhere so that you can use it in the next step as userObjectId .

3. Grant the user or group the RBAC Owner role on the enrollment account

Using the values you collected in the first two steps, grant the user or group the RBAC Owner role on the
enrollment account.

REST
PowerShell
Azure CLI

Run the following command, replacing <enrollmentAccountObjectId> with the name you copied in the first
step (747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx). Replace <userObjectId> with the object ID you copied from
the second step.

Audit who created subscriptions using activity logs

Next steps

PUT
https://management.azure.com/providers/Microsoft.Billing/enrollmentAccounts/<enrollmentAccountObjectId>
/providers/Microsoft.Authorization/roleAssignments/<roleAssignmentGuid>?api-version=2015-07-01

{
 "properties": {
 "roleDefinitionId":
"/providers/Microsoft.Billing/enrollmentAccounts/providers/Microsoft.Authorization/roleDefinitions/<own
erRoleDefinitionId>",
 "principalId": "<userObjectId>"
 }
}

{
 "properties": {
 "roleDefinitionId":
"/providers/Microsoft.Billing/enrollmentAccounts/providers/Microsoft.Authorization/roleDefinitions/<own
erRoleDefinitionId>",
 "principalId": "<userObjectId>",
 "scope": "/providers/Microsoft.Billing/enrollmentAccounts/747ddfe5-xxxx-xxxx-xxxx-xxxxxxxxxxxx",
 "createdOn": "2018-03-05T08:36:26.4014813Z",
 "updatedOn": "2018-03-05T08:36:26.4014813Z",
 "createdBy": "<assignerObjectId>",
 "updatedBy": "<assignerObjectId>"
 },
 "id":
"/providers/Microsoft.Billing/enrollmentAccounts/providers/Microsoft.Authorization/roleDefinitions/<own
erRoleDefinitionId>",
 "type": "Microsoft.Authorization/roleAssignments",
 "name": "<roleAssignmentGuid>"
}

When the Owner role is successfully assigned at the enrollment account scope, Azure responds with
information of the role assignment:

To track the subscriptions created via this API, use the Tenant Activity Log API. It's currently not possible to use
PowerShell, CLI, or Azure portal to track subscription creation.

GET "/providers/Microsoft.Insights/eventtypes/management/values?api-version=2015-04-
01&$filter=eventTimestamp ge '{greaterThanTimeStamp}' and eventTimestamp le '{lessThanTimestamp}' and
eventChannels eq 'Operation' and resourceProvider eq 'Microsoft.Subscription'"

1. As a tenant admin of the Azure AD tenant, elevate access then assign a Reader role to the auditing user
over the scope /providers/microsoft.insights/eventtypes/management .

2. As the auditing user, call the Tenant Activity Log API to see subscription creation activities. Example:

To conveniently call this API from the command line, try ARMClient.

Now that the user or service principal has permission to create a subscription, you can use that identity to
programmatically create Azure Enterprise subscriptions.
For an example on creating subscriptions using .NET, see sample code on GitHub.
To learn more about Azure Resource Manager and its APIs, see Azure Resource Manager overview.
To learn more about managing large numbers of subscriptions using management groups, see Organize your

https://docs.microsoft.com/rest/api/monitor/tenantactivitylogs
https://docs.microsoft.com/en-us/azure/active-directory/role-based-access-control-tenant-admin-access
https://docs.microsoft.com/rest/api/monitor/tenantactivitylogs
https://github.com/projectkudu/ARMClient
https://github.com/Azure-Samples/create-azure-subscription-dotnet-core
https://docs.microsoft.com/en-us/azure/azure-resource-manager/management-groups-overview

resources with Azure management groups
To see a comprehensive best practice guidance for large organizations on subscription governance, see Azure
enterprise scaffold - prescriptive subscription governance

https://docs.microsoft.com/azure/architecture/cloud-adoption-guide/subscription-governance

Authenticate requests across tenants
6/18/2019 • 2 minutes to read • Edit Online

Header values for authentication

HEADER NAME DESCRIPTION EXAMPLE VALUE

Authorization Primary token Bearer <primary-token>

x-ms-authorization-auxiliary Auxiliary tokens Bearer <auxiliary-token1>;
EncryptedBearer <auxiliary-token2>;
Bearer <auxiliary-token3>

Processing the request

Next steps

When creating a multi-tenant application, you may need to handle authentication requests for resources that are in
different tenants. A common scenario is when a virtual machine in one tenant must join a virtual network in
another tenant. Azure Resource Manager provides a header value for storing auxiliary tokens to authenticate the
requests to different tenants.

The request has the following authentication header values:

The auxiliary header can hold up to three auxiliary tokens.

In the code of your multi-tenant app, get the authentication token for other tenants and store them in the auxiliary
headers. All the tokens must be from the same user or application. The user or application must have been invited
as a guest to the other tenants.

When your app sends a request to Resource Manager, the request is run under the identity from the primary
token. The primary token must be valid and unexpired. This token must be from a tenant that can manage the
subscription.

When the request references a resource from different tenant, Resource Manager checks the auxiliary tokens to
determine if the request can be processed. All auxiliary tokens in the header must be valid and unexpired. If any
token is expired, Resource Manager returns a 401 response code. The response includes the client ID and tenant ID
from the token that isn't valid. If the auxiliary header contains a valid token for the tenant, the cross tenant request
is processed.

To learn about sending authentication requests with the Azure Resource Manager APIs, see Use Resource
Manager authentication API to access subscriptions.
For more information about tokens, see Azure Active Directory access tokens.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/authenticate-multi-tenant.md
https://docs.microsoft.com/azure/active-directory/develop/access-tokens

View activity logs to monitor actions on resources
5/14/2019 • 5 minutes to read • Edit Online

Azure portal

Through activity logs, you can determine:

what operations were taken on the resources in your subscription
who started the operation
when the operation occurred
the status of the operation
the values of other properties that might help you research the operation

The activity log contains all write operations (PUT, POST, DELETE) for your resources. It doesn't include read
operations (GET). For a list of resource actions, see Azure Resource Manager Resource Provider operations. You
can use the activity logs to find an error when troubleshooting or to monitor how a user in your organization
modified a resource.

Activity logs are kept for 90 days. You can query for any range of dates, as long as the starting date isn't more than
90 days in the past.

You can retrieve information from the activity logs through the portal, PowerShell, Azure CLI, Insights REST API,
or Insights .NET Library.

1. To view the activity logs through the portal, select Monitor.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-audit.md
https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations
https://www.nuget.org/packages/Microsoft.Azure.Insights/

2. Select Activity Log.

3. You see a summary of recent operations. A default set of filters is applied to the operations. Notice the
information on the summary includes who started the action and when it happened.

4. To quickly run a pre-defined set of filters, select Quick Insights.

5. Select one of the options. For example, select Failed deployments to see errors from deployments.

6. Notice the filters have been changed to focus on deployment errors in the last 24 hours. Only operations
that match the filters are displayed.

7. To focus on specific operations, change the filters or apply new ones. For example, the following image
shows a new value for the Timespan and Resource type is set to storage accounts.

8. If you need to run the query again later, select Pin current filters.

9. Give the filter a name.

10. The filter is available in the dashboard.

11. From the portal, you can view changes to a resource. Go back to the default view in Monitor, and select an
operation that involved changing a resource.

12. Select Change history (Preview) and pick one of the available operations.

PowerShell

NOTENOTE

Get-AzLog -ResourceGroup ExampleGroup

Get-AzLog -ResourceGroup ExampleGroup -StartTime 2019-05-05T06:00 -EndTime 2019-05-09T06:00

13. The changes in the resource are displayed.

To learn more about change history, see Get resource changes.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To retrieve log entries, run the Get-AzLog command. You provide additional parameters to filter the list of entries.
If you don't specify a start and end time, entries for the last seven days are returned.

The following example shows how to use the activity log to research operations taken during a specified time. The
start and end dates are specified in a date format.

Or, you can use date functions to specify the date range, such as the last 14 days.

https://docs.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Get-AzLog -ResourceGroup ExampleGroup -StartTime (Get-Date).AddDays(-14)

Get-AzLog -ResourceGroup ExampleGroup -StartTime (Get-Date).AddDays(-14) -Caller someone@contoso.com

Get-AzLog -ResourceGroup ExampleGroup -Status Failed

(Get-AzLog -ResourceGroup ExampleGroup -Status Failed).Properties.Content.statusMessage | ConvertFrom-Json

Get-AzLog -ResourceGroupName ExampleGroup | Format-table EventTimeStamp, Caller, @{n='Operation'; e=
{$_.OperationName.value}}, @{n='Status'; e={$_.Status.value}}, @{n='SubStatus'; e=
{$_.SubStatus.LocalizedValue}}

Get-AzLog -ResourceGroup ExampleGroup | Where-Object {$_.OperationName.value -eq
"Microsoft.Resources/deployments/write"}

Azure CLI

az monitor activity-log list --resource-group ExampleGroup --offset 7d

az monitor activity-log list -g ExampleGroup --start-time 2019-05-01 --end-time 2019-05-15

az monitor activity-log list -g ExampleGroup --caller someone@contoso.com --offset 5d

az monitor activity-log list -g ExampleGroup --status Failed --offset 1d

You can look up the actions taken by a particular user.

You can filter for failed operations.

You can focus on one error by looking at the status message for that entry.

You can select specific values to limit the data that is returned.

Depending on the start time you specify, the previous commands can return a long list of operations for the
resource group. You can filter the results for what you are looking for by providing search criteria. For example,
you can filter by the type of operation.

You can use Resource Graph to see the change history for a resource. For more information, see Get resource
changes.

To retrieve log entries, run the az monitor activity-log list command with an offset to indicate the time span.

The following example shows how to use the activity log to research operations taken during a specified time. The
start and end dates are specified in a date format.

You can look up the actions taken by a particular user, even for a resource group that no longer exists.

You can filter for failed operations.

https://docs.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://docs.microsoft.com/cli/azure/monitor/activity-log#az-monitor-activity-log-list

az monitor activity-log list -g ExampleGroup --status Failed --offset 1d --query [].properties.statusMessage

az monitor activity-log list -g ExampleGroup --offset 1d --query '[].{Operation: operationName.value, Status:
status.value, SubStatus: subStatus.localizedValue}'

az monitor activity-log list -g ExampleGroup --offset 1d --query "[?
operationName.value=='Microsoft.Storage/storageAccounts/write']"

REST API

Next steps

You can focus on one error by looking at the status message for that entry.

You can select specific values to limit the data that is returned.

Depending on the start time you specify, the previous commands can return a long list of operations for the
resource group. You can filter the results for what you are looking for by providing search criteria. For example,
you can filter by the type of operation.

You can use Resource Graph to see the change history for a resource. For more information, see Get resource
changes.

The REST operations for working with the activity log are part of the Insights REST API. To retrieve activity log
events, see List the management events in a subscription.

Azure Activity logs can be used with Power BI to gain greater insights about the actions in your subscription.
See View and analyze Azure Activity Logs in Power BI and more.
To learn about setting security policies, see Azure Role-based Access Control.
To learn about the commands for viewing deployment operations, see View deployment operations.
To learn how to prevent deletions on a resource for all users, see Lock resources with Azure Resource Manager.
To see the list of operations available for each Microsoft Azure Resource Manager provider, see Azure Resource
Manager Resource Provider operations

https://docs.microsoft.com/en-us/azure/governance/resource-graph/how-to/get-resource-changes
https://docs.microsoft.com/rest/api/monitor/
https://docs.microsoft.com/rest/api/monitor/activitylogs
https://azure.microsoft.com/blog/analyze-azure-audit-logs-in-powerbi-more/
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/en-us/azure/role-based-access-control/resource-provider-operations

View deployment history with Azure Resource
Manager
5/14/2019 • 4 minutes to read • Edit Online

Portal

Azure Resource Manager enables you to view your deployment history and examine specific operations in past
deployments. You can see the resources that were deployed, and get information about any errors.

For help with resolving particular deployment errors, see Resolve common errors when deploying resources to
Azure with Azure Resource Manager.

To get details about a deployment from the deployment history.

1. Select the resource group you want to examine.

2. Select the link under Deployments.

3. Select one of the deployments from the deployment history.

4. A summary of the deployment is displayed, including a list of the resources that were deployed.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-deployment-operations.md

5. To view the template used for the deployment, select Template. You can download the template to reuse it.

6. If your deployment failed, you see an error message. Select the error message for more details.

7. The detailed error message is displayed.

8. The correlation ID is used to track related events, and can be helpful when working with technical support
to troubleshoot a deployment.

PowerShell

9. To learn more about the step that failed, select Operation details.

10. You see the details for that step of the deployment.

NOTENOTE

Get-AzResourceGroupDeployment -ResourceGroupName ExampleGroup

Get-AzResourceGroupDeployment -ResourceGroupName ExampleGroup | Where-Object ProvisioningState -eq Failed

(Get-AzResourceGroupDeployment -ResourceGroupName ExampleGroup -DeploymentName azuredeploy).CorrelationId

Get-AzResourceGroupDeploymentOperation -ResourceGroupName ExampleGroup -DeploymentName azuredeploy

Id :
/subscriptions/{guid}/resourceGroups/ExampleGroup/providers/Microsoft.Resources/deployments/Microsoft.Template
/operations/A3EB2DA598E0A780
OperationId : A3EB2DA598E0A780
Properties : @{provisioningOperation=Create; provisioningState=Succeeded; timestamp=2019-05-
13T21:42:40.7151512Z;
 duration=PT23.0227078S; trackingId=11d376e8-5d6d-4da8-847e-6f23c6443fbf;
 serviceRequestId=0196828d-8559-4bf6-b6b8-8b9057cb0e23; statusCode=OK; targetResource=}
PropertiesText : {duration:PT23.0227078S, provisioningOperation:Create, provisioningState:Succeeded,
 serviceRequestId:0196828d-8559-4bf6-b6b8-8b9057cb0e23...}

(Get-AzResourceGroupDeploymentOperation -DeploymentName azuredeploy -ResourceGroupName
ExampleGroup).Properties | Where-Object ProvisioningState -eq Failed

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To get the overall status of a deployment, use the Get-AzResourceGroupDeployment command.

Or, you can filter the results for only those deployments that have failed.

The correlation ID is used to track related events, and can be helpful when working with technical support to
troubleshoot a deployment. To get the correlation ID, use:

Each deployment includes multiple operations. Each operation represents a step in the deployment process. To
discover what went wrong with a deployment, you usually need to see details about the deployment operations.
You can see the status of the operations with Get-AzResourceGroupDeploymentOperation.

Which returns multiple operations with each one in the following format:

To get more details about failed operations, retrieve the properties for operations with Failed state.

Which returns all the failed operations with each one in the following format:

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

provisioningOperation : Create
provisioningState : Failed
timestamp : 2019-05-13T21:42:40.7151512Z
duration : PT3.1449887S
trackingId : f4ed72f8-4203-43dc-958a-15d041e8c233
serviceRequestId : a426f689-5d5a-448d-a2f0-9784d14c900a
statusCode : BadRequest
statusMessage : @{error=}
targetResource : @{id=/subscriptions/{guid}/resourceGroups/ExampleGroup/providers/
 Microsoft.Network/publicIPAddresses/myPublicIP;
 resourceType=Microsoft.Network/publicIPAddresses; resourceName=myPublicIP}

((Get-AzResourceGroupDeploymentOperation -DeploymentName azuredeploy -ResourceGroupName
ExampleGroup).Properties | Where-Object trackingId -eq f4ed72f8-4203-43dc-958a-
15d041e8c233).StatusMessage.error

code message details
---- ------- -------
DnsRecordInUse DNS record dns.westus.cloudapp.azure.com is already used by another public IP. {}

(Get-AzResourceGroupDeploymentOperation -DeploymentName "TestDeployment" -ResourceGroupName "Test-
RG").Properties.request | ConvertTo-Json | Out-File -FilePath <PathToFile>

(Get-AzResourceGroupDeploymentOperation -DeploymentName "TestDeployment" -ResourceGroupName "Test-
RG").Properties.response | ConvertTo-Json | Out-File -FilePath <PathToFile>

Azure CLI

az group deployment show -g ExampleGroup -n ExampleDeployment

az group deployment show -g ExampleGroup -n ExampleDeployment --query properties.correlationId

az group deployment operation list -g ExampleGroup -n ExampleDeployment

Note the serviceRequestId and the trackingId for the operation. The serviceRequestId can be helpful when
working with technical support to troubleshoot a deployment. You'll use the trackingId in the next step to focus on
a particular operation.

To get the status message of a particular failed operation, use the following command:

Which returns:

Every deployment operation in Azure includes request and response content. During deployment, you can use
DeploymentDebugLogLevel parameter to specify that the request and/or response are logged.

You get that information from the log, and save it locally by using the following PowerShell commands:

To get the overall status of a deployment, use the azure group deployment show command.

The correlation ID is used to track related events, and can be helpful when working with technical support to
troubleshoot a deployment.

To see the operations for a deployment, use:

REST

GET https://management.azure.com/subscriptions/{subscription-id}/resourcegroups/{resource-group-
name}/providers/microsoft.resources/deployments/{deployment-name}?api-version={api-version}

{
 ...
 "properties": {
 "provisioningState":"Failed",
 "correlationId":"d5062e45-6e9f-4fd3-a0a0-6b2c56b15757",
 ...
 "error":{
 "code":"DeploymentFailed","message":"At least one resource deployment operation failed. Please list
deployment operations for details. Please see https://aka.ms/arm-debug for usage details.",
 "details":[{"code":"Conflict","message":"{\r\n \"error\": {\r\n \"message\": \"Conflict\",\r\n
\"code\": \"Conflict\"\r\n }\r\n}"}]
 }
 }
}

GET https://management.azure.com/subscriptions/{subscription-id}/resourcegroups/{resource-group-
name}/providers/microsoft.resources/deployments/{deployment-name}/operations?$skiptoken={skiptoken}&api-
version={api-version}

{
 ...
 "properties":
 {
 ...
 "request":{
 "content":{
 "location":"West US",
 "properties":{
 "accountType": "Standard_LRS"
 }
 }
 },
 "response":{
 "content":{
 "error":{
 "message":"Conflict","code":"Conflict"
 }
 }
 }
 }
}

To get information about a deployment, use the Get information about a template deployment operation.

In the response, note in particular the provisioningState, correlationId, and error elements. The correlationId
is used to track related events, and can be helpful when working with technical support to troubleshoot a
deployment.

To get information about deployments, use List all template deployment operations.

The response includes request and/or response information based on what you specified in the debugSetting
property during deployment.

https://docs.microsoft.com/rest/api/resources/deployments
https://docs.microsoft.com/rest/api/resources/deployments

Next steps
For help with resolving particular deployment errors, see Resolve common errors when deploying resources to
Azure with Azure Resource Manager.
To learn about using the activity logs to monitor other types of actions, see View activity logs to manage Azure
resources.
To validate your deployment before executing it, see Deploy a resource group with Azure Resource Manager
template.

Troubleshoot common Azure deployment errors
with Azure Resource Manager
6/18/2019 • 9 minutes to read • Edit Online

NOTENOTE

Error codes
ERROR CODE MITIGATION MORE INFORMATION

AccountNameInvalid Follow naming restrictions for storage
accounts.

Resolve storage account name

AccountPropertyCannotBeSet Check available storage account
properties.

storageAccounts

AllocationFailed The cluster or region doesn't have
resources available or can't support the
requested VM size. Retry the request
at a later time, or request a different
VM size.

Provisioning and allocation issues for
Linux, Provisioning and allocation
issues for Windows and Troubleshoot
allocation failures

AnotherOperationInProgress Wait for concurrent operation to
complete.

AuthorizationFailed Your account or service principal
doesn't have sufficient access to
complete the deployment. Check the
role your account belongs to, and its
access for the deployment scope.

You may receive this error when a
required resource provider isn't
registered.

Azure Role-Based Access Control

Resolve registration

BadRequest You sent deployment values that don't
match what is expected by Resource
Manager. Check the inner status
message for help with troubleshooting.

Template reference and Supported
locations

This article describes some common Azure deployment errors, and provides information to resolve the errors. If
you can't find the error code for your deployment error, see Find error code.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which
will continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install
Azure PowerShell.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-common-deployment-errors.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/azure/templates/microsoft.storage/storageaccounts
https://docs.microsoft.com/en-us/azure/virtual-machines/troubleshooting/allocation-failure
https://docs.microsoft.com/en-us/azure/role-based-access-control/role-assignments-portal
https://docs.microsoft.com/azure/templates/

Conflict You're requesting an operation that
isn't allowed in the resource's current
state. For example, disk resizing is
allowed only when creating a VM or
when the VM is deallocated.

DeploymentActive Wait for concurrent deployment to this
resource group to complete.

DeploymentFailed The DeploymentFailed error is a
general error that doesn't provide the
details you need to solve the error.
Look in the error details for an error
code that provides more information.

Find error code

DeploymentQuotaExceeded If you reach the limit of 800
deployments per resource group,
delete deployments from the history
that are no longer needed. You can
delete entries from the history with az
group deployment delete for Azure
CLI, or Remove-
AzResourceGroupDeployment in
PowerShell. Deleting an entry from the
deployment history doesn't affect the
deploy resources.

DnsRecordInUse The DNS record name must be unique.
Either provide a different name, or
modify the existing record.

ImageNotFound Check VM image settings.

InUseSubnetCannotBeDeleted You may get this error when trying to
update a resource, but the request is
processed by deleting and creating the
resource. Make sure to specify all
unchanged values.

Update resource

InvalidAuthenticationTokenTenant Get access token for the appropriate
tenant. You can only get the token
from the tenant that your account
belongs to.

InvalidContentLink You have most likely attempted to link
to a nested template that isn't
available. Double check the URI you
provided for the nested template. If the
template exists in a storage account,
make sure the URI is accessible. You
may need to pass a SAS token.

Linked templates

ERROR CODE MITIGATION MORE INFORMATION

https://docs.microsoft.com/cli/azure/group/deployment#az-group-deployment-delete
https://docs.microsoft.com/powershell/module/az.resources/remove-azresourcegroupdeployment
https://docs.microsoft.com/azure/architecture/building-blocks/extending-templates/update-resource

InvalidParameter One of the values you provided for a
resource doesn't match the expected
value. This error can result from many
different conditions. For example, a
password may be insufficient, or a blob
name may be incorrect. Check the
error message to determine which
value needs to be corrected.

InvalidRequestContent Your deployment values either include
values that aren't expected or are
missing required values. Confirm the
values for your resource type.

Template reference

InvalidRequestFormat Enable debug logging when executing
the deployment, and verify the
contents of the request.

Debug logging

InvalidResourceNamespace Check the resource namespace you
specified in the type property.

Template reference

InvalidResourceReference The resource either doesn't yet exist or
is incorrectly referenced. Check
whether you need to add a
dependency. Verify that your use of the
reference function includes the
required parameters for your scenario.

Resolve dependencies

InvalidResourceType Check the resource type you specified
in the type property.

Template reference

InvalidSubscriptionRegistrationState Register your subscription with the
resource provider.

Resolve registration

InvalidTemplate Check your template syntax for errors. Resolve invalid template

InvalidTemplateCircularDependency Remove unnecessary dependencies. Resolve circular dependencies

LinkedAuthorizationFailed Check if your account belongs to the
same tenant as the resource group
you're deploying to.

LinkedInvalidPropertyId The resource ID for a resource isn't
resolving correctly. Check that you
provide all required values for the
resource ID, including subscription ID,
resource group name, resource type,
parent resource name (if needed), and
resource name.

LocationRequired Provide a location for your resource. Set location

MismatchingResourceSegments Make sure nested resource has correct
number of segments in name and type.

Resolve resource segments

ERROR CODE MITIGATION MORE INFORMATION

https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/azure/templates/

MissingRegistrationForLocation Check resource provider registration
status, and supported locations.

Resolve registration

MissingSubscriptionRegistration Register your subscription with the
resource provider.

Resolve registration

NoRegisteredProviderFound Check resource provider registration
status.

Resolve registration

NotFound You may be attempting to deploy a
dependent resource in parallel with a
parent resource. Check if you need to
add a dependency.

Resolve dependencies

OperationNotAllowed The deployment is attempting an
operation that exceeds the quota for
the subscription, resource group, or
region. If possible, revise your
deployment to stay within the quotas.
Otherwise, consider requesting a
change to your quotas.

Resolve quotas

ParentResourceNotFound Make sure a parent resource exists
before creating the child resources.

Resolve parent resource

PasswordTooLong You may have selected a password
with too many characters, or may have
converted your password value to a
secure string before passing it as a
parameter. If the template includes a
secure string parameter, you don't
need to convert the value to a secure
string. Provide the password value as
text.

PrivateIPAddressInReservedRange The specified IP address includes an
address range required by Azure.
Change IP address to avoid reserved
range.

IP addresses

PrivateIPAddressNotInSubnet The specified IP address is outside of
the subnet range. Change IP address
to fall within subnet range.

IP addresses

PropertyChangeNotAllowed Some properties cannot be changed
on a deployed resource. When
updating a resource, limit your changes
to permitted properties.

Update resource

RequestDisallowedByPolicy Your subscription includes a resource
policy that prevents an action you are
trying to perform during deployment.
Find the policy that blocks the action. If
possible, modify your deployment to
meet the limitations from the policy.

Resolve policies

ERROR CODE MITIGATION MORE INFORMATION

https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-ip-addresses-overview-arm
https://docs.microsoft.com/en-us/azure/virtual-network/virtual-network-ip-addresses-overview-arm
https://docs.microsoft.com/azure/architecture/building-blocks/extending-templates/update-resource

ReservedResourceName Provide a resource name that doesn't
include a reserved name.

Reserved resource names

ResourceGroupBeingDeleted Wait for deletion to complete.

ResourceGroupNotFound Check the name of the target resource
group for the deployment. It must
already exist in your subscription.
Check your subscription context.

Azure CLI PowerShell

ResourceNotFound Your deployment references a resource
that can't be resolved. Verify that your
use of the reference function includes
the parameters required for your
scenario.

Resolve references

ResourceQuotaExceeded The deployment is trying to create
resources that exceed the quota for the
subscription, resource group, or region.
If possible, revise your infrastructure to
stay within the quotas. Otherwise,
consider requesting a change to your
quotas.

Resolve quotas

SkuNotAvailable Select SKU (such as VM size) that is
available for the location you've
selected.

Resolve SKU

StorageAccountAlreadyExists Provide a unique name for the storage
account.

Resolve storage account name

StorageAccountAlreadyTaken Provide a unique name for the storage
account.

Resolve storage account name

StorageAccountNotFound Check the subscription, resource
group, and name of the storage
account you're trying to use.

SubnetsNotInSameVnet A virtual machine can only have one
virtual network. When deploying
several NICs, make sure they belong to
the same virtual network.

Multiple NICs

TemplateResourceCircularDependency Remove unnecessary dependencies. Resolve circular dependencies

TooManyTargetResourceGroups Reduce number of resource groups for
a single deployment.

Cross resource group deployment

ERROR CODE MITIGATION MORE INFORMATION

Find error code
There are two types of errors you can receive:

validation errors
deployment errors

https://docs.microsoft.com/cli/azure/account?#az-account-set
https://docs.microsoft.com/powershell/module/Az.Accounts/Set-AzContext
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/multiple-nics

Validation errorsValidation errors

Validation errors arise from scenarios that can be determined before deployment. They include syntax errors in
your template, or trying to deploy resources that would exceed your subscription quotas. Deployment errors
arise from conditions that occur during the deployment process. They include trying to access a resource that is
being deployed in parallel.

Both types of errors return an error code that you use to troubleshoot the deployment. Both types of errors
appear in the activity log. However, validation errors don't appear in your deployment history because the
deployment never started.

When deploying through the portal, you see a validation error after submitting your values.

Select the message for more details. In the following image, you see an InvalidTemplateDeployment error
and a message that indicates a policy blocked deployment.

Deployment errorsDeployment errors

(Get-AzResourceGroupDeploymentOperation -DeploymentName exampledeployment -ResourceGroupName
examplegroup).Properties.statusMessage

az group deployment operation list --name exampledeployment -g examplegroup --query "
[*].properties.statusMessage"

When the operation passes validation, but fails during deployment, you get a deployment error.

To see deployment error codes and messages with PowerShell, use:

To see deployment error codes and messages with Azure CLI, use:

In the portal, select the notification.

You see more details about the deployment. Select the option to find more information about the error.

 Enable debug logging

PowerShellPowerShell

New-AzResourceGroupDeployment `
 -Name exampledeployment `
 -ResourceGroupName examplegroup `
 -TemplateFile c:\Azure\Templates\storage.json `
 -DeploymentDebugLogLevel All

(Get-AzResourceGroupDeploymentOperation `
-DeploymentName exampledeployment `
-ResourceGroupName examplegroup).Properties.request `
| ConvertTo-Json

You see the error message and error codes. Notice there are two error codes. The first error code
(DeploymentFailed) is a general error that doesn't provide the details you need to solve the error. The second
error code (StorageAccountNotFound) provides the details you need.

Sometimes you need more information about the request and response to learn what went wrong. During
deployment, you can request that additional information is logged during a deployment.

In PowerShell, set the DeploymentDebugLogLevel parameter to All, ResponseContent, or RequestContent.

Examine the request content with the following cmdlet:

Or, the response content with:

(Get-AzResourceGroupDeploymentOperation `
-DeploymentName exampledeployment `
-ResourceGroupName examplegroup).Properties.response `
| ConvertTo-Json

Azure CLIAzure CLI

az group deployment operation list \
 --resource-group examplegroup \
 --name exampledeployment

az group deployment operation list \
 --name exampledeployment \
 -g examplegroup \
 --query [].properties.request

az group deployment operation list \
 --name exampledeployment \
 -g examplegroup \
 --query [].properties.response

Nested templateNested template

{
 "apiVersion": "2016-09-01",
 "name": "nestedTemplate",
 "type": "Microsoft.Resources/deployments",
 "properties": {
 "mode": "Incremental",
 "templateLink": {
 "uri": "{template-uri}",
 "contentVersion": "1.0.0.0"
 },
 "debugSetting": {
 "detailLevel": "requestContent, responseContent"
 }
 }
}

Create a troubleshooting template

This information can help you determine whether a value in the template is being incorrectly set.

Currently, Azure CLI doesn't support turning on debug logging, but you can retrieve debug logging.

Examine the deployment operations with the following command:

Examine the request content with the following command:

Examine the response content with the following command:

To log debug information for a nested template, use the debugSetting element.

In some cases, the easiest way to troubleshoot your template is to test parts of it. You can create a simplified
template that enables you to focus on the part that you believe is causing the error. For example, suppose you're
receiving an error when referencing a resource. Rather than dealing with an entire template, create a template
that returns the part that may be causing your problem. It can help you determine whether you're passing in the
right parameters, using template functions correctly, and getting the resource you expect.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageName": {
 "type": "string"
 },
 "storageResourceGroup": {
 "type": "string"
 }
 },
 "variables": {},
 "resources": [],
 "outputs": {
 "exampleOutput": {
 "value": "[reference(resourceId(parameters('storageResourceGroup'),
'Microsoft.Storage/storageAccounts', parameters('storageName')), '2016-05-01')]",
 "type" : "object"
 }
 }
}

Next steps

Or, suppose you are encountering deployment errors that you believe are related to incorrectly set dependencies.
Test your template by breaking it into simplified templates. First, create a template that deploys only a single
resource (like a SQL Server). When you are sure you have that resource correctly defined, add a resource that
depends on it (like a SQL Database). When you have those two resources correctly defined, add other dependent
resources (like auditing policies). In between each test deployment, delete the resource group to make sure you
adequately testing the dependencies.

To go through a troubleshoot tutorial, see Tutorial: Troubleshoot Resource Manager template deployments
To learn about auditing actions, see Audit operations with Resource Manager.
To learn about actions to determine the errors during deployment, see View deployment operations.

Resolve errors for storage account names
5/21/2018 • 2 minutes to read • Edit Online

Symptom

Code=AccountNameInvalid
Message=S!torageckrexph7isnoc is not a valid storage account name. Storage account name must be
between 3 and 24 characters in length and use numbers and lower-case letters only.

Code=StorageAccountAlreadyTaken
Message=The storage account named mystorage is already taken.

Cause

Solution

"name": "[concat('storage', uniqueString(resourceGroup().id))]",
"type": "Microsoft.Storage/storageAccounts",

"parameters": {
 "storageNamePrefix": {
 "type": "string",
 "maxLength": 11,
 "defaultValue": "storage",
 "metadata": {
 "description": "The value to use for starting the storage account name."
 }
 }
}

This article describes naming errors you may encounter when deploying a storage account.

If your storage account name includes prohibited characters, you receive an error like:

For storage accounts, you must provide a name for the resource that is unique across Azure. If you do not provide
a unique name, you receive an error like:

If you deploy a storage account with the same name as an existing storage account in your subscription, but
provide a different location, you receive an error indicating the storage account already exists in a different
location. Either delete the existing storage account, or provide the same location as the existing storage account.

Storage account names must be between 3 and 24 characters in length and use numbers and lower-case letters
only. The name must be unique.

Make sure the storage account name is unique. You can create a unique name by concatenating your naming
convention with the result of the uniqueString function.

Make sure your storage account name does not exceed 24 characters. The uniqueString function returns 13
characters. If you concatenate a prefix or postfix to the uniqueString result, provide a value that is 11 characters
or less.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-storage-account-name-errors.md

Make sure your storage account name does not include any upper-case letters or special characters.

Resolve errors for invalid template
6/18/2019 • 4 minutes to read • Edit Online

Symptom

Code=InvalidTemplate
Message=<varies>

Cause

Solution 1 - syntax error

Code=InvalidTemplate
Message=Deployment template validation failed

"name": "[concat('storage', uniqueString(resourceGroup().id))]",

Solution 2 - incorrect segment lengths

Code=InvalidTemplate
Message=Deployment template validation failed: 'The template resource {resource-name}'
for type {resource-type} has incorrect segment lengths.

This article describes how to resolve invalid template errors.

When deploying a template, you receive an error indicating:

The error message depends on the type of error.

This error can result from several different types of errors. They usually involve a syntax or structural error in the
template.

If you receive an error message that indicates the template failed validation, you may have a syntax problem in
your template.

This error is easy to make because template expressions can be intricate. For example, the following name
assignment for a storage account has one set of brackets, three functions, three sets of parentheses, one set of
single quotes, and one property:

If you don't provide the matching syntax, the template produces a value that is different than your intention.

When you receive this type of error, carefully review the expression syntax. Consider using a JSON editor like
Visual Studio or Visual Studio Code, which can warn you about syntax errors.

Another invalid template error occurs when the resource name isn't in the correct format.

A root level resource must have one less segment in the name than in the resource type. Each segment is
differentiated by a slash. In the following example, the type has two segments and the name has one segment, so
it's a valid name.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-invalid-template-errors.md
https://docs.microsoft.com/en-us/azure/azure-resource-manager/resource-manager-vs-code

{
 "type": "Microsoft.Web/serverfarms",
 "name": "myHostingPlanName",
 ...
}

{
 "type": "Microsoft.Web/serverfarms",
 "name": "appPlan/myHostingPlanName",
 ...
}

"resources": [
 {
 "type": "Microsoft.KeyVault/vaults",
 "name": "contosokeyvault",
 ...
 "resources": [
 {
 "type": "secrets",
 "name": "appPassword",
 ...
 }
]
 }
]

{
 "type": "Microsoft.Web/sites/providers/locks",
 "name": "[concat(variables('siteName'),'/Microsoft.Authorization/MySiteLock')]",
 ...
}

Solution 3 - parameter is not valid

Code=InvalidTemplate;
Message=Deployment template validation failed: 'The provided value {parameter value}
for the template parameter {parameter name} is not valid. The parameter value is not
part of the allowed values

But the next example is not a valid name because it has the same number of segments as the type.

For child resources, the type and name have the same number of segments. This number of segments makes
sense because the full name and type for the child includes the parent name and type. Therefore, the full name still
has one less segment than the full type.

Getting the segments right can be tricky with Resource Manager types that are applied across resource providers.
For example, applying a resource lock to a web site requires a type with four segments. Therefore, the name is
three segments:

If you provide a parameter value that is not one of the allowed values, you receive a message similar to the
following error :

Double check the allowed values in the template, and provide one during deployment. For more information about
allowed parameter values, see Parameters section of Azure Resource Manager templates.

Solution 4 - Too many target resource groups

Solution 5 - circular dependency detected

If you specify more than five target resource groups in a single deployment, you receive this error. Consider either
consolidating the number of resource groups in your deployment, or deploying some of the templates as separate
deployments. For more information, see Deploy Azure resources to more than one subscription or resource group.

You receive this error when resources depend on each other in a way that prevents the deployment from starting.
A combination of interdependencies makes two or more resource wait for other resources that are also waiting.
For example, resource1 depends on resource3, resource2 depends on resource1, and resource3 depends on
resource2. You can usually solve this problem by removing unnecessary dependencies.

To solve a circular dependency:

1. In your template, find the resource identified in the circular dependency.
2. For that resource, examine the dependsOn property and any uses of the reference function to see which

resources it depends on.
3. Examine those resources to see which resources they depend on. Follow the dependencies until you notice a

resource that depends on the original resource.
4. For the resources involved in the circular dependency, carefully examine all uses of the dependsOn property to

identify any dependencies that are not needed. Remove those dependencies. If you are unsure that a
dependency is needed, try removing it.

5. Redeploy the template.

Removing values from the dependsOn property can cause errors when you deploy the template. If you get an
error, add the dependency back into the template.

If that approach doesn't solve the circular dependency, consider moving part of your deployment logic into child
resources (such as extensions or configuration settings). Configure those child resources to deploy after the
resources involved in the circular dependency. For example, suppose you're deploying two virtual machines but
you must set properties on each one that refer to the other. You can deploy them in the following order:

1. vm1
2. vm2
3. Extension on vm1 depends on vm1 and vm2. The extension sets values on vm1 that it gets from vm2.
4. Extension on vm2 depends on vm1 and vm2. The extension sets values on vm2 that it gets from vm1.

The same approach works for App Service apps. Consider moving configuration values into a child resource of the
app resource. You can deploy two web apps in the following order:

1. webapp1
2. webapp2
3. config for webapp1 depends on webapp1 and webapp2. It contains app settings with values from webapp2.
4. config for webapp2 depends on webapp1 and webapp2. It contains app settings with values from webapp1.

2 minutes to read

Resolve errors for resource provider registration
2/18/2019 • 2 minutes to read • Edit Online

NOTENOTE

Symptom

Code: NoRegisteredProviderFound
Message: No registered resource provider found for location {location}
and API version {api-version} for type {resource-type}.

Code: MissingSubscriptionRegistration
Message: The subscription is not registered to use namespace {resource-provider-namespace}

Code: AuthorizationFailed
Message: The client '<identifier>' with object id '<identifier>' does not have authorization to perform
action 'Microsoft.Compute/virtualMachines/read' over scope ...

Cause

Solution 1 - PowerShell

This article describes the errors you may encounter when using a resource provider that you haven't previously
used in your subscription.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

When deploying resource, you may receive the following error code and message:

Or, you may receive a similar message that states:

The error message should give you suggestions for the supported locations and API versions. You can change
your template to one of the suggested values. Most providers are registered automatically by the Azure portal or
the command-line interface you're using, but not all. If you haven't used a particular resource provider before, you
may need to register that provider.

Or, when disabling auto-shutdown for virtual machines, you may receive an error message similar to:

You receive these errors for one of these reasons:

The required resource provider hasn't been registered for your subscription
API version not supported for the resource type
Location not supported for the resource type
For auto-shutdown of VMs, the Microsoft.DevTestLab resource provider must be registered.

For PowerShell, use Get-AzResourceProvider to see your registration status.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-register-provider-errors.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

Get-AzResourceProvider -ListAvailable

Register-AzResourceProvider -ProviderNamespace Microsoft.Cdn

((Get-AzResourceProvider -ProviderNamespace Microsoft.Web).ResourceTypes | Where-Object ResourceTypeName -eq
sites).Locations

((Get-AzResourceProvider -ProviderNamespace Microsoft.Web).ResourceTypes | Where-Object ResourceTypeName -eq
sites).ApiVersions

Solution 2 - Azure CLI

az provider list

az provider register --namespace Microsoft.Cdn

az provider show -n Microsoft.Web --query "resourceTypes[?resourceType=='sites'].locations"

Solution 3 - Azure portal

To register a provider, use Register-AzResourceProvider and provide the name of the resource provider you
wish to register.

To get the supported locations for a particular type of resource, use:

To get the supported API versions for a particular type of resource, use:

To see whether the provider is registered, use the az provider list command.

To register a resource provider, use the az provider register command, and specify the namespace to register.

To see the supported locations and API versions for a resource type, use:

You can see the registration status and register a resource provider namespace through the portal.

1. From the portal, select All services.

2. Select Subscriptions.

3. From the list of subscriptions, select the subscription you want to use for registering the resource provider.

4. For your subscription, select Resource providers.

5. Look at the list of resource providers, and if necessary, select the Register link to register the resource
provider of the type you're trying to deploy.

Resolve not found errors for Azure resources
6/18/2019 • 3 minutes to read • Edit Online

Symptom

Code=NotFound;
Message=Cannot find ServerFarm with name exampleplan.

Code=ResourceNotFound;
Message=The Resource 'Microsoft.Storage/storageAccounts/{storage name}' under resource
group {resource group name} was not found.

Cause

Solution 1 - set dependencies

{
 "apiVersion": "2015-08-01",
 "type": "Microsoft.Web/sites",
 "dependsOn": [
 "[variables('hostingPlanName')]"
],
 ...
}

This article describes the errors you may see when a resource can't be found during deployment.

When your template includes the name of a resource that can't be resolved, you receive an error similar to:

If you use the reference or listKeys functions with a resource that can't be resolved, you receive the following error :

Resource Manager needs to retrieve the properties for a resource, but can't identify the resource in your
subscription.

If you're trying to deploy the missing resource in the template, check whether you need to add a dependency.
Resource Manager optimizes deployment by creating resources in parallel, when possible. If one resource must be
deployed after another resource, you need to use the dependsOn element in your template. For example, when
deploying a web app, the App Service plan must exist. If you haven't specified that the web app depends on the
App Service plan, Resource Manager creates both resources at the same time. You get an error stating that the
App Service plan resource can't be found, because it doesn't exist yet when attempting to set a property on the
web app. You prevent this error by setting the dependency in the web app.

But, you want to avoid setting dependencies that aren't needed. When you have unnecessary dependencies, you
prolong the duration of the deployment by preventing resources that aren't dependent on each other from being
deployed in parallel. In addition, you may create circular dependencies that block the deployment. The reference
function and list* functions creates an implicit dependency on the referenced resource, when that resource is
deployed in the same template and is referenced by its name (not resource ID). Therefore, you may have more
dependencies than the dependencies specified in the dependsOn property. The resourceId function doesn't create
an implicit dependency or validate that the resource exists. The reference function and list* functions don't create
an implicit dependency when the resource is referred to by its resource ID. To create an implicit dependency, pass

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-not-found-errors.md

the name of the resource that is deployed in the same template.

When you see dependency problems, you need to gain insight into the order of resource deployment. To view the
order of deployment operations:

1. Select the deployment history for your resource group.

2. Select a deployment from the history, and select Events.

3. Examine the sequence of events for each resource. Pay attention to the status of each operation. For
example, the following image shows three storage accounts that deployed in parallel. Notice that the three
storage accounts are started at the same time.

Solution 2 - get resource from different resource group

The next image shows three storage accounts that aren't deployed in parallel. The second storage account
depends on the first storage account, and the third storage account depends on the second storage account.
The first storage account is started, accepted, and completed before the next is started.

When the resource exists in a different resource group than the one being deployed to, use the resourceId
function to get the fully qualified name of the resource.

"properties": {
 "name": "[parameters('siteName')]",
 "serverFarmId": "[resourceId('plangroup', 'Microsoft.Web/serverfarms', parameters('hostingPlanName'))]"
}

Solution 3 - check reference function

"[reference(resourceId('exampleResourceGroup', 'Microsoft.Storage/storageAccounts', 'myStorage'), '2017-06-
01')]"

Look for an expression that includes the reference function. The values you provide vary based on whether the
resource is in the same template, resource group, and subscription. Double check that you're providing the
required parameter values for your scenario. If the resource is in a different resource group, provide the full
resource ID. For example, to reference a storage account in another resource group, use:

Resolve errors for parent resources
6/18/2019 • 2 minutes to read • Edit Online

Symptom

Code=ParentResourceNotFound;
Message=Can not perform requested operation on nested resource. Parent resource 'exampleserver' not found."

Cause

{
 "type": "Microsoft.Sql/servers/databases",
 "name": "[concat(variables('databaseServerName'), '/', parameters('databaseName'))]",
 ...

Solution

"dependsOn": [
 "[variables('databaseServerName')]"
]

This article describes the errors you may get when deploying a resource that is dependent on a parent resource.

When deploying a resource that is a child to another resource, you may receive the following error:

When one resource is a child to another resource, the parent resource must exist before creating the child resource.
The name of the child resource defines the connection with the parent resource. The name of the child resource is
in the format <parent-resource-name>/<child-resource-name> . For example, a SQL Database might be defined as:

If you deploy both the server and the database in the same template, but don't specify a dependency on the server,
the database deployment might start before the server has deployed.

If the parent resource already exists and isn't deployed in the same template, you get this error when Resource
Manager can't associate the child resource with parent. This error might happen when the child resource isn't in
the correct format, or the child resource is deployed to a resource group that is different than the resource group
for parent resource.

To resolve this error when parent and child resources are deployed in the same template, include a dependency.

To resolve this error when the parent resource was previously deployed in a different template, you don't set a
dependency. Instead, deploy the child to the same resource group and provide the name of the parent resource.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-parent-resource-errors.md

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "sqlServerName": {
 "type": "string"
 },
 "databaseName": {
 "type": "string"
 }
 },
 "resources": [
 {
 "apiVersion": "2014-04-01",
 "type": "Microsoft.Sql/servers/databases",
 "location": "[resourceGroup().location]",
 "name": "[concat(parameters('sqlServerName'), '/', parameters('databaseName'))]",
 "properties": {
 "collation": "SQL_Latin1_General_CP1_CI_AS",
 "edition": "Basic"
 }
 }
],
 "outputs": {}
}

For more information, see Define the order for deploying resources in Azure Resource Manager templates.

2 minutes to read

2 minutes to read

RequestDisallowedByPolicy error with Azure resource
policy
3/26/2019 • 2 minutes to read • Edit Online

Symptom

{
 "statusCode": "Forbidden",
 "serviceRequestId": null,
 "statusMessage": "{\"error\":{\"code\":\"RequestDisallowedByPolicy\",\"message\":\"The resource action
'Microsoft.Network/publicIpAddresses/write' is disallowed by one or more policies. Policy identifier(s):
'/subscriptions/{guid}/providers/Microsoft.Authorization/policyDefinitions/regionPolicyDefinition'.\"}}",
 "responseBody": "{\"error\":{\"code\":\"RequestDisallowedByPolicy\",\"message\":\"The resource action
'Microsoft.Network/publicIpAddresses/write' is disallowed by one or more policies. Policy identifier(s):
'/subscriptions/{guid}/providers/Microsoft.Authorization/policyDefinitions/regionPolicyDefinition'.\"}}"
}

Troubleshooting

PowerShellPowerShell

NOTENOTE

(Get-AzPolicyDefinition -Id
"/subscriptions/{guid}/providers/Microsoft.Authorization/policyDefinitions/regionPolicyDefinition").Properties
.policyRule | ConvertTo-Json

Azure CLIAzure CLI

az policy definition show --name regionPolicyAssignment

Solution

This article describes the cause of the RequestDisallowedByPolicy error, it also provides solution for this error.

During deployment, you might receive a RequestDisallowedByPolicy error that prevents you from creating the
resources. The following example shows the error:

To retrieve details about the policy that blocked your deployment, use the following one of the methods:

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

In PowerShell, provide that policy identifier as the Id parameter to retrieve details about the policy that blocked
your deployment.

In Azure CLI, provide the name of the policy definition:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-policy-requestdisallowedbypolicy-error.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

For security or compliance, your subscription administrators might assign policies that limit how resources are
deployed. For example, your subscription might have a policy that prevents creating Public IP addresses, Network
Security Groups, User-Defined Routes, or route tables. The error message in the Symptoms section shows the
name of the policy. To resolve this problem, review the resource policies, and determine how to deploy resources
that comply with those policies.

For more information, see the following articles:

What is Azure Policy?
Create and manage policies to enforce compliance

https://docs.microsoft.com/en-us/azure/governance/policy/overview
https://docs.microsoft.com/en-us/azure/governance/policy/tutorials/create-and-manage

Resolve reserved resource name errors
5/21/2018 • 2 minutes to read • Edit Online

Symptom

Code=ReservedResourceName;
Message=The resource name <resource-name> or a part of the name is a trademarked or reserved word.

Cause

This article describes the error you encounter when deploying a resource that includes a reserved word in its
name.

When deploying a resource that is available through a public endpoint, you may receive the following error:

Resources that have a public endpoint cannot use reserved words or trademarks in the name.

The following words are reserved:

ACCESS
AZURE
BING
BIZSPARK
BIZTALK
CORTANA
DIRECTX
DOTNET
DYNAMICS
EXCEL
EXCHANGE
FOREFRONT
GROOVE
HOLOLENS
HYPERV
KINECT
LYNC
MSDN
O365
OFFICE
OFFICE365
ONEDRIVE
ONENOTE
OUTLOOK
POWERPOINT
SHAREPOINT
SKYPE

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-reserved-resource-name.md

Solution

VISIO
VISUALSTUDIO

The following words cannot be used as either a whole word or a substring in the name:

LOGIN
MICROSOFT
WINDOWS
XBOX

Provide a name that does not use one of the reserved words.

Resolve errors for resource quotas
1/31/2019 • 2 minutes to read • Edit Online

NOTENOTE

Symptom

Code=OperationNotAllowed
Message=Operation results in exceeding quota limits of Core.
Maximum allowed: 4, Current in use: 4, Additional requested: 2.

Code=ResourceQuotaExceeded
Message=Creating the resource of type <resource-type> would exceed the quota of <number>
resources of type <resource-type> per resource group. The current resource count is <number>,
please delete some resources of this type before creating a new one.

Cause

Troubleshooting
Azure CLIAzure CLI

az vm list-usage --location "South Central US"

This article describes quota errors you may encounter when deploying resources.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

If you deploy a template that creates resources that exceed your Azure quotas, you get a deployment error that
looks like:

Or, you may see:

Quotas are applied per resource group, subscriptions, accounts, and other scopes. For example, your subscription
may be configured to limit the number of cores for a region. If you attempt to deploy a virtual machine with more
cores than the permitted amount, you receive an error stating the quota has been exceeded. For complete quota
information, see Azure subscription and service limits, quotas, and constraints.

For Azure CLI, use the az vm list-usage command to find virtual machine quotas.

Which returns:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-quota-errors.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

[
 {
 "currentValue": 0,
 "limit": 2000,
 "name": {
 "localizedValue": "Availability Sets",
 "value": "availabilitySets"
 }
 },
 ...
]

PowerShellPowerShell

Get-AzVMUsage -Location "South Central US"

Name Current Value Limit Unit
---- ------------- ----- ----
Availability Sets 0 2000 Count
Total Regional Cores 0 100 Count
Virtual Machines 0 10000 Count

Solution

NOTENOTE

For PowerShell, use the Get-AzVMUsage command to find virtual machine quotas.

Which returns:

To request a quota increase, go to the portal and file a support issue. In the support issue, request an increase in
your quota for the region into which you want to deploy.

Remember that for resource groups, the quota is for each individual region, not for the entire subscription. If you need to
deploy 30 cores in West US, you have to ask for 30 Resource Manager cores in West US. If you need to deploy 30 cores in
any of the regions to which you have access, you should ask for 30 Resource Manager cores in all regions.

1. Select Subscriptions.

2. Select the subscription that needs an increased quota.

3. Select Usage + quotas

4. In the upper right corner, select Request increase.

5. Fill in the forms for the type of quota you need to increase.

Resolve errors for SKU not available
1/31/2019 • 2 minutes to read • Edit Online

NOTENOTE

Symptom

Code: SkuNotAvailable
Message: The requested tier for resource '<resource>' is currently not available in location '<location>'
for subscription '<subscriptionID>'. Please try another tier or deploy to a different location.

Cause

Solution 1 - PowerShell

Get-AzComputeResourceSku | where {$_.Locations -icontains "centralus"}

ResourceType Name Locations Restriction Capability Value
------------ ---- --------- ----------- ---------- -----
virtualMachines Standard_A0 centralus NotAvailableForSubscription MaxResourceVolumeMB 20480
virtualMachines Standard_A1 centralus NotAvailableForSubscription MaxResourceVolumeMB 71680
virtualMachines Standard_A2 centralus NotAvailableForSubscription MaxResourceVolumeMB 138240

Solution 2 - Azure CLI

This article describes how to resolve the SkuNotAvailable error. If you're unable to find a suitable SKU in that
region or an alternative region that meets your business needs, submit a SKU request to Azure Support.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

When deploying a resource (typically a virtual machine), you receive the following error code and error message:

You receive this error when the resource SKU you've selected (such as VM size) isn't available for the location
you've selected.

To determine which SKUs are available in a region, use the Get-AzComputeResourceSku command. Filter the
results by location. You must have the latest version of PowerShell for this command.

The results include a list of SKUs for the location and any restrictions for that SKU. Notice that a SKU might be
listed as NotAvailableForSubscription .

To determine which SKUs are available in a region, use the az vm list-skus command. Use the --location

parameter to filter output to location you are using. Use the --size parameter to search by a partial size name.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-sku-not-available-errors.md
https://aka.ms/skurestriction
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/powershell/module/az.compute/get-azcomputeresourcesku

az vm list-skus --location southcentralus --size Standard_F --output table

ResourceType Locations Name Zones Capabilities Restrictions
--------------- -------------- ---------------- ------- -------------- --------------
virtualMachines southcentralus Standard_F1 ... None
virtualMachines southcentralus Standard_F2 ... None
virtualMachines southcentralus Standard_F4 ... None
...

Solution 3 - Azure portal

The command returns results like:

To determine which SKUs are available in a region, use the portal. Sign in to the portal, and add a resource
through the interface. As you set the values, you see the available SKUs for that resource. You don't need to
complete the deployment.

For example, start the process of creating a virtual machine. To see other available size, select Change size.

You can filter and scroll through the available sizes.

https://portal.azure.com

Solution 4 - REST

{
 "value": [
 {
 "resourceType": "virtualMachines",
 "name": "Standard_A0",
 "tier": "Standard",
 "size": "A0",
 "locations": [
 "eastus"
],
 "restrictions": []
 },
 {
 "resourceType": "virtualMachines",
 "name": "Standard_A1",
 "tier": "Standard",
 "size": "A1",
 "locations": [
 "eastus"
],
 "restrictions": []
 },
 ...
]
}

To determine which SKUs are available in a region, use the Resource Skus - List operation.

It returns available SKUs and regions in the following format:

https://docs.microsoft.com/rest/api/compute/resourceskus/list

2 minutes to read

Azure resource providers and types
4/26/2019 • 5 minutes to read • Edit Online

Azure portal

When deploying resources, you frequently need to retrieve information about the resource providers and types. In
this article, you learn how to:

View all resource providers in Azure
Check registration status of a resource provider
Register a resource provider
View resource types for a resource provider
View valid locations for a resource type
View valid API versions for a resource type

You can do these steps through the Azure portal, Azure PowerShell, or Azure CLI.

For a list that maps resource providers to Azure services, see Resource providers for Azure services.

To see all resource providers, and the registration status for your subscription:

1. Sign in to the Azure portal.

2. Select All services.

3. In the All services box, enter subscription, and then select Subscriptions.

4. Select the subscription from the subscription list to view.

5. Select Resource providers and view the list of available resource providers.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-supported-services.md
https://portal.azure.com

6. Registering a resource provider configures your subscription to work with the resource provider. The scope
for registration is always the subscription. By default, many resource providers are automatically registered.
However, you may need to manually register some resource providers. To register a resource provider, you
must have permission to do the /register/action operation for the resource provider. This operation is
included in the Contributor and Owner roles. To register a resource provider, select Register. In the previous
screenshot, the Register link is highlighted for Microsoft.Blueprint.

You can't unregister a resource provider when you still have resource types from that resource provider in
your subscription.

To see information for a particular resource provider:

1. Sign in to the Azure portal.

2. Select All services.

3. In the All services box, enter resource explorer, and then select Resource Explorer.

https://portal.azure.com

4. Expand Providers by selecting the right arrow.

5. Expand a resource provider and resource type that you want to view.

6. Resource Manager is supported in all regions, but the resources you deploy might not be supported in all
regions. In addition, there may be limitations on your subscription that prevent you from using some
regions that support the resource. The resource explorer displays valid locations for the resource type.

7. The API version corresponds to a version of REST API operations that are released by the resource provider.
As a resource provider enables new features, it releases a new version of the REST API. The resource
explorer displays valid API versions for the resource type.

Azure PowerShell

NOTENOTE

Get-AzResourceProvider -ListAvailable | Select-Object ProviderNamespace, RegistrationState

ProviderNamespace RegistrationState
-------------------------------- ------------------
Microsoft.ClassicCompute Registered
Microsoft.ClassicNetwork Registered
Microsoft.ClassicStorage Registered
Microsoft.CognitiveServices Registered
...

Register-AzResourceProvider -ProviderNamespace Microsoft.Batch

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

To see all resource providers in Azure, and the registration status for your subscription, use:

Which returns results similar to:

Registering a resource provider configures your subscription to work with the resource provider. The scope for
registration is always the subscription. By default, many resource providers are automatically registered. However,
you may need to manually register some resource providers. To register a resource provider, you must have
permission to do the /register/action operation for the resource provider. This operation is included in the
Contributor and Owner roles.

Which returns results similar to:

https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

ProviderNamespace : Microsoft.Batch
RegistrationState : Registering
ResourceTypes : {batchAccounts, operations, locations, locations/quotas}
Locations : {West Europe, East US, East US 2, West US...}

Get-AzResourceProvider -ProviderNamespace Microsoft.Batch

{ProviderNamespace : Microsoft.Batch
RegistrationState : Registered
ResourceTypes : {batchAccounts}
Locations : {West Europe, East US, East US 2, West US...}

...

(Get-AzResourceProvider -ProviderNamespace Microsoft.Batch).ResourceTypes.ResourceTypeName

batchAccounts
operations
locations
locations/quotas

((Get-AzResourceProvider -ProviderNamespace Microsoft.Batch).ResourceTypes | Where-Object ResourceTypeName -eq
batchAccounts).ApiVersions

2017-05-01
2017-01-01
2015-12-01
2015-09-01
2015-07-01

You can't unregister a resource provider when you still have resource types from that resource provider in your
subscription.

To see information for a particular resource provider, use:

Which returns results similar to:

To see the resource types for a resource provider, use:

Which returns:

The API version corresponds to a version of REST API operations that are released by the resource provider. As a
resource provider enables new features, it releases a new version of the REST API.

To get the available API versions for a resource type, use:

Which returns:

Resource Manager is supported in all regions, but the resources you deploy might not be supported in all regions.
In addition, there may be limitations on your subscription that prevent you from using some regions that support
the resource.

To get the supported locations for a resource type, use.

((Get-AzResourceProvider -ProviderNamespace Microsoft.Batch).ResourceTypes | Where-Object ResourceTypeName -eq
batchAccounts).Locations

West Europe
East US
East US 2
West US
...

Azure CLI

az provider list --query "[].{Provider:namespace, Status:registrationState}" --out table

Provider Status
-------------------------------- ----------------
Microsoft.ClassicCompute Registered
Microsoft.ClassicNetwork Registered
Microsoft.ClassicStorage Registered
Microsoft.CognitiveServices Registered
...

az provider register --namespace Microsoft.Batch

az provider show --namespace Microsoft.Batch

Which returns:

To see all resource providers in Azure, and the registration status for your subscription, use:

Which returns results similar to:

Registering a resource provider configures your subscription to work with the resource provider. The scope for
registration is always the subscription. By default, many resource providers are automatically registered. However,
you may need to manually register some resource providers. To register a resource provider, you must have
permission to do the /register/action operation for the resource provider. This operation is included in the
Contributor and Owner roles.

Which returns a message that registration is on-going.

You can't unregister a resource provider when you still have resource types from that resource provider in your
subscription.

To see information for a particular resource provider, use:

Which returns results similar to:

{
 "id": "/subscriptions/####-####/providers/Microsoft.Batch",
 "namespace": "Microsoft.Batch",
 "registrationsState": "Registering",
 "resourceTypes:" [
 ...
]
}

az provider show --namespace Microsoft.Batch --query "resourceTypes[*].resourceType" --out table

Result

batchAccounts
operations
locations
locations/quotas

az provider show --namespace Microsoft.Batch --query "resourceTypes[?resourceType=='batchAccounts'].apiVersions
| [0]" --out table

Result

2017-05-01
2017-01-01
2015-12-01
2015-09-01
2015-07-01

az provider show --namespace Microsoft.Batch --query "resourceTypes[?resourceType=='batchAccounts'].locations |
[0]" --out table

To see the resource types for a resource provider, use:

Which returns:

The API version corresponds to a version of REST API operations that are released by the resource provider. As a
resource provider enables new features, it releases a new version of the REST API.

To get the available API versions for a resource type, use:

Which returns:

Resource Manager is supported in all regions, but the resources you deploy might not be supported in all regions.
In addition, there may be limitations on your subscription that prevent you from using some regions that support
the resource.

To get the supported locations for a resource type, use.

Which returns:

Result

West Europe
East US
East US 2
West US
...

Next steps
To learn about creating Resource Manager templates, see Authoring Azure Resource Manager templates.
To view the resource provider template schemas, see Template reference.
For a list that maps resource providers to Azure services, see Resource providers for Azure services.
To view the operations for a resource provider, see Azure REST API.

https://docs.microsoft.com/azure/templates/
https://docs.microsoft.com/rest/api/

Throttling Resource Manager requests
7/17/2019 • 4 minutes to read • Edit Online

Remaining requests

RESPONSE HEADER DESCRIPTION

x-ms-ratelimit-remaining-subscription-reads Subscription scoped reads remaining. This value is returned on
read operations.

x-ms-ratelimit-remaining-subscription-writes Subscription scoped writes remaining. This value is returned
on write operations.

x-ms-ratelimit-remaining-tenant-reads Tenant scoped reads remaining

x-ms-ratelimit-remaining-tenant-writes Tenant scoped writes remaining

x-ms-ratelimit-remaining-subscription-resource-requests Subscription scoped resource type requests remaining.

This header value is only returned if a service has overridden
the default limit. Resource Manager adds this value instead of
the subscription reads or writes.

For each Azure subscription and tenant, Resource Manager allows up to 12,000 read requests per hour and 1,200
write requests per hour. These limits are scoped to the security principal (user or application) making the requests
and the subscription ID or tenant ID. If your requests come from more than one security principal, your limit across
the subscription or tenant is greater than 12,000 and 1,200 per hour.

Requests are applied to either your subscription or your tenant. Subscription requests are ones that involve passing
your subscription ID, such as retrieving the resource groups in your subscription. Tenant requests don't include
your subscription ID, such as retrieving valid Azure locations.

These limits apply to each Azure Resource Manager instance. There are multiple instances in every Azure region,
and Azure Resource Manager is deployed to all Azure regions. So, in practice, limits are effectively much higher
than these limits, as user requests are usually serviced by many different instances.

If your application or script reaches these limits, you need to throttle your requests. This article shows you how to
determine the remaining requests you have before reaching the limit, and how to respond when you've reached
the limit.

When you reach the limit, you receive the HTTP status code 429 Too many requests.

Azure Resource Graph limits the number of requests to its operations. The steps in this article to determine the
remaining requests and how to respond when the limit is reached also apply to Resource Graph. However,
Resource Graph sets its own limit and reset rate. For more information, see Throttle in Azure Resource Graph.

You can determine the number of remaining requests by examining response headers. Read requests return a
value in the header for the number of remaining read requests. Write requests include a value for the number of
remaining write requests. The following table describes the response headers you can examine for those values:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-request-limits.md
https://docs.microsoft.com/en-us/azure/governance/resource-graph/overview

x-ms-ratelimit-remaining-subscription-resource-entities-read Subscription scoped resource type collection requests
remaining.

This header value is only returned if a service has overridden
the default limit. This value provides the number of remaining
collection requests (list resources).

x-ms-ratelimit-remaining-tenant-resource-requests Tenant scoped resource type requests remaining.

This header is only added for requests at tenant level, and only
if a service has overridden the default limit. Resource Manager
adds this value instead of the tenant reads or writes.

x-ms-ratelimit-remaining-tenant-resource-entities-read Tenant scoped resource type collection requests remaining.

This header is only added for requests at tenant level, and only
if a service has overridden the default limit.

RESPONSE HEADER DESCRIPTION

Retrieving the header values

response.Headers.GetValues("x-ms-ratelimit-remaining-subscription-reads").GetValue(0)

$r = Invoke-WebRequest -Uri https://management.azure.com/subscriptions/{guid}/resourcegroups?api-version=2016-
09-01 -Method GET -Headers $authHeaders
$r.Headers["x-ms-ratelimit-remaining-subscription-reads"]

Get-AzResourceGroup -Debug

DEBUG: ============================ HTTP RESPONSE ============================

Status Code:
OK

Headers:
Pragma : no-cache
x-ms-ratelimit-remaining-subscription-reads: 11999

Retrieving these header values in your code or script is no different than retrieving any header value.

For example, in C#, you retrieve the header value from an HttpWebResponse object named response with the
following code:

In PowerShell, you retrieve the header value from an Invoke-WebRequest operation.

For a complete PowerShell example, see Check Resource Manager Limits for a Subscription.

If you want to see the remaining requests for debugging, you can provide the -Debug parameter on your
PowerShell cmdlet.

Which returns many values, including the following response value:

To get write limits, use a write operation:

https://github.com/Microsoft/csa-misc-utils/tree/master/psh-GetArmLimitsViaAPI

New-AzResourceGroup -Name myresourcegroup -Location westus -Debug

DEBUG: ============================ HTTP RESPONSE ============================

Status Code:
Created

Headers:
Pragma : no-cache
x-ms-ratelimit-remaining-subscription-writes: 1199

az group list --verbose --debug

msrest.http_logger : Response status: 200
msrest.http_logger : Response headers:
msrest.http_logger : 'Cache-Control': 'no-cache'
msrest.http_logger : 'Pragma': 'no-cache'
msrest.http_logger : 'Content-Type': 'application/json; charset=utf-8'
msrest.http_logger : 'Content-Encoding': 'gzip'
msrest.http_logger : 'Expires': '-1'
msrest.http_logger : 'Vary': 'Accept-Encoding'
msrest.http_logger : 'x-ms-ratelimit-remaining-subscription-reads': '11998'

az group create -n myresourcegroup --location westus --verbose --debug

msrest.http_logger : Response status: 201
msrest.http_logger : Response headers:
msrest.http_logger : 'Cache-Control': 'no-cache'
msrest.http_logger : 'Pragma': 'no-cache'
msrest.http_logger : 'Content-Length': '163'
msrest.http_logger : 'Content-Type': 'application/json; charset=utf-8'
msrest.http_logger : 'Expires': '-1'
msrest.http_logger : 'x-ms-ratelimit-remaining-subscription-writes': '1199'

Waiting before sending next request

Next steps

Which returns many values, including the following values:

In Azure CLI, you retrieve the header value by using the more verbose option.

Which returns many values, including the following values:

To get write limits, use a write operation:

Which returns many values, including the following values:

When you reach the request limit, Resource Manager returns the 429 HTTP status code and a Retry-After value in
the header. The Retry-After value specifies the number of seconds your application should wait (or sleep) before
sending the next request. If you send a request before the retry value has elapsed, your request isn't processed and
a new retry value is returned.

For a complete PowerShell example, see Check Resource Manager Limits for a Subscription.

https://github.com/Microsoft/csa-misc-utils/tree/master/psh-GetArmLimitsViaAPI

For more information about limits and quotas, see Azure subscription and service limits, quotas, and
constraints.
To learn about handling asynchronous REST requests, see Track asynchronous Azure operations.

https://docs.microsoft.com/en-us/azure/azure-subscription-service-limits

Track asynchronous Azure operations
6/18/2019 • 3 minutes to read • Edit Online

Status codes for asynchronous operations

Monitor status of operation

response.Headers.GetValues("Azure-AsyncOperation").GetValue(0)

Azure-AsyncOperation request and response

Some Azure REST operations run asynchronously because the operation can't be completed quickly. This article
describes how to track the status of asynchronous operations through values returned in the response.

An asynchronous operation initially returns an HTTP status code of either:

201 (Created)
202 (Accepted)

When the operation successfully completes, it returns either:

200 (OK)
204 (No Content)

Refer to the REST API documentation to see the responses for the operation you're executing.

The asynchronous REST operations return header values, which you use to determine the status of the operation.
There are potentially three header values to examine:

Azure-AsyncOperation - URL for checking the ongoing status of the operation. If your operation returns this
value, always use it (instead of Location) to track the status of the operation.
Location - URL for determining when an operation has completed. Use this value only when Azure-

AsyncOperation isn't returned.
Retry-After - The number of seconds to wait before checking the status of the asynchronous operation.

However, not every asynchronous operation returns all these values. For example, you may need to evaluate the
Azure-AsyncOperation header value for one operation, and the Location header value for another operation.

You retrieve the header values as you would retrieve any header value for a request. For example, in C#, you
retrieve the header value from an HttpWebResponse object named response with the following code:

To get the status of the asynchronous operation, send a GET request to the URL in Azure-AsyncOperation header
value.

The body of the response from this operation contains information about the operation. The following example
shows the possible values returned from the operation:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-async-operations.md
https://docs.microsoft.com/rest/api/

{
 "id": "{resource path from GET operation}",
 "name": "{operation-id}",
 "status" : "Succeeded | Failed | Canceled | {resource provider values}",
 "startTime": "2017-01-06T20:56:36.002812+00:00",
 "endTime": "2017-01-06T20:56:56.002812+00:00",
 "percentComplete": {double between 0 and 100 },
 "properties": {
 /* Specific resource provider values for successful operations */
 },
 "error" : {
 "code": "{error code}",
 "message": "{error description}"
 }
}

provisioningState values

Example requests and responses
Start virtual machine (202 with Azure-AsyncOperation)Start virtual machine (202 with Azure-AsyncOperation)

POST
https://management.azure.com/subscriptions/{subscription-id}/resourceGroups/{resource-
group}/providers/Microsoft.Compute/virtualMachines/{vm-name}/start?api-version=2016-03-30

Azure-AsyncOperation : https://management.azure.com/subscriptions/{subscription-
id}/providers/Microsoft.Compute/locations/{region}/operations/{operation-id}?api-version=2016-03-30

GET
https://management.azure.com/subscriptions/{subscription-
id}/providers/Microsoft.Compute/locations/{region}/operations/{operation-id}?api-version=2016-03-30

Only status is returned for all responses. The error object is returned when the status is Failed or Canceled. All
other values are optional; therefore, the response you receive may look different than the example.

Operations that create, update, or delete (PUT, PATCH, DELETE) a resource typically return a provisioningState

value. When an operation has completed, one of following three values is returned:

Succeeded
Failed
Canceled

All other values indicate the operation is still running. The resource provider can return a customized value that
indicates its state. For example, you may receive Accepted when the request is received and running.

This example shows how to determine the status of start operation for virtual machines. The initial request is in
the following format:

It returns status code 202. Among the header values, you see:

To check the status of the asynchronous operation, sending another request to that URL.

The response body contains the status of the operation:

{
 "startTime": "2017-01-06T18:58:24.7596323+00:00",
 "status": "InProgress",
 "name": "9a062a88-e463-4697-bef2-fe039df73a02"
}

Deploy resources (201 with Azure-AsyncOperation)Deploy resources (201 with Azure-AsyncOperation)

PUT
https://management.azure.com/subscriptions/{subscription-id}/resourcegroups/{resource-
group}/providers/microsoft.resources/deployments/{deployment-name}?api-version=2016-09-01

"provisioningState":"Accepted",

Azure-AsyncOperation: https://management.azure.com/subscriptions/{subscription-id}/resourcegroups/{resource-
group}/providers/Microsoft.Resources/deployments/{deployment-name}/operationStatuses/{operation-id}?api-
version=2016-09-01

GET
https://management.azure.com/subscriptions/{subscription-id}/resourcegroups/{resource-
group}/providers/Microsoft.Resources/deployments/{deployment-name}/operationStatuses/{operation-id}?api-
version=2016-09-01

{"status":"Running"}

{"status":"Succeeded"}

Create storage account (202 with Location and Retry-After)Create storage account (202 with Location and Retry-After)

PUT
https://management.azure.com/subscriptions/{subscription-id}/resourceGroups/{resource-
group}/providers/Microsoft.Storage/storageAccounts/{storage-name}?api-version=2016-01-01

{ "location": "South Central US", "properties": {}, "sku": { "name": "Standard_LRS" }, "kind": "Storage" }

This example shows how to determine the status of deployments operation for deploying resources to Azure.
The initial request is in the following format:

It returns status code 201. The body of the response includes:

Among the header values, you see:

To check the status of the asynchronous operation, sending another request to that URL.

The response body contains the status of the operation:

When the deployment is finished, the response contains:

This example shows how to determine the status of the create operation for storage accounts. The initial request
is in the following format:

And the request body contains properties for the storage account:

Location: https://management.azure.com/subscriptions/{subscription-
id}/providers/Microsoft.Storage/operations/{operation-id}?monitor=true&api-version=2016-01-01
Retry-After: 17

GET
https://management.azure.com/subscriptions/{subscription-
id}/providers/Microsoft.Storage/operations/{operation-id}?monitor=true&api-version=2016-01-01

Next steps

It returns status code 202. Among the header values, you see the following two values:

After waiting for number of seconds specified in Retry-After, check the status of the asynchronous operation by
sending another request to that URL.

If the request is still running, you receive a status code 202. If the request has completed, your receive a status
code 200, and the body of the response contains the properties of the storage account that has been created.

For documentation about each REST operation, see REST API documentation.
for information about deploying templates through the Resource Manager REST API, see Deploy resources
with Resource Manager templates and Resource Manager REST API.

https://docs.microsoft.com/rest/api/

Azure Resource Manager template functions
6/18/2019 • 2 minutes to read • Edit Online

Array and object functions

Comparison functions

Deployment value functions

This article describes all the functions you can use in an Azure Resource Manager template. For information
about using functions in your template, see template syntax.

To create your own functions, see User-defined functions.

Resource Manager provides several functions for working with arrays and objects.

array
coalesce
concat
contains
createArray
empty
first
intersection
json
last
length
min
max
range
skip
take
union

Resource Manager provides several functions for making comparisons in your templates.

equals
less
lessOrEquals
greater
greaterOrEquals

Resource Manager provides the following functions for getting values from sections of the template and values
related to the deployment:

deployment
parameters
variables

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions.md

Logical functions

Numeric functions

Resource functions

String functions

Resource Manager provides the following functions for working with logical conditions:

and
bool
if
not
or

Resource Manager provides the following functions for working with integers:

add
copyIndex
div
float
int
min
max
mod
mul
sub

Resource Manager provides the following functions for getting resource values:

listAccountSas
listKeys
listSecrets
list*
providers
reference
resourceGroup
resourceId
subscription

Resource Manager provides the following functions for working with strings:

base64
base64ToJson
base64ToString
concat
contains
dataUri
dataUriToString
empty

Next steps

endsWith
first
format
guid
indexOf
last
lastIndexOf
length
newGuid
padLeft
replace
skip
split
startsWith
string
substring
take
toLower
toUpper
trim
uniqueString
uri
uriComponent
uriComponentToString
utcNow

For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates
To merge multiple templates, see Using linked templates with Azure Resource Manager
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager
To see how to deploy the template you've created, see Deploy an application with Azure Resource Manager
template

Array and object functions for Azure Resource
Manager templates
6/18/2019 • 17 minutes to read • Edit Online

NOTENOTE

array

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

convertToArray Yes int, string, array, or object The value to convert to an
array.

Return valueReturn value

Resource Manager provides several functions for working with arrays and objects.

array
coalesce
concat
contains
createArray
empty
first
intersection
json
last
length
max
min
range
skip
take
union

To get an array of string values delimited by a value, see split.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

array(convertToArray)

Converts the value to an array.

An array.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-array.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "intToConvert": {
 "type": "int",
 "defaultValue": 1
 },
 "stringToConvert": {
 "type": "string",
 "defaultValue": "efgh"
 },
 "objectToConvert": {
 "type": "object",
 "defaultValue": {"a": "b", "c": "d"}
 }
 },
 "resources": [
],
 "outputs": {
 "intOutput": {
 "type": "array",
 "value": "[array(parameters('intToConvert'))]"
 },
 "stringOutput": {
 "type": "array",
 "value": "[array(parameters('stringToConvert'))]"
 },
 "objectOutput": {
 "type": "array",
 "value": "[array(parameters('objectToConvert'))]"
 }
 }
}

NAME TYPE VALUE

intOutput Array [1]

stringOutput Array ["efgh"]

objectOutput Array [{"a": "b", "c": "d"}]

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/array.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/array.json

The following example template shows how to use the array function with different types.

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/array.json

 coalesce

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes int, string, array, or object The first value to test for
null.

additional args No int, string, array, or object Additional values to test for
null.

Return valueReturn value

ExampleExample

coalesce(arg1, arg2, arg3, ...)

Returns first non-null value from the parameters. Empty strings, empty arrays, and empty objects are not null.

The value of the first non-null parameters, which can be a string, int, array, or object. Null if all parameters are null.

The following example template shows the output from different uses of coalesce.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/coalesce.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "objectToTest": {
 "type": "object",
 "defaultValue": {
 "null1": null,
 "null2": null,
 "string": "default",
 "int": 1,
 "object": {"first": "default"},
 "array": [1]
 }
 }
 },
 "resources": [
],
 "outputs": {
 "stringOutput": {
 "type": "string",
 "value": "[coalesce(parameters('objectToTest').null1, parameters('objectToTest').null2,
parameters('objectToTest').string)]"
 },
 "intOutput": {
 "type": "int",
 "value": "[coalesce(parameters('objectToTest').null1, parameters('objectToTest').null2,
parameters('objectToTest').int)]"
 },
 "objectOutput": {
 "type": "object",
 "value": "[coalesce(parameters('objectToTest').null1, parameters('objectToTest').null2,
parameters('objectToTest').object)]"
 },
 "arrayOutput": {
 "type": "array",
 "value": "[coalesce(parameters('objectToTest').null1, parameters('objectToTest').null2,
parameters('objectToTest').array)]"
 },
 "emptyOutput": {
 "type": "bool",
 "value": "[empty(coalesce(parameters('objectToTest').null1, parameters('objectToTest').null2))]"
 }
 }
}

NAME TYPE VALUE

stringOutput String default

intOutput Int 1

objectOutput Object {"first": "default"}

arrayOutput Array [1]

emptyOutput Bool True

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/coalesce.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/coalesce.json

concat

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The first array or string for
concatenation.

additional arguments No array or string Additional arrays or strings
in sequential order for
concatenation.

Return valueReturn value

ExampleExample

To deploy this example template with PowerShell, use:

concat(arg1, arg2, arg3, ...)

Combines multiple arrays and returns the concatenated array, or combines multiple string values and returns the
concatenated string.

This function can take any number of arguments, and can accept either strings or arrays for the parameters.

A string or array of concatenated values.

The following example template shows how to combine two arrays.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/concat-array.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstArray": {
 "type": "array",
 "defaultValue": [
 "1-1",
 "1-2",
 "1-3"
]
 },
 "secondArray": {
 "type": "array",
 "defaultValue": [
 "2-1",
 "2-2",
 "2-3"
]
 }
 },
 "resources": [
],
 "outputs": {
 "return": {
 "type": "array",
 "value": "[concat(parameters('firstArray'), parameters('secondArray'))]"
 }
 }
}

NAME TYPE VALUE

return Array ["1-1", "1-2", "1-3", "2-1", "2-2", "2-3"]

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-manager/functions/concat-
array.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-manager/functions/concat-
array.json

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

The following example template shows how to combine two string values and return a concatenated string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/concat-string.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "prefix": {
 "type": "string",
 "defaultValue": "prefix"
 }
 },
 "resources": [],
 "outputs": {
 "concatOutput": {
 "value": "[concat(parameters('prefix'), '-', uniqueString(resourceGroup().id))]",
 "type" : "string"
 }
 }
}

NAME TYPE VALUE

concatOutput String prefix-5yj4yjf5mbg72

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-manager/functions/concat-
string.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-manager/functions/concat-
string.json

contains

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

container Yes array, object, or string The value that contains the
value to find.

itemToFind Yes string or int The value to find.

Return valueReturn value

ExampleExample

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

contains(container, itemToFind)

Checks whether an array contains a value, an object contains a key, or a string contains a substring. The string
comparison is case-sensitive. However, when testing if an object contains a key, the comparison is case-insensitive.

True if the item is found; otherwise, False.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringToTest": {
 "type": "string",
 "defaultValue": "OneTwoThree"
 },
 "objectToTest": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "b", "three": "c"}
 },
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "stringTrue": {
 "type": "bool",
 "value": "[contains(parameters('stringToTest'), 'e')]"
 },
 "stringFalse": {
 "type": "bool",
 "value": "[contains(parameters('stringToTest'), 'z')]"
 },
 "objectTrue": {
 "type": "bool",
 "value": "[contains(parameters('objectToTest'), 'one')]"
 },
 "objectFalse": {
 "type": "bool",
 "value": "[contains(parameters('objectToTest'), 'a')]"
 },
 "arrayTrue": {
 "type": "bool",
 "value": "[contains(parameters('arrayToTest'), 'three')]"
 },
 "arrayFalse": {
 "type": "bool",
 "value": "[contains(parameters('arrayToTest'), 'four')]"
 }
 }
}

NAME TYPE VALUE

stringTrue Bool True

stringFalse Bool False

objectTrue Bool True

objectFalse Bool False

arrayTrue Bool True

The following example template shows how to use contains with different types:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/contains.json

arrayFalse Bool False

NAME TYPE VALUE

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/contains.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/contains.json

createarray

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes String, Integer, Array, or
Object

The first value in the array.

additional arguments No String, Integer, Array, or
Object

Additional values in the
array.

Return valueReturn value

ExampleExample

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

createArray (arg1, arg2, arg3, ...)

Creates an array from the parameters.

An array.

The following example template shows how to use createArray with different types:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/createarray.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "objectToTest": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "b", "three": "c"}
 },
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "stringArray": {
 "type": "array",
 "value": "[createArray('a', 'b', 'c')]"
 },
 "intArray": {
 "type": "array",
 "value": "[createArray(1, 2, 3)]"
 },
 "objectArray": {
 "type": "array",
 "value": "[createArray(parameters('objectToTest'))]"
 },
 "arrayArray": {
 "type": "array",
 "value": "[createArray(parameters('arrayToTest'))]"
 }
 }
}

NAME TYPE VALUE

stringArray Array ["a", "b", "c"]

intArray Array [1, 2, 3]

objectArray Array [{"one": "a", "two": "b", "three": "c"}]

arrayArray Array [["one", "two", "three"]]

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/createarray.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/createarray.json

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

empty

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

itemToTest Yes array, object, or string The value to check if it is
empty.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testArray": {
 "type": "array",
 "defaultValue": []
 },
 "testObject": {
 "type": "object",
 "defaultValue": {}
 },
 "testString": {
 "type": "string",
 "defaultValue": ""
 }
 },
 "resources": [
],
 "outputs": {
 "arrayEmpty": {
 "type": "bool",
 "value": "[empty(parameters('testArray'))]"
 },
 "objectEmpty": {
 "type": "bool",
 "value": "[empty(parameters('testObject'))]"
 },
 "stringEmpty": {
 "type": "bool",
 "value": "[empty(parameters('testString'))]"
 }
 }
}

NAME TYPE VALUE

arrayEmpty Bool True

objectEmpty Bool True

empty(itemToTest)

Determines if an array, object, or string is empty.

Returns True if the value is empty; otherwise, False.

The following example template checks whether an array, object, and string are empty.

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/empty.json

stringEmpty Bool True

NAME TYPE VALUE

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/empty.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/empty.json

first

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The value to retrieve the first
element or character.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "arrayOutput": {
 "type": "string",
 "value": "[first(parameters('arrayToTest'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[first('One Two Three')]"
 }
 }
}

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

first(arg1)

Returns the first element of the array, or first character of the string.

The type (string, int, array, or object) of the first element in an array, or the first character of a string.

The following example template shows how to use the first function with an array and string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/first.json

NAME TYPE VALUE

arrayOutput String one

stringOutput String O

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/first.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/first.json

intersection

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or object The first value to use for
finding common elements.

arg2 Yes array or object The second value to use for
finding common elements.

additional arguments No array or object Additional values to use for
finding common elements.

Return valueReturn value

ExampleExample

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

intersection(arg1, arg2, arg3, ...)

Returns a single array or object with the common elements from the parameters.

An array or object with the common elements.

The following example template shows how to use intersection with arrays and objects:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/intersection.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstObject": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "b", "three": "c"}
 },
 "secondObject": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "z", "three": "c"}
 },
 "firstArray": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 },
 "secondArray": {
 "type": "array",
 "defaultValue": ["two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "objectOutput": {
 "type": "object",
 "value": "[intersection(parameters('firstObject'), parameters('secondObject'))]"
 },
 "arrayOutput": {
 "type": "array",
 "value": "[intersection(parameters('firstArray'), parameters('secondArray'))]"
 }
 }
}

NAME TYPE VALUE

objectOutput Object {"one": "a", "three": "c"}

arrayOutput Array ["two", "three"]

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/intersection.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/intersection.json

json

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

json(arg1)

Returns a JSON object.

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes string The value to convert to
JSON.

Return valueReturn value

RemarksRemarks

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testValue": {
 "type": "string",
 "defaultValue": "demo value"
 }
 },
 "resources": [
],
 "outputs": {
 "jsonOutput": {
 "type": "object",
 "value": "[json('{\"a\": \"b\"}')]"
 },
 "nullOutput": {
 "type": "bool",
 "value": "[empty(json('null'))]"
 },
 "paramOutput": {
 "type": "object",
 "value": "[json(concat('{\"a\": \"', parameters('testValue'), '\"}'))]"
 }
 }
}

NAME TYPE VALUE

jsonOutput Object {"a": "b"}

nullOutput Boolean True

paramOutput Object {"a": "demo value"}

The JSON object from the specified string, or an empty object when null is specified.

If you need to include a parameter value or variable in the JSON object, use the concat function to create the string
that you pass to the function.

The following example template shows how to use the json function with arrays and objects:

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/json.json

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/json.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/json.json

last

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The value to retrieve the last
element or character.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "arrayOutput": {
 "type": "string",
 "value": "[last(parameters('arrayToTest'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[last('One Two Three')]"
 }
 }
}

NAME TYPE VALUE

arrayOutput String three

To deploy this example template with PowerShell, use:

last (arg1)

Returns the last element of the array, or last character of the string.

The type (string, int, array, or object) of the last element in an array, or the last character of a string.

The following example template shows how to use the last function with an array and string.

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/last.json

stringOutput String e

NAME TYPE VALUE

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/last.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/last.json

length

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The array to use for getting
the number of elements, or
the string to use for getting
the number of characters.

Return valueReturn value

ExampleExample

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

length(arg1)

Returns the number of elements in an array, or characters in a string.

An int.

The following example template shows how to use length with an array and string:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/length.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": [
 "one",
 "two",
 "three"
]
 },
 "stringToTest": {
 "type": "string",
 "defaultValue": "One Two Three"
 }
 },
 "resources": [],
 "outputs": {
 "arrayLength": {
 "type": "int",
 "value": "[length(parameters('arrayToTest'))]"
 },
 "stringLength": {
 "type": "int",
 "value": "[length(parameters('stringToTest'))]"
 }
 }
}

NAME TYPE VALUE

arrayLength Int 3

stringLength Int 13

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/length.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/length.json

"copy": {
 "name": "websitescopy",
 "count": "[length(parameters('siteNames'))]"
}

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

You can use this function with an array to specify the number of iterations when creating resources. In the
following example, the parameter siteNames would refer to an array of names to use when creating the web sites.

For more information about using this function with an array, see Create multiple instances of resources in Azure

max

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array of integers, or comma-
separated list of integers

The collection to get the
maximum value.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": [0,3,2,5,4]
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "int",
 "value": "[max(parameters('arrayToTest'))]"
 },
 "intOutput": {
 "type": "int",
 "value": "[max(0,3,2,5,4)]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Int 5

intOutput Int 5

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/max.json

Resource Manager.

max(arg1)

Returns the maximum value from an array of integers or a comma-separated list of integers.

An int representing the maximum value.

The following example template shows how to use max with an array and a list of integers:

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/max.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/max.json

min

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array of integers, or comma-
separated list of integers

The collection to get the
minimum value.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": [0,3,2,5,4]
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "int",
 "value": "[min(parameters('arrayToTest'))]"
 },
 "intOutput": {
 "type": "int",
 "value": "[min(0,3,2,5,4)]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Int 0

intOutput Int 0

min(arg1)

Returns the minimum value from an array of integers or a comma-separated list of integers.

An int representing the minimum value.

The following example template shows how to use min with an array and a list of integers:

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/min.json

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/min.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/min.json

range

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

startingInteger Yes int The first integer in the array.

numberofElements Yes int The number of integers in
the array.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "startingInt": {
 "type": "int",
 "defaultValue": 5
 },
 "numberOfElements": {
 "type": "int",
 "defaultValue": 3
 }
 },
 "resources": [],
 "outputs": {
 "rangeOutput": {
 "type": "array",
 "value": "[range(parameters('startingInt'),parameters('numberOfElements'))]"
 }
 }
}

To deploy this example template with PowerShell, use:

range(startingInteger, numberOfElements)

Creates an array of integers from a starting integer and containing a number of items.

An array of integers.

The following example template shows how to use the range function:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/range.json

NAME TYPE VALUE

rangeOutput Array [5, 6, 7]

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/range.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/range.json

skip

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

originalValue Yes array or string The array or string to use for
skipping.

numberToSkip Yes int The number of elements or
characters to skip. If this
value is 0 or less, all the
elements or characters in the
value are returned. If it is
larger than the length of the
array or string, an empty
array or string is returned.

Return valueReturn value

ExampleExample

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

skip(originalValue, numberToSkip)

Returns an array with all the elements after the specified number in the array, or returns a string with all the
characters after the specified number in the string.

An array or string.

The following example template skips the specified number of elements in the array, and the specified number of
characters in a string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/skip.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testArray": {
 "type": "array",
 "defaultValue": [
 "one",
 "two",
 "three"
]
 },
 "elementsToSkip": {
 "type": "int",
 "defaultValue": 2
 },
 "testString": {
 "type": "string",
 "defaultValue": "one two three"
 },
 "charactersToSkip": {
 "type": "int",
 "defaultValue": 4
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "array",
 "value": "[skip(parameters('testArray'),parameters('elementsToSkip'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[skip(parameters('testString'),parameters('charactersToSkip'))]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Array ["three"]

stringOutput String two three

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/skip.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/skip.json

take

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

originalValue Yes array or string The array or string to take
the elements from.

numberToTake Yes int The number of elements or
characters to take. If this
value is 0 or less, an empty
array or string is returned. If
it is larger than the length of
the given array or string, all
the elements in the array or
string are returned.

Return valueReturn value

ExampleExample

take(originalValue, numberToTake)

Returns an array with the specified number of elements from the start of the array, or a string with the specified
number of characters from the start of the string.

An array or string.

The following example template takes the specified number of elements from the array, and characters from a
string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/take.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testArray": {
 "type": "array",
 "defaultValue": [
 "one",
 "two",
 "three"
]
 },
 "elementsToTake": {
 "type": "int",
 "defaultValue": 2
 },
 "testString": {
 "type": "string",
 "defaultValue": "one two three"
 },
 "charactersToTake": {
 "type": "int",
 "defaultValue": 2
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "array",
 "value": "[take(parameters('testArray'),parameters('elementsToTake'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[take(parameters('testString'),parameters('charactersToTake'))]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Array ["one", "two"]

stringOutput String on

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/take.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/take.json

union

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or object The first value to use for
joining elements.

arg2 Yes array or object The second value to use for
joining elements.

additional arguments No array or object Additional values to use for
joining elements.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstObject": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "b", "three": "c1"}
 },
 "secondObject": {
 "type": "object",
 "defaultValue": {"three": "c2", "four": "d", "five": "e"}
 },
 "firstArray": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 },
 "secondArray": {
 "type": "array",
 "defaultValue": ["three", "four"]
 }
 },
 "resources": [
],
 "outputs": {
 "objectOutput": {
 "type": "object",
 "value": "[union(parameters('firstObject'), parameters('secondObject'))]"
 },
 "arrayOutput": {
 "type": "array",
 "value": "[union(parameters('firstArray'), parameters('secondArray'))]"
 }
 }
}

union(arg1, arg2, arg3, ...)

Returns a single array or object with all elements from the parameters. Duplicate values or keys are only included
once.

An array or object.

The following example template shows how to use union with arrays and objects:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/union.json

NAME TYPE VALUE

objectOutput Object {"one": "a", "two": "b", "three": "c2",
"four": "d", "five": "e"}

arrayOutput Array ["one", "two", "three", "four"]

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/union.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/union.json

Next steps

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.
To merge multiple templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you have created, see Deploy an application with Azure Resource Manager
template.

Comparison functions for Azure Resource Manager
templates
6/18/2019 • 6 minutes to read • Edit Online

NOTENOTE

equals

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes int, string, array, or object The first value to check for
equality.

arg2 Yes int, string, array, or object The second value to check
for equality.

Return valueReturn value

RemarksRemarks

Resource Manager provides several functions for making comparisons in your templates.

equals
greater
greaterOrEquals
less
lessOrEquals

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

equals(arg1, arg2)

Checks whether two values equal each other.

Returns True if the values are equal; otherwise, False.

The equals function is often used with the condition element to test whether a resource is deployed.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-comparison.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

{
 "condition": "[equals(parameters('newOrExisting'),'new')]",
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageAccountName')]",
 "apiVersion": "2017-06-01",
 "location": "[resourceGroup().location]",
 "sku": {
 "name": "[variables('storageAccountType')]"
 },
 "kind": "Storage",
 "properties": {}
}

ExampleExample
The following example template checks different types of values for equality. All the default values return True.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/equals.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstInt": {
 "type": "int",
 "defaultValue": 1
 },
 "secondInt": {
 "type": "int",
 "defaultValue": 1
 },
 "firstString": {
 "type": "string",
 "defaultValue": "a"
 },
 "secondString": {
 "type": "string",
 "defaultValue": "a"
 },
 "firstArray": {
 "type": "array",
 "defaultValue": ["a", "b"]
 },
 "secondArray": {
 "type": "array",
 "defaultValue": ["a", "b"]
 },
 "firstObject": {
 "type": "object",
 "defaultValue": {"a": "b"}
 },
 "secondObject": {
 "type": "object",
 "defaultValue": {"a": "b"}
 }
 },
 "resources": [
],
 "outputs": {
 "checkInts": {
 "type": "bool",
 "value": "[equals(parameters('firstInt'), parameters('secondInt'))]"
 },
 "checkStrings": {
 "type": "bool",
 "value": "[equals(parameters('firstString'), parameters('secondString'))]"
 },
 "checkArrays": {
 "type": "bool",
 "value": "[equals(parameters('firstArray'), parameters('secondArray'))]"
 },
 "checkObjects": {
 "type": "bool",
 "value": "[equals(parameters('firstObject'), parameters('secondObject'))]"
 }
 }
}

NAME TYPE VALUE

checkInts Bool True

The output from the preceding example with the default values is:

checkStrings Bool True

checkArrays Bool True

checkObjects Bool True

NAME TYPE VALUE

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/equals.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/equals.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
],
 "outputs": {
 "checkNotEquals": {
 "type": "bool",
 "value": "[not(equals(1, 2))]"
 }
 }
}

NAME TYPE VALUE

checkNotEquals Bool True

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-manager/functions/not-
equals.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-manager/functions/not-
equals.json

greater

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

The following example template uses not with equals.

The output from the preceding example is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/not-equals.json

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes int or string The first value for the
greater comparison.

arg2 Yes int or string The second value for the
greater comparison.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstInt": {
 "type": "int",
 "defaultValue": 1
 },
 "secondInt": {
 "type": "int",
 "defaultValue": 2
 },
 "firstString": {
 "type": "string",
 "defaultValue": "A"
 },
 "secondString": {
 "type": "string",
 "defaultValue": "a"
 }
 },
 "resources": [
],
 "outputs": {
 "checkInts": {
 "type": "bool",
 "value": "[greater(parameters('firstInt'), parameters('secondInt'))]"
 },
 "checkStrings": {
 "type": "bool",
 "value": "[greater(parameters('firstString'), parameters('secondString'))]"
 }
 }
}

NAME TYPE VALUE

checkInts Bool False

greater(arg1, arg2)

Checks whether the first value is greater than the second value.

Returns True if the first value is greater than the second value; otherwise, False.

The following example template checks whether the one value is greater than the other.

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/greater.json

checkStrings Bool True

NAME TYPE VALUE

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/greater.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/greater.json

greaterOrEquals

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes int or string The first value for the
greater or equal comparison.

arg2 Yes int or string The second value for the
greater or equal comparison.

Return valueReturn value

ExampleExample

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

greaterOrEquals(arg1, arg2)

Checks whether the first value is greater than or equal to the second value.

Returns True if the first value is greater than or equal to the second value; otherwise, False.

The following example template checks whether the one value is greater than or equal to the other.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/greaterorequals.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstInt": {
 "type": "int",
 "defaultValue": 1
 },
 "secondInt": {
 "type": "int",
 "defaultValue": 2
 },
 "firstString": {
 "type": "string",
 "defaultValue": "A"
 },
 "secondString": {
 "type": "string",
 "defaultValue": "a"
 }
 },
 "resources": [
],
 "outputs": {
 "checkInts": {
 "type": "bool",
 "value": "[greaterOrEquals(parameters('firstInt'), parameters('secondInt'))]"
 },
 "checkStrings": {
 "type": "bool",
 "value": "[greaterOrEquals(parameters('firstString'), parameters('secondString'))]"
 }
 }
}

NAME TYPE VALUE

checkInts Bool False

checkStrings Bool True

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/greaterorequals.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/greaterorequals.json

less

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

less(arg1, arg2)

Checks whether the first value is less than the second value.

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes int or string The first value for the less
comparison.

arg2 Yes int or string The second value for the less
comparison.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstInt": {
 "type": "int",
 "defaultValue": 1
 },
 "secondInt": {
 "type": "int",
 "defaultValue": 2
 },
 "firstString": {
 "type": "string",
 "defaultValue": "A"
 },
 "secondString": {
 "type": "string",
 "defaultValue": "a"
 }
 },
 "resources": [
],
 "outputs": {
 "checkInts": {
 "type": "bool",
 "value": "[less(parameters('firstInt'), parameters('secondInt'))]"
 },
 "checkStrings": {
 "type": "bool",
 "value": "[less(parameters('firstString'), parameters('secondString'))]"
 }
 }
}

NAME TYPE VALUE

checkInts Bool True

checkStrings Bool False

Returns True if the first value is less than the second value; otherwise, False.

The following example template checks whether the one value is less than the other.

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/less.json

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/less.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/less.json

lessOrEquals

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes int or string The first value for the less or
equals comparison.

arg2 Yes int or string The second value for the less
or equals comparison.

Return valueReturn value

ExampleExample

To deploy this example template with PowerShell, use:

lessOrEquals(arg1, arg2)

Checks whether the first value is less than or equal to the second value.

Returns True if the first value is less than or equal to the second value; otherwise, False.

The following example template checks whether the one value is less than or equal to the other.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/lessorequals.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstInt": {
 "type": "int",
 "defaultValue": 1
 },
 "secondInt": {
 "type": "int",
 "defaultValue": 2
 },
 "firstString": {
 "type": "string",
 "defaultValue": "A"
 },
 "secondString": {
 "type": "string",
 "defaultValue": "a"
 }
 },
 "resources": [
],
 "outputs": {
 "checkInts": {
 "type": "bool",
 "value": "[lessOrEquals(parameters('firstInt'), parameters('secondInt'))]"
 },
 "checkStrings": {
 "type": "bool",
 "value": "[lessOrEquals(parameters('firstString'), parameters('secondString'))]"
 }
 }
}

NAME TYPE VALUE

checkInts Bool True

checkStrings Bool False

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/lessorequals.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/lessorequals.json

Next steps

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.

To merge multiple templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you have created, see Deploy an application with Azure Resource Manager
template.

Deployment functions for Azure Resource Manager
templates
6/18/2019 • 5 minutes to read • Edit Online

NOTENOTE

deployment

Return valueReturn value

{
 "name": "",
 "properties": {
 "template": {
 "$schema": "",
 "contentVersion": "",
 "parameters": {},
 "variables": {},
 "resources": [
],
 "outputs": {}
 },
 "parameters": {},
 "mode": "",
 "provisioningState": ""
 }
}

Resource Manager provides the following functions for getting values from sections of the template and values
related to the deployment:

deployment
parameters
variables

To get values from resources, resource groups, or subscriptions, see Resource functions.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

deployment()

Returns information about the current deployment operation.

This function returns the object that is passed during deployment. The properties in the returned object differ
based on whether the deployment object is passed as a link or as an in-line object. When the deployment object is
passed in-line, such as when using the -TemplateFile parameter in Azure PowerShell to point to a local file, the
returned object has the following format:

When the object is passed as a link, such as when using the -TemplateUri parameter to point to a remote object,
the object is returned in the following format:

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-deployment.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps

{
 "name": "",
 "properties": {
 "templateLink": {
 "uri": ""
 },
 "template": {
 "$schema": "",
 "contentVersion": "",
 "parameters": {},
 "variables": {},
 "resources": [],
 "outputs": {}
 },
 "parameters": {},
 "mode": "",
 "provisioningState": ""
 }
}

RemarksRemarks

"variables": {
 "sharedTemplateUrl": "[uri(deployment().properties.templateLink.uri, 'shared-resources.json')]"
}

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "subscriptionOutput": {
 "value": "[deployment()]",
 "type" : "object"
 }
 }
}

When you deploy to an Azure subscription, instead of a resource group, the return object includes a location

property. The location property is included when deploying either a local template or an external template.

You can use deployment() to link to another template based on the URI of the parent template.

If you redeploy a template from the deployment history in the portal, the template is deployed as a local file. The
templateLink property isn't returned in the deployment function. If your template relies on templateLink to

construct a link to another template, don't use the portal to redeploy. Instead, use the commands you used to
originally deploy the template.

The following example template returns the deployment object:

The preceding example returns the following object:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/deployment.json

{
 "name": "deployment",
 "properties": {
 "template": {
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "subscriptionOutput": {
 "type": "Object",
 "value": "[deployment()]"
 }
 }
 },
 "parameters": {},
 "mode": "Incremental",
 "provisioningState": "Accepted"
 }
}

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/deployment.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/deployment.json

parameters

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

parameterName Yes string The name of the parameter
to return.

Return valueReturn value

RemarksRemarks

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

For a subscription-level template that uses the deployment function, see subscription deployment function. It's
deployed with either az deployment create or New-AzDeployment commands.

parameters(parameterName)

Returns a parameter value. The specified parameter name must be defined in the parameters section of the
template.

The value of the specified parameter.

Typically, you use parameters to set resource values. The following example sets the name of web site to the
parameter value passed in during deployment.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/deploymentsubscription.json

"parameters": {
 "siteName": {
 "type": "string"
 }
},
"resources": [
 {
 "apiVersion": "2016-08-01",
 "name": "[parameters('siteName')]",
 "type": "Microsoft.Web/Sites",
 ...
 }
]

ExampleExample
The following example template shows a simplified use of the parameters function.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/parameters.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringParameter": {
 "type" : "string",
 "defaultValue": "option 1"
 },
 "intParameter": {
 "type": "int",
 "defaultValue": 1
 },
 "objectParameter": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "b"}
 },
 "arrayParameter": {
 "type": "array",
 "defaultValue": [1, 2, 3]
 },
 "crossParameter": {
 "type": "string",
 "defaultValue": "[parameters('stringParameter')]"
 }
 },
 "variables": {},
 "resources": [],
 "outputs": {
 "stringOutput": {
 "value": "[parameters('stringParameter')]",
 "type" : "string"
 },
 "intOutput": {
 "value": "[parameters('intParameter')]",
 "type" : "int"
 },
 "objectOutput": {
 "value": "[parameters('objectParameter')]",
 "type" : "object"
 },
 "arrayOutput": {
 "value": "[parameters('arrayParameter')]",
 "type" : "array"
 },
 "crossOutput": {
 "value": "[parameters('crossParameter')]",
 "type" : "string"
 }
 }
}

NAME TYPE VALUE

stringOutput String option 1

intOutput Int 1

objectOutput Object {"one": "a", "two": "b"}

arrayOutput Array [1, 2, 3]

The output from the preceding example with the default values is:

crossOutput String option 1

NAME TYPE VALUE

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/parameters.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/parameters.json

variables

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

variableName Yes String The name of the variable to
return.

Return valueReturn value

RemarksRemarks

"variables": {
 "storageName": "[concat('storage', uniqueString(resourceGroup().id))]"
},
"resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageName')]",
 ...
 },
 {
 "type": "Microsoft.Compute/virtualMachines",
 "dependsOn": [
 "[variables('storageName')]"
],
 ...
 }
],

ExampleExample

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

variables(variableName)

Returns the value of variable. The specified variable name must be defined in the variables section of the template.

The value of the specified variable.

Typically, you use variables to simplify your template by constructing complex values only once. The following
example constructs a unique name for a storage account.

The following example template returns different variable values.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/variables.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {
 "var1": "myVariable",
 "var2": [1,2,3,4],
 "var3": "[variables('var1')]",
 "var4": {
 "property1": "value1",
 "property2": "value2"
 }
 },
 "resources": [],
 "outputs": {
 "exampleOutput1": {
 "value": "[variables('var1')]",
 "type" : "string"
 },
 "exampleOutput2": {
 "value": "[variables('var2')]",
 "type" : "array"
 },
 "exampleOutput3": {
 "value": "[variables('var3')]",
 "type" : "string"
 },
 "exampleOutput4": {
 "value": "[variables('var4')]",
 "type" : "object"
 }
 }
}

NAME TYPE VALUE

exampleOutput1 String myVariable

exampleOutput2 Array [1, 2, 3, 4]

exampleOutput3 String myVariable

exampleOutput4 Object {"property1": "value1", "property2":
"value2"}

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/variables.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/variables.json

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

Next steps
For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.
To merge several templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you've created, see Deploy an application with Azure Resource Manager
template.

Logical functions for Azure Resource Manager
templates
6/26/2019 • 4 minutes to read • Edit Online

and

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes boolean The first value to check
whether is true.

arg2 Yes boolean The second value to check
whether is true.

additional arguments No boolean Additional arguments to
check whether are true.

Return valueReturn value

ExamplesExamples

Resource Manager provides several functions for making comparisons in your templates.

and
bool
if
not
or

and(arg1, arg2, ...)

Checks whether all parameter values are true.

Returns True if all values are true; otherwise, False.

The following example template shows how to use logical functions.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-logical.md
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/andornot.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "andExampleOutput": {
 "value": "[and(bool('true'), bool('false'))]",
 "type": "bool"
 },
 "orExampleOutput": {
 "value": "[or(bool('true'), bool('false'))]",
 "type": "bool"
 },
 "notExampleOutput": {
 "value": "[not(bool('true'))]",
 "type": "bool"
 }
 }
}

NAME TYPE VALUE

andExampleOutput Bool False

orExampleOutput Bool True

notExampleOutput Bool False

bool

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes string or int The value to convert to a
boolean.

Return valueReturn value

ExamplesExamples

The output from the preceding example is:

bool(arg1)

Converts the parameter to a boolean.

A boolean of the converted value.

The following example template shows how to use bool with a string or integer.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/bool.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "trueString": {
 "value": "[bool('true')]",
 "type" : "bool"
 },
 "falseString": {
 "value": "[bool('false')]",
 "type" : "bool"
 },
 "trueInt": {
 "value": "[bool(1)]",
 "type" : "bool"
 },
 "falseInt": {
 "value": "[bool(0)]",
 "type" : "bool"
 }
 }
}

NAME TYPE VALUE

trueString Bool True

falseString Bool False

trueInt Bool True

falseInt Bool False

if

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

condition Yes boolean The value to check whether
it's true or false.

trueValue Yes string, int, object, or array The value to return when the
condition is true.

falseValue Yes string, int, object, or array The value to return when the
condition is false.

Return valueReturn value

RemarksRemarks

The output from the preceding example with the default values is:

if(condition, trueValue, falseValue)

Returns a value based on whether a condition is true or false.

Returns second parameter when first parameter is True; otherwise, returns third parameter.

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
],
 "outputs": {
 "yesOutput": {
 "type": "string",
 "value": "[if(equals('a', 'a'), 'yes', 'no')]"
 },
 "noOutput": {
 "type": "string",
 "value": "[if(equals('a', 'b'), 'yes', 'no')]"
 },
 "objectOutput": {
 "type": "object",
 "value": "[if(equals('a', 'a'), json('{\"test\": \"value1\"}'), json('null'))]"
 }
 }
}

NAME TYPE VALUE

yesOutput String yes

noOutput String no

objectOutput Object { "test": "value1" }

When the condition is True, only the true value is evaluated. When the condition is False, only the false value is
evaluated. With the if function, you can include expressions that are only conditionally valid. For example, you can
reference a resource that exists under one condition but not under the other condition. An example of conditionally
evaluating expressions is shown in the following section.

The following example template shows how to use the if function.

The output from the preceding example is:

The following example template shows how to use this function with expressions that are only conditionally valid.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/if.json
https://github.com/krnese/AzureDeploy/blob/master/ARM/deployments/conditionWithReference.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "vmName": {
 "type": "string"
 },
 "location": {
 "type": "string"
 },
 "logAnalytics": {
 "type": "string",
 "defaultValue": ""
 }
 },
 "resources": [
 {
 "condition": "[not(empty(parameters('logAnalytics')))]",
 "name": "[concat(parameters('vmName'),'/omsOnboarding')]",
 "type": "Microsoft.Compute/virtualMachines/extensions",
 "location": "[parameters('location')]",
 "apiVersion": "2017-03-30",
 "properties": {
 "publisher": "Microsoft.EnterpriseCloud.Monitoring",
 "type": "MicrosoftMonitoringAgent",
 "typeHandlerVersion": "1.0",
 "autoUpgradeMinorVersion": true,
 "settings": {
 "workspaceId": "[if(not(empty(parameters('logAnalytics'))),
reference(parameters('logAnalytics'), '2015-11-01-preview').customerId, json('null'))]"
 },
 "protectedSettings": {
 "workspaceKey": "[if(not(empty(parameters('logAnalytics'))),
listKeys(parameters('logAnalytics'), '2015-11-01-preview').primarySharedKey, json('null'))]"
 }
 }
 }
],
 "outputs": {
 "mgmtStatus": {
 "type": "string",
 "value": "[if(not(empty(parameters('logAnalytics'))), 'Enabled monitoring for VM!', 'Nothing to
enable')]"
 }
 }
}

not

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes boolean The value to convert.

Return valueReturn value

ExamplesExamples

not(arg1)

Converts boolean value to its opposite value.

Returns True when parameter is False. Returns False when parameter is True.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "andExampleOutput": {
 "value": "[and(bool('true'), bool('false'))]",
 "type": "bool"
 },
 "orExampleOutput": {
 "value": "[or(bool('true'), bool('false'))]",
 "type": "bool"
 },
 "notExampleOutput": {
 "value": "[not(bool('true'))]",
 "type": "bool"
 }
 }
}

NAME TYPE VALUE

andExampleOutput Bool False

orExampleOutput Bool True

notExampleOutput Bool False

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [
],
 "outputs": {
 "checkNotEquals": {
 "type": "bool",
 "value": "[not(equals(1, 2))]"
 }
 }

NAME TYPE VALUE

checkNotEquals Bool True

or

ParametersParameters

The following example template shows how to use logical functions.

The output from the preceding example is:

The following example template uses not with equals.

The output from the preceding example is:

or(arg1, arg2, ...)

Checks whether any parameter value is true.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/andornot.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/not-equals.json

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes boolean The first value to check
whether is true.

arg2 Yes boolean The second value to check
whether is true.

additional arguments No boolean Additional arguments to
check whether are true.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "andExampleOutput": {
 "value": "[and(bool('true'), bool('false'))]",
 "type": "bool"
 },
 "orExampleOutput": {
 "value": "[or(bool('true'), bool('false'))]",
 "type": "bool"
 },
 "notExampleOutput": {
 "value": "[not(bool('true'))]",
 "type": "bool"
 }
 }
}

NAME TYPE VALUE

andExampleOutput Bool False

orExampleOutput Bool True

notExampleOutput Bool False

Next steps

Returns True if any value is true; otherwise, False.

The following example template shows how to use logical functions.

The output from the preceding example is:

For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.
To merge multiple templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you've created, see Deploy an application with Azure Resource Manager
template.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/andornot.json

Numeric functions for Azure Resource Manager
templates
6/18/2019 • 8 minutes to read • Edit Online

NOTENOTE

add

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

operand1 Yes int First number to add.

operand2 Yes int Second number to add.

Return valueReturn value

ExampleExample

Resource Manager provides the following functions for working with integers:

add
copyIndex
div
float
int
max
min
mod
mul
sub

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

add(operand1, operand2)

Returns the sum of the two provided integers.

An integer that contains the sum of the parameters.

The following example template adds two parameters.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-numeric.md
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/add.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "first": {
 "type": "int",
 "defaultValue": 5,
 "metadata": {
 "description": "First integer to add"
 }
 },
 "second": {
 "type": "int",
 "defaultValue": 3,
 "metadata": {
 "description": "Second integer to add"
 }
 }
 },
 "resources": [
],
 "outputs": {
 "addResult": {
 "type": "int",
 "value": "[add(parameters('first'), parameters('second'))]"
 }
 }
}

NAME TYPE VALUE

addResult Int 8

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/add.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/add.json

copyIndex

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

loopName No string The name of the loop for
getting the iteration.

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

copyIndex(loopName, offset)

Returns the index of an iteration loop.

offset No int The number to add to the
zero-based iteration value.

PARAMETER REQUIRED TYPE DESCRIPTION

RemarksRemarks

ExampleExample

"resources": [
 {
 "name": "[concat('examplecopy-', copyIndex())]",
 "type": "Microsoft.Web/sites",
 "copy": {
 "name": "websitescopy",
 "count": "[parameters('count')]"
 },
 ...
 }
]

Return valueReturn value

div

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

operand1 Yes int The number being divided.

operand2 Yes int The number that is used to
divide. Cannot be 0.

Return valueReturn value

This function is always used with a copy object. If no value is provided for offset, the current iteration value is
returned. The iteration value starts at zero. You can use iteration loops when defining either resources or variables.

The loopName property enables you to specify whether copyIndex is referring to a resource iteration or property
iteration. If no value is provided for loopName, the current resource type iteration is used. Provide a value for
loopName when iterating on a property.

For a complete description of how you use copyIndex, see Create multiple instances of resources in Azure
Resource Manager.

For an example of using copyIndex when defining a variable, see Variables.

The following example shows a copy loop and the index value included in the name.

An integer representing the current index of the iteration.

div(operand1, operand2)

Returns the integer division of the two provided integers.

An integer representing the division.

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "first": {
 "type": "int",
 "defaultValue": 8,
 "metadata": {
 "description": "Integer being divided"
 }
 },
 "second": {
 "type": "int",
 "defaultValue": 3,
 "metadata": {
 "description": "Integer used to divide"
 }
 }
 },
 "resources": [
],
 "outputs": {
 "divResult": {
 "type": "int",
 "value": "[div(parameters('first'), parameters('second'))]"
 }
 }
}

NAME TYPE VALUE

divResult Int 2

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/div.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/div.json

float

ParametersParameters

The following example template divides one parameter by another parameter.

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

float(arg1)

Converts the value to a floating point number. You only use this function when passing custom parameters to an
application, such as a Logic App.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/div.json

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes string or int The value to convert to a
floating point number.

Return valueReturn value

ExampleExample

{
 "type": "Microsoft.Logic/workflows",
 "properties": {
 ...
 "parameters": {
 "custom1": {
 "value": "[float('3.0')]"
 },
 "custom2": {
 "value": "[float(3)]"
 },

int

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

valueToConvert Yes string or int The value to convert to an
integer.

Return valueReturn value

ExampleExample

A floating point number.

The following example shows how to use float to pass parameters to a Logic App:

int(valueToConvert)

Converts the specified value to an integer.

An integer of the converted value.

The following example template converts the user-provided parameter value to integer.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/int.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringToConvert": {
 "type": "string",
 "defaultValue": "4"
 }
 },
 "resources": [
],
 "outputs": {
 "intResult": {
 "type": "int",
 "value": "[int(parameters('stringToConvert'))]"
 }
 }
}

NAME TYPE VALUE

intResult Int 4

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/int.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/int.json

max

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array of integers, or comma-
separated list of integers

The collection to get the
maximum value.

Return valueReturn value

ExampleExample

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

max (arg1)

Returns the maximum value from an array of integers or a comma-separated list of integers.

An integer representing the maximum value from the collection.

The following example template shows how to use max with an array and a list of integers:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/max.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": [0,3,2,5,4]
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "int",
 "value": "[max(parameters('arrayToTest'))]"
 },
 "intOutput": {
 "type": "int",
 "value": "[max(0,3,2,5,4)]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Int 5

intOutput Int 5

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/max.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/max.json

min

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array of integers, or comma-
separated list of integers

The collection to get the
minimum value.

Return valueReturn value

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

min (arg1)

Returns the minimum value from an array of integers or a comma-separated list of integers.

An integer representing minimum value from the collection.

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": [0,3,2,5,4]
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "int",
 "value": "[min(parameters('arrayToTest'))]"
 },
 "intOutput": {
 "type": "int",
 "value": "[min(0,3,2,5,4)]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Int 0

intOutput Int 0

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/min.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/min.json

mod

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

operand1 Yes int The number being divided.

The following example template shows how to use min with an array and a list of integers:

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

mod(operand1, operand2)

Returns the remainder of the integer division using the two provided integers.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/min.json

operand2 Yes int The number that is used to
divide, Cannot be 0.

PARAMETER REQUIRED TYPE DESCRIPTION

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "first": {
 "type": "int",
 "defaultValue": 7,
 "metadata": {
 "description": "Integer being divided"
 }
 },
 "second": {
 "type": "int",
 "defaultValue": 3,
 "metadata": {
 "description": "Integer used to divide"
 }
 }
 },
 "resources": [
],
 "outputs": {
 "modResult": {
 "type": "int",
 "value": "[mod(parameters('first'), parameters('second'))]"
 }
 }
}

NAME TYPE VALUE

modResult Int 1

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/mod.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/mod.json

An integer representing the remainder.

The following example template returns the remainder of dividing one parameter by another parameter.

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/mod.json

mul

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

operand1 Yes int First number to multiply.

operand2 Yes int Second number to multiply.

Return valueReturn value

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "first": {
 "type": "int",
 "defaultValue": 5,
 "metadata": {
 "description": "First integer to multiply"
 }
 },
 "second": {
 "type": "int",
 "defaultValue": 3,
 "metadata": {
 "description": "Second integer to multiply"
 }
 }
 },
 "resources": [
],
 "outputs": {
 "mulResult": {
 "type": "int",
 "value": "[mul(parameters('first'), parameters('second'))]"
 }
 }
}

NAME TYPE VALUE

mulResult Int 15

mul(operand1, operand2)

Returns the multiplication of the two provided integers.

An integer representing the multiplication.

The following example template multiplies one parameter by another parameter.

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/mul.json

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/mul.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/mul.json

sub

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

operand1 Yes int The number that is
subtracted from.

operand2 Yes int The number that is
subtracted.

Return valueReturn value

ExampleExample

To deploy this example template with PowerShell, use:

sub(operand1, operand2)

Returns the subtraction of the two provided integers.

An integer representing the subtraction.

The following example template subtracts one parameter from another parameter.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/sub.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "first": {
 "type": "int",
 "defaultValue": 7,
 "metadata": {
 "description": "Integer subtracted from"
 }
 },
 "second": {
 "type": "int",
 "defaultValue": 3,
 "metadata": {
 "description": "Integer to subtract"
 }
 }
 },
 "resources": [
],
 "outputs": {
 "subResult": {
 "type": "int",
 "value": "[sub(parameters('first'), parameters('second'))]"
 }
 }
}

NAME TYPE VALUE

subResult Int 4

az group deployment create -g functionexamplegroup --template-uri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/sub.json

New-AzResourceGroupDeployment -ResourceGroupName functionexamplegroup -TemplateUri
https://raw.githubusercontent.com/Azure/azure-docs-json-samples/master/azure-resource-
manager/functions/sub.json

Next steps

The output from the preceding example with the default values is:

To deploy this example template with Azure CLI, use:

To deploy this example template with PowerShell, use:

For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.
To merge multiple templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you have created, see Deploy an application with Azure Resource Manager
template.

Resource functions for Azure Resource Manager
templates
7/18/2019 • 13 minutes to read • Edit Online

list*

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

resourceName or
resourceIdentifier

Yes string Unique identifier for the
resource.

apiVersion Yes string API version of resource
runtime state. Typically, in
the format, yyyy-mm-dd.

functionValues No object An object that has values for
the function. Only provide
this object for functions that
support receiving an object
with parameter values, such
as listAccountSas on a
storage account. An example
of passing function values is
shown in this article.

ImplementationsImplementations

RESOURCE TYPE FUNCTION NAME

Microsoft.AnalysisServices/servers listGatewayStatus

Resource Manager provides the following functions for getting resource values:

list*
providers
reference
resourceGroup
resourceId
subscription

To get values from parameters, variables, or the current deployment, see Deployment value functions.

list{Value}(resourceName or resourceIdentifier, apiVersion, functionValues)

The syntax for this function varies by name of the list operations. Each implementation returns values for the
resource type that supports a list operation. The operation name must start with list . Some common usages are
listKeys and listSecrets .

The possible uses of list* are shown in the following table.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-resource.md
https://docs.microsoft.com/rest/api/analysisservices/servers/listgatewaystatus

Microsoft.AppConfiguration/configurationStores ListKeys

Microsoft.Automation/automationAccounts listKeys

Microsoft.Batch/batchAccounts listkeys

Microsoft.BatchAI/workspaces/experiments/jobs listoutputfiles

Microsoft.Blockchain/blockchainMembers listApiKeys

Microsoft.Blockchain/blockchainMembers/transactionNodes listApiKeys

Microsoft.BotService/botServices/channels listChannelWithKeys

Microsoft.Cache/redis listKeys

Microsoft.CognitiveServices/accounts listKeys

Microsoft.ContainerRegistry/registries listBuildSourceUploadUrl

Microsoft.ContainerRegistry/registries listCredentials

Microsoft.ContainerRegistry/registries listPolicies

Microsoft.ContainerRegistry/registries listUsages

Microsoft.ContainerRegistry/registries/webhooks listEvents

Microsoft.ContainerRegistry/registries/runs listLogSasUrl

Microsoft.ContainerRegistry/registries/tasks listDetails

Microsoft.ContainerService/managedClusters listClusterAdminCredential

Microsoft.ContainerService/managedClusters listClusterUserCredential

Microsoft.ContainerService/managedClusters/accessProfiles listCredential

Microsoft.DataBox/jobs listCredentials

Microsoft.DataFactory/datafactories/gateways listauthkeys

Microsoft.DataFactory/factories/integrationruntimes listauthkeys

Microsoft.DataLakeAnalytics/accounts/storageAccounts/Conta
iners

listSasTokens

Microsoft.Devices/iotHubs listkeys

Microsoft.Devices/provisioningServices/keys listkeys

RESOURCE TYPE FUNCTION NAME

https://docs.microsoft.com/rest/api/automation/keys/listbyautomationaccount
https://docs.microsoft.com/rest/api/batchmanagement/batchaccount/getkeys
https://docs.microsoft.com/rest/api/batchai/jobs/listoutputfiles
https://docs.microsoft.com/rest/api/blockchain/2019-06-01-preview/blockchainmembers/listapikeys
https://docs.microsoft.com/rest/api/blockchain/2019-06-01-preview/transactionnodes/listapikeys
https://docs.microsoft.com/rest/api/redis/redis/listkeys
https://docs.microsoft.com/rest/api/cognitiveservices/accountmanagement/accounts/listkeys
https://docs.microsoft.com/rest/api/containerregistry/registries (tasks)/getbuildsourceuploadurl
https://docs.microsoft.com/rest/api/containerregistry/registries/listcredentials
https://docs.microsoft.com/rest/api/containerregistry/registries/listpolicies
https://docs.microsoft.com/rest/api/containerregistry/registries/listusages
https://docs.microsoft.com/rest/api/containerregistry/webhooks/listevents
https://docs.microsoft.com/rest/api/containerregistry/runs/getlogsasurl
https://docs.microsoft.com/rest/api/containerregistry/tasks/getdetails
https://docs.microsoft.com/rest/api/aks/managedclusters/listclusteradmincredentials
https://docs.microsoft.com/rest/api/aks/managedclusters/listclusterusercredentials
https://docs.microsoft.com/rest/api/aks/managedclusters/getaccessprofile
https://docs.microsoft.com/rest/api/datafactory/integrationruntimes/listauthkeys
https://docs.microsoft.com/rest/api/datalakeanalytics/storageaccounts/listsastokens
https://docs.microsoft.com/rest/api/iothub/iothubresource/listkeys
https://docs.microsoft.com/rest/api/iot-dps/iotdpsresource/listkeysforkeyname

Microsoft.Devices/provisioningServices listkeys

Microsoft.DevTestLab/labs ListVhds

Microsoft.DevTestLab/labs/schedules ListApplicable

Microsoft.DevTestLab/labs/users/serviceFabrics ListApplicableSchedules

Microsoft.DevTestLab/labs/virtualMachines ListApplicableSchedules

Microsoft.DocumentDB/databaseAccounts listConnectionStrings

Microsoft.DocumentDB/databaseAccounts listKeys

Microsoft.DomainRegistration listDomainRecommendations

Microsoft.DomainRegistration/topLevelDomains listAgreements

Microsoft.EventGrid/domains listKeys

Microsoft.EventGrid/topics listKeys

Microsoft.EventHub/namespaces/authorizationRules listkeys

Microsoft.EventHub/namespaces/disasterRecoveryConfigs/aut
horizationRules

listkeys

Microsoft.EventHub/namespaces/eventhubs/authorizationRule
s

listkeys

Microsoft.ImportExport/jobs listBitLockerKeys

Microsoft.LabServices/users ListEnvironments

Microsoft.LabServices/users ListLabs

Microsoft.Logic/integrationAccounts/agreements listContentCallbackUrl

Microsoft.Logic/integrationAccounts/assemblies listContentCallbackUrl

Microsoft.Logic/integrationAccounts listCallbackUrl

Microsoft.Logic/integrationAccounts listKeyVaultKeys

Microsoft.Logic/integrationAccounts/maps listContentCallbackUrl

Microsoft.Logic/integrationAccounts/partners listContentCallbackUrl

Microsoft.Logic/integrationAccounts/schemas listContentCallbackUrl

RESOURCE TYPE FUNCTION NAME

https://docs.microsoft.com/rest/api/iot-dps/iotdpsresource/listkeys
https://docs.microsoft.com/rest/api/dtl/labs/listvhds
https://docs.microsoft.com/rest/api/dtl/schedules/listapplicable
https://docs.microsoft.com/rest/api/dtl/servicefabrics/listapplicableschedules
https://docs.microsoft.com/rest/api/dtl/virtualmachines/listapplicableschedules
https://docs.microsoft.com/rest/api/cosmos-db-resource-provider/databaseaccounts/listconnectionstrings
https://docs.microsoft.com/rest/api/cosmos-db-resource-provider/databaseaccounts/listkeys
https://docs.microsoft.com/rest/api/appservice/domains/listrecommendations
https://docs.microsoft.com/rest/api/appservice/topleveldomains/listagreements
https://docs.microsoft.com/rest/api/eventgrid/domains/listsharedaccesskeys
https://docs.microsoft.com/rest/api/eventgrid/topics/listsharedaccesskeys
https://docs.microsoft.com/rest/api/eventhub/namespaces/listkeys
https://docs.microsoft.com/rest/api/eventhub/disasterrecoveryconfigs/listkeys
https://docs.microsoft.com/rest/api/eventhub/eventhubs/listkeys
https://docs.microsoft.com/rest/api/storageimportexport/bitlockerkeys/list
https://docs.microsoft.com/rest/api/labservices/globalusers/listenvironments
https://docs.microsoft.com/rest/api/labservices/globalusers/listlabs
https://docs.microsoft.com/rest/api/logic/agreements/listcontentcallbackurl
https://docs.microsoft.com/rest/api/logic/integrationaccountassemblies/listcontentcallbackurl
https://docs.microsoft.com/rest/api/logic/integrationaccounts/getcallbackurl
https://docs.microsoft.com/rest/api/logic/integrationaccounts/listkeyvaultkeys
https://docs.microsoft.com/rest/api/logic/maps/listcontentcallbackurl
https://docs.microsoft.com/rest/api/logic/partners/listcontentcallbackurl
https://docs.microsoft.com/rest/api/logic/schemas/listcontentcallbackurl

Microsoft.Logic/workflows listCallbackUrl

Microsoft.Logic/workflows listSwagger

Microsoft.Logic/workflows/triggers listCallbackUrl

Microsoft.Logic/workflows/versions/triggers listCallbackUrl

Microsoft.MachineLearning/webServices listkeys

Microsoft.MachineLearning/Workspaces listworkspacekeys

Microsoft.MachineLearningServices/workspaces/computes listKeys

Microsoft.MachineLearningServices/workspaces listKeys

Microsoft.Maps/accounts listKeys

Microsoft.Media/mediaservices/assets listContainerSas

Microsoft.Media/mediaservices/assets listStreamingLocators

Microsoft.Media/mediaservices/streamingLocators listContentKeys

Microsoft.Media/mediaservices/streamingLocators listPaths

Microsoft.Network/applicationSecurityGroups listIpConfigurations

Microsoft.NotificationHubs/Namespaces/authorizationRules listkeys

Microsoft.NotificationHubs/Namespaces/NotificationHubs/aut
horizationRules

listkeys

Microsoft.OperationalInsights/workspaces listKeys

Microsoft.Relay/namespaces/authorizationRules listkeys

Microsoft.Relay/namespaces/disasterRecoveryConfigs/authoriz
ationRules

listkeys

Microsoft.Relay/namespaces/HybridConnections/authorization
Rules

listkeys

Microsoft.Relay/namespaces/WcfRelays/authorizationRules listkeys

Microsoft.Search/searchServices listAdminKeys

Microsoft.Search/searchServices listQueryKeys

Microsoft.ServiceBus/namespaces/authorizationRules listkeys

RESOURCE TYPE FUNCTION NAME

https://docs.microsoft.com/rest/api/logic/workflows/listcallbackurl
https://docs.microsoft.com/rest/api/logic/workflows/listswagger
https://docs.microsoft.com/rest/api/logic/workflowtriggers/listcallbackurl
https://docs.microsoft.com/rest/api/logic/workflowversions/listcallbackurl
https://docs.microsoft.com/rest/api/machinelearning/webservices/listkeys
https://docs.microsoft.com/rest/api/maps-management/accounts/listkeys
https://docs.microsoft.com/rest/api/media/assets/listcontainersas
https://docs.microsoft.com/rest/api/media/assets/liststreaminglocators
https://docs.microsoft.com/rest/api/media/streaminglocators/listcontentkeys
https://docs.microsoft.com/rest/api/media/streaminglocators/listpaths
https://docs.microsoft.com/rest/api/notificationhubs/namespaces/listkeys
https://docs.microsoft.com/rest/api/notificationhubs/notificationhubs/listkeys
https://docs.microsoft.com/rest/api/loganalytics/workspaces 2015-03-20/listkeys
https://docs.microsoft.com/rest/api/relay/namespaces/listkeys
https://docs.microsoft.com/rest/api/relay/hybridconnections/listkeys
https://docs.microsoft.com/rest/api/relay/wcfrelays/listkeys
https://docs.microsoft.com/rest/api/searchmanagement/adminkeys/get
https://docs.microsoft.com/rest/api/searchmanagement/querykeys/listbysearchservice
https://docs.microsoft.com/rest/api/servicebus/namespaces/listkeys

Microsoft.ServiceBus/namespaces/disasterRecoveryConfigs/aut
horizationRules

listkeys

Microsoft.ServiceBus/namespaces/queues/authorizationRules listkeys

Microsoft.ServiceBus/namespaces/topics/authorizationRules listkeys

Microsoft.SignalRService/SignalR listkeys

Microsoft.Storage/storageAccounts listAccountSas

Microsoft.Storage/storageAccounts listkeys

Microsoft.Storage/storageAccounts listServiceSas

Microsoft.StorSimple/managers/devices listFailoverSets

Microsoft.StorSimple/managers/devices listFailoverTargets

Microsoft.StorSimple/managers listActivationKey

Microsoft.StorSimple/managers listPublicEncryptionKey

Microsoft.Web/connectionGateways ListStatus

microsoft.web/connections listconsentlinks

Microsoft.Web/customApis listWsdlInterfaces

microsoft.web/locations listwsdlinterfaces

microsoft.web/apimanagementaccounts/apis/connections listconnectionkeys

microsoft.web/apimanagementaccounts/apis/connections listsecrets

microsoft.web/sites/functions listsecrets

microsoft.web/sites/hybridconnectionnamespaces/relays listkeys

microsoft.web/sites listsyncfunctiontriggerstatus

microsoft.web/sites/slots/functions listsecrets

RESOURCE TYPE FUNCTION NAME

To determine which resource types have a list operation, you have the following options:

View the REST API operations for a resource provider, and look for list operations. For example, storage
accounts have the listKeys operation.

Use the Get-AzProviderOperation PowerShell cmdlet. The following example gets all list operations for
storage accounts:

https://docs.microsoft.com/rest/api/servicebus/disasterrecoveryconfigs/listkeys
https://docs.microsoft.com/rest/api/servicebus/queues/listkeys
https://docs.microsoft.com/rest/api/servicebus/topics/listkeys
https://docs.microsoft.com/rest/api/signalr/signalr/listkeys
https://docs.microsoft.com/rest/api/storagerp/storageaccounts/listaccountsas
https://docs.microsoft.com/rest/api/storagerp/storageaccounts/listkeys
https://docs.microsoft.com/rest/api/storagerp/storageaccounts/listservicesas
https://docs.microsoft.com/rest/api/storsimple/devices/listfailoversets
https://docs.microsoft.com/rest/api/storsimple/devices/listfailovertargets
https://docs.microsoft.com/rest/api/storsimple/managers/getactivationkey
https://docs.microsoft.com/rest/api/storsimple/managers/getpublicencryptionkey
https://docs.microsoft.com/rest/api/appservice/webapps/listfunctionsecrets
https://docs.microsoft.com/rest/api/appservice/webapps/listhybridconnectionkeys
https://docs.microsoft.com/rest/api/appservice/webapps/listsyncfunctiontriggers
https://docs.microsoft.com/rest/api/appservice/webapps/listfunctionsecretsslot
https://docs.microsoft.com/rest/api/
https://docs.microsoft.com/rest/api/storagerp/storageaccounts
https://docs.microsoft.com/powershell/module/az.resources/get-azprovideroperation

Return valueReturn value

{
 "keys": [
 {
 "keyName": "key1",
 "permissions": "Full",
 "value": "{value}"
 },
 {
 "keyName": "key2",
 "permissions": "Full",
 "value": "{value}"
 }
]
}

RemarksRemarks

ExampleExample

Get-AzProviderOperation -OperationSearchString "Microsoft.Storage/*" | where {$_.Operation -like
"*list*"} | FT Operation

az provider operation show --namespace Microsoft.Storage --query "resourceTypes[?
name=='storageAccounts'].operations[].name | [?contains(@, 'list')]"

Use the following Azure CLI command to filter only the list operations:

The returned object varies by the list function you use. For example, the listKeys for a storage account returns the
following format:

Other list functions have different return formats. To see the format of a function, include it in the outputs section
as shown in the example template.

Specify the resource by using either the resource name or the resourceId function. When using a list function in
the same template that deploys the referenced resource, use the resource name.

If you use a list function in a resource that is conditionally deployed, the function is evaluated even if the resource
isn't deployed. You get an error if the list function refers to a resource that doesn't exist. Use the if function to
make sure the function is only evaluated when the resource is being deployed. See the if function for a sample
template that uses if and list with a conditionally deployed resource.

The following example template shows how to return the primary and secondary keys from a storage account in
the outputs section. It also returns a SAS token for the storage account.

To get the SAS token, pass an object for the expiry time. The expiry time must be in the future. This example is
intended to show how you use the list functions. Typically, you would use the SAS token in a resource value rather
than return it as an output value. Output values are stored in the deployment history and aren't secure.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/listkeys.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storagename": {
 "type": "string"
 },
 "location": {
 "type": "string",
 "defaultValue": "southcentralus"
 },
 "accountSasProperties": {
 "type": "object",
 "defaultValue": {
 "signedServices": "b",
 "signedPermission": "r",
 "signedExpiry": "2018-08-20T11:00:00Z",
 "signedResourceTypes": "s"
 }
 }
 },
 "resources": [
 {
 "apiVersion": "2018-02-01",
 "name": "[parameters('storagename')]",
 "location": "[parameters('location')]",
 "type": "Microsoft.Storage/storageAccounts",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "StorageV2",
 "properties": {
 "supportsHttpsTrafficOnly": false,
 "accessTier": "Hot",
 "encryption": {
 "services": {
 "blob": {
 "enabled": true
 },
 "file": {
 "enabled": true
 }
 },
 "keySource": "Microsoft.Storage"
 }
 },
 "dependsOn": []
 }
],
 "outputs": {
 "keys": {
 "type": "object",
 "value": "[listKeys(parameters('storagename'), '2018-02-01')]"
 },
 "accountSAS": {
 "type": "object",
 "value": "[listAccountSas(parameters('storagename'), '2018-02-01',
parameters('accountSasProperties'))]"
 }
 }
}

providers
providers(providerNamespace, [resourceType])

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

providerNamespace Yes string Namespace of the provider

resourceType No string The type of resource within
the specified namespace.

Return valueReturn value

{
 "resourceType": "{name of resource type}",
 "locations": [all supported locations],
 "apiVersions": [all supported API versions]
}

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "providerNamespace": {
 "type": "string"
 },
 "resourceType": {
 "type": "string"
 }
 },
 "resources": [],
 "outputs": {
 "providerOutput": {
 "value": "[providers(parameters('providerNamespace'), parameters('resourceType'))]",
 "type" : "object"
 }
 }
}

Returns information about a resource provider and its supported resource types. If you don't provide a resource
type, the function returns all the supported types for the resource provider.

Each supported type is returned in the following format:

Array ordering of the returned values isn't guaranteed.

The following example template shows how to use the provider function:

For the Microsoft.Web resource provider and sites resource type, the preceding example returns an object in the
following format:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/providers.json

{
 "resourceType": "sites",
 "locations": [
 "South Central US",
 "North Europe",
 "West Europe",
 "Southeast Asia",
 ...
],
 "apiVersions": [
 "2016-08-01",
 "2016-03-01",
 "2015-08-01-preview",
 "2015-08-01",
 ...
]
}

reference

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

resourceName or
resourceIdentifier

Yes string Name or unique identifier of
a resource.

apiVersion No string API version of the specified
resource. Include this
parameter when the
resource isn't provisioned
within same template.
Typically, in the format,
yyyy-mm-dd.

'Full' No string Value that specifies whether
to return the full resource
object. If you don't specify
'Full' , only the

properties object of the
resource is returned. The full
object includes values such
as the resource ID and
location.

Return valueReturn value

RemarksRemarks

reference(resourceName or resourceIdentifier, [apiVersion], ['Full'])

Returns an object representing a resource's runtime state.

Every resource type returns different properties for the reference function. The function doesn't return a single,
predefined format. Also, the returned value differs based on whether you specified the full object. To see the
properties for a resource type, return the object in the outputs section as shown in the example.

The reference function retrieves the runtime state of either a previously deployed resource or a resource deployed
in the current template. This article shows examples for both scenarios. When referencing a resource in the current
template, provide only the resource name as a parameter. When referencing a previously deployed resource,
provide the resource ID and an API version for the resource. You can determine valid API versions for your

"outputs": {
 "BlobUri": {
 "value": "[reference(concat('Microsoft.Storage/storageAccounts/', parameters('storageAccountName')),
'2016-01-01').primaryEndpoints.blob]",
 "type" : "string"
 },
 "FQDN": {
 "value": "[reference(concat('Microsoft.Network/publicIPAddresses/', parameters('ipAddressName')),
'2016-03-30').dnsSettings.fqdn]",
 "type" : "string"
 }
}

resource in the template reference.

The reference function can only be used in the properties of a resource definition and the outputs section of a
template or deployment. When used with property iteration, you can use the reference function for input because
the expression is assigned to the resource property. You can't use it with count because the count must be
determined before the reference function is resolved.

You can't use the reference function in the outputs of a nested template to return a resource you've deployed in the
nested template. Instead, use a linked template.

By using the reference function, you implicitly declare that one resource depends on another resource if the
referenced resource is provisioned within same template and you refer to the resource by its name (not resource
ID). You don't need to also use the dependsOn property. The function isn't evaluated until the referenced resource
has completed deployment.

If you use the reference function in a resource that is conditionally deployed, the function is evaluated even if the
resource isn't deployed. You get an error if the reference function refers to a resource that doesn't exist. Use the if
function to make sure the function is only evaluated when the resource is being deployed. See the if function for a
sample template that uses if and reference with a conditionally deployed resource.

To see the property names and values for a resource type, create a template that returns the object in the outputs
section. If you have an existing resource of that type, your template returns the object without deploying any new
resources.

Typically, you use the reference function to return a particular value from an object, such as the blob endpoint URI
or fully qualified domain name.

Use 'Full' when you need resource values that aren't part of the properties schema. For example, to set key vault
access policies, get the identity properties for a virtual machine.

https://docs.microsoft.com/azure/templates/

{
 "type": "Microsoft.KeyVault/vaults",
 "properties": {
 "tenantId": "[reference(concat('Microsoft.Compute/virtualMachines/', variables('vmName')), '2017-03-30',
'Full').identity.tenantId]",
 "accessPolicies": [
 {
 "tenantId": "[reference(concat('Microsoft.Compute/virtualMachines/', variables('vmName')), '2017-03-
30', 'Full').identity.tenantId]",
 "objectId": "[reference(concat('Microsoft.Compute/virtualMachines/', variables('vmName')), '2017-03-
30', 'Full').identity.principalId]",
 "permissions": {
 "keys": [
 "all"
],
 "secrets": [
 "all"
]
 }
 }
],
 ...

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageAccountName": {
 "type": "string"
 }
 },
 "resources": [
 {
 "name": "[parameters('storageAccountName')]",
 "type": "Microsoft.Storage/storageAccounts",
 "apiVersion": "2016-12-01",
 "sku": {
 "name": "Standard_LRS"
 },
 "kind": "Storage",
 "location": "[resourceGroup().location]",
 "tags": {},
 "properties": {
 }
 }
],
 "outputs": {
 "referenceOutput": {
 "type": "object",
 "value": "[reference(parameters('storageAccountName'))]"
 },
 "fullReferenceOutput": {
 "type": "object",
 "value": "[reference(parameters('storageAccountName'), '2016-12-01', 'Full')]"
 }
 }
}

For the complete example of the preceding template, see Windows to Key Vault. A similar example is available for
Linux.

The following example template deploys a resource, and references that resource.

https://github.com/rjmax/AzureSaturday/blob/master/Demo02.ManagedServiceIdentity/demo08.msiWindowsToKeyvault.json
https://github.com/rjmax/AzureSaturday/blob/master/Demo02.ManagedServiceIdentity/demo07.msiLinuxToArm.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/referencewithstorage.json

{
 "creationTime": "2017-10-09T18:55:40.5863736Z",
 "primaryEndpoints": {
 "blob": "https://examplestorage.blob.core.windows.net/",
 "file": "https://examplestorage.file.core.windows.net/",
 "queue": "https://examplestorage.queue.core.windows.net/",
 "table": "https://examplestorage.table.core.windows.net/"
 },
 "primaryLocation": "southcentralus",
 "provisioningState": "Succeeded",
 "statusOfPrimary": "available",
 "supportsHttpsTrafficOnly": false
}

{
 "apiVersion":"2016-12-01",
 "location":"southcentralus",
 "sku": {
 "name":"Standard_LRS",
 "tier":"Standard"
 },
 "tags":{},
 "kind":"Storage",
 "properties": {
 "creationTime":"2017-10-09T18:55:40.5863736Z",
 "primaryEndpoints": {
 "blob":"https://examplestorage.blob.core.windows.net/",
 "file":"https://examplestorage.file.core.windows.net/",
 "queue":"https://examplestorage.queue.core.windows.net/",
 "table":"https://examplestorage.table.core.windows.net/"
 },
 "primaryLocation":"southcentralus",
 "provisioningState":"Succeeded",
 "statusOfPrimary":"available",
 "supportsHttpsTrafficOnly":false
 },
 "subscriptionId":"<subscription-id>",
 "resourceGroupName":"functionexamplegroup",
 "resourceId":"Microsoft.Storage/storageAccounts/examplestorage",
 "referenceApiVersion":"2016-12-01",
 "condition":true,
 "isConditionTrue":true,
 "isTemplateResource":false,
 "isAction":false,
 "provisioningOperation":"Read"
}

The preceding example returns the two objects. The properties object is in the following format:

The full object is in the following format:

The following example template references a storage account that isn't deployed in this template. The storage
account already exists within the same subscription.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/reference.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "storageResourceGroup": {
 "type": "string"
 },
 "storageAccountName": {
 "type": "string"
 }
 },
 "resources": [],
 "outputs": {
 "ExistingStorage": {
 "value": "[reference(resourceId(parameters('storageResourceGroup'),
'Microsoft.Storage/storageAccounts', parameters('storageAccountName')), '2018-07-01')]",
 "type": "object"
 }
 }
}

resourceGroup

Return valueReturn value

{
 "id": "/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}",
 "name": "{resourceGroupName}",
 "location": "{resourceGroupLocation}",
 "tags": {
 },
 "properties": {
 "provisioningState": "{status}"
 }
}

RemarksRemarks

"resources": [
 {
 "apiVersion": "2016-08-01",
 "type": "Microsoft.Web/sites",
 "name": "[parameters('siteName')]",
 "location": "[resourceGroup().location]",
 ...
 }
]

resourceGroup()

Returns an object that represents the current resource group.

The returned object is in the following format:

The resourceGroup() function can't be used in a template that is deployed at the subscription level. It can only be
used in templates that are deployed to a resource group.

A common use of the resourceGroup function is to create resources in the same location as the resource group.
The following example uses the resource group location to assign the location for a web site.

You can also use the resourceGroup function to apply tags from the resource group to a resource. For more

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "resourceGroupOutput": {
 "value": "[resourceGroup()]",
 "type" : "object"
 }
 }
}

{
 "id": "/subscriptions/{subscription-id}/resourceGroups/examplegroup",
 "name": "examplegroup",
 "location": "southcentralus",
 "properties": {
 "provisioningState": "Succeeded"
 }
}

resourceId

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

subscriptionId No string (In GUID format) Default value is the current
subscription. Specify this
value when you need to
retrieve a resource in
another subscription.

resourceGroupName No string Default value is current
resource group. Specify this
value when you need to
retrieve a resource in
another resource group.

resourceType Yes string Type of resource including
resource provider
namespace.

resourceName1 Yes string Name of resource.

information, see Apply tags from resource group.

The following example template returns the properties of the resource group.

The preceding example returns an object in the following format:

resourceId([subscriptionId], [resourceGroupName], resourceType, resourceName1, [resourceName2]...)

Returns the unique identifier of a resource. You use this function when the resource name is ambiguous or not
provisioned within the same template.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/resourcegroup.json

resourceName2 No string Next resource name
segment if resource is
nested.

PARAMETER REQUIRED TYPE DESCRIPTION

Return valueReturn value

/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/{resourceProviderNamespace}/{reso
urceType}/{resourceName}

RemarksRemarks

"[resourceId('Microsoft.Storage/storageAccounts','examplestorage')]"

"[resourceId('otherResourceGroup', 'Microsoft.Storage/storageAccounts','examplestorage')]"

"[resourceId('xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx', 'otherResourceGroup',
'Microsoft.Storage/storageAccounts','examplestorage')]"

"[resourceId('otherResourceGroup', 'Microsoft.SQL/servers/databases', parameters('serverName'),
parameters('databaseName'))]"

"[resourceId('Microsoft.Authorization/policyDefinitions', 'locationpolicy')]"

The identifier is returned in the following format:

When used with a subscription-level deployment, the resourceId() function can only retrieve the ID of resources
deployed at that level. For example, you can get the ID of a policy definition or role definition, but not the ID of a
storage account. For deployments to a resource group, the opposite is true. You can't get the resource ID of
resources deployed at the subscription-level.

The parameter values you specify depend on whether the resource is in the same subscription and resource group
as the current deployment. To get the resource ID for a storage account in the same subscription and resource
group, use:

To get the resource ID for a storage account in the same subscription but a different resource group, use:

To get the resource ID for a storage account in a different subscription and resource group, use:

To get the resource ID for a database in a different resource group, use:

To get the resource ID of a subscription-level resource when deploying at the subscription scope, use:

Often, you need to use this function when using a storage account or virtual network in an alternate resource
group. The following example shows how a resource from an external resource group can easily be used:

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "virtualNetworkName": {
 "type": "string"
 },
 "virtualNetworkResourceGroup": {
 "type": "string"
 },
 "subnet1Name": {
 "type": "string"
 },
 "nicName": {
 "type": "string"
 }
 },
 "variables": {
 "subnet1Ref": "[resourceId(parameters('virtualNetworkResourceGroup'),
'Microsoft.Network/virtualNetworks/subnets', parameters('virtualNetworkName'), parameters('subnet1Name'))]"
 },
 "resources": [
 {
 "apiVersion": "2015-05-01-preview",
 "type": "Microsoft.Network/networkInterfaces",
 "name": "[parameters('nicName')]",
 "location": "[parameters('location')]",
 "properties": {
 "ipConfigurations": [{
 "name": "ipconfig1",
 "properties": {
 "privateIPAllocationMethod": "Dynamic",
 "subnet": {
 "id": "[variables('subnet1Ref')]"
 }
 }
 }]
 }
 }]
}

ExampleExample
The following example template returns the resource ID for a storage account in the resource group:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/resourceid.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "sameRGOutput": {
 "value": "[resourceId('Microsoft.Storage/storageAccounts','examplestorage')]",
 "type" : "string"
 },
 "differentRGOutput": {
 "value": "[resourceId('otherResourceGroup',
'Microsoft.Storage/storageAccounts','examplestorage')]",
 "type" : "string"
 },
 "differentSubOutput": {
 "value": "[resourceId('11111111-1111-1111-1111-111111111111', 'otherResourceGroup',
'Microsoft.Storage/storageAccounts','examplestorage')]",
 "type" : "string"
 },
 "nestedResourceOutput": {
 "value": "[resourceId('Microsoft.SQL/servers/databases', 'serverName', 'databaseName')]",
 "type" : "string"
 }
 }
}

NAME TYPE VALUE

sameRGOutput String /subscriptions/{current-sub-
id}/resourceGroups/examplegroup/provi
ders/Microsoft.Storage/storageAccounts
/examplestorage

differentRGOutput String /subscriptions/{current-sub-
id}/resourceGroups/otherResourceGrou
p/providers/Microsoft.Storage/storageA
ccounts/examplestorage

differentSubOutput String /subscriptions/11111111-1111-1111-
1111-
111111111111/resourceGroups/otherR
esourceGroup/providers/Microsoft.Stora
ge/storageAccounts/examplestorage

nestedResourceOutput String /subscriptions/{current-sub-
id}/resourceGroups/examplegroup/provi
ders/Microsoft.SQL/servers/serverName
/databases/databaseName

subscription

Return valueReturn value

The output from the preceding example with the default values is:

subscription()

Returns details about the subscription for the current deployment.

The function returns the following format:

{
 "id": "/subscriptions/{subscription-id}",
 "subscriptionId": "{subscription-id}",
 "tenantId": "{tenant-id}",
 "displayName": "{name-of-subscription}"
}

ExampleExample

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "subscriptionOutput": {
 "value": "[subscription()]",
 "type" : "object"
 }
 }
}

Next steps

The following example template shows the subscription function called in the outputs section.

For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.
To merge multiple templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you've created, see Deploy an application with Azure Resource Manager
template.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/subscription.json

String functions for Azure Resource Manager
templates
6/18/2019 • 29 minutes to read • Edit Online

base64

Resource Manager provides the following functions for working with strings:

base64
base64ToJson
base64ToString
concat
contains
dataUri
dataUriToString
empty
endsWith
first
format
guid
indexOf
last
lastIndexOf
length
newGuid
padLeft
replace
skip
split
startsWith
string
substring
take
toLower
toUpper
trim
uniqueString
uri
uriComponent
uriComponentToString
utcNow

base64(inputString)

Returns the base64 representation of the input string.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-group-template-functions-string.md

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

inputString Yes string The value to return as a
base64 representation.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringData": {
 "type": "string",
 "defaultValue": "one, two, three"
 },
 "jsonFormattedData": {
 "type": "string",
 "defaultValue": "{'one': 'a', 'two': 'b'}"
 }
 },
 "variables": {
 "base64String": "[base64(parameters('stringData'))]",
 "base64Object": "[base64(parameters('jsonFormattedData'))]"
 },
 "resources": [
],
 "outputs": {
 "base64Output": {
 "type": "string",
 "value": "[variables('base64String')]"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[base64ToString(variables('base64String'))]"
 },
 "toJsonOutput": {
 "type": "object",
 "value": "[base64ToJson(variables('base64Object'))]"
 }
 }
}

NAME TYPE VALUE

base64Output String b25lLCB0d28sIHRocmVl

toStringOutput String one, two, three

toJsonOutput Object {"one": "a", "two": "b"}

base64ToJson

A string containing the base64 representation.

The following example template shows how to use the base64 function.

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/base64.json

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

base64Value Yes string The base64 representation
to convert to a JSON object.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringData": {
 "type": "string",
 "defaultValue": "one, two, three"
 },
 "jsonFormattedData": {
 "type": "string",
 "defaultValue": "{'one': 'a', 'two': 'b'}"
 }
 },
 "variables": {
 "base64String": "[base64(parameters('stringData'))]",
 "base64Object": "[base64(parameters('jsonFormattedData'))]"
 },
 "resources": [
],
 "outputs": {
 "base64Output": {
 "type": "string",
 "value": "[variables('base64String')]"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[base64ToString(variables('base64String'))]"
 },
 "toJsonOutput": {
 "type": "object",
 "value": "[base64ToJson(variables('base64Object'))]"
 }
 }
}

NAME TYPE VALUE

base64Output String b25lLCB0d28sIHRocmVl

toStringOutput String one, two, three

toJsonOutput Object {"one": "a", "two": "b"}

base64tojson

Converts a base64 representation to a JSON object.

A JSON object.

The following example template uses the base64ToJson function to convert a base64 value:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/base64.json

 base64ToString

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

base64Value Yes string The base64 representation
to convert to a string.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringData": {
 "type": "string",
 "defaultValue": "one, two, three"
 },
 "jsonFormattedData": {
 "type": "string",
 "defaultValue": "{'one': 'a', 'two': 'b'}"
 }
 },
 "variables": {
 "base64String": "[base64(parameters('stringData'))]",
 "base64Object": "[base64(parameters('jsonFormattedData'))]"
 },
 "resources": [
],
 "outputs": {
 "base64Output": {
 "type": "string",
 "value": "[variables('base64String')]"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[base64ToString(variables('base64String'))]"
 },
 "toJsonOutput": {
 "type": "object",
 "value": "[base64ToJson(variables('base64Object'))]"
 }
 }
}

NAME TYPE VALUE

base64Output String b25lLCB0d28sIHRocmVl

toStringOutput String one, two, three

base64ToString(base64Value)

Converts a base64 representation to a string.

A string of the converted base64 value.

The following example template uses the base64ToString function to convert a base64 value:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/base64.json

toJsonOutput Object {"one": "a", "two": "b"}

NAME TYPE VALUE

concat

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes string or array The first value for
concatenation.

additional arguments No string Additional values in
sequential order for
concatenation.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "prefix": {
 "type": "string",
 "defaultValue": "prefix"
 }
 },
 "resources": [],
 "outputs": {
 "concatOutput": {
 "value": "[concat(parameters('prefix'), '-', uniqueString(resourceGroup().id))]",
 "type" : "string"
 }
 }
}

NAME TYPE VALUE

concatOutput String prefix-5yj4yjf5mbg72

concat (arg1, arg2, arg3, ...)

Combines multiple string values and returns the concatenated string, or combines multiple arrays and returns the
concatenated array.

A string or array of concatenated values.

The following example template shows how to combine two string values and return a concatenated string.

The output from the preceding example with the default values is:

The following example template shows how to combine two arrays.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/concat-string.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/concat-array.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstArray": {
 "type": "array",
 "defaultValue": [
 "1-1",
 "1-2",
 "1-3"
]
 },
 "secondArray": {
 "type": "array",
 "defaultValue": [
 "2-1",
 "2-2",
 "2-3"
]
 }
 },
 "resources": [
],
 "outputs": {
 "return": {
 "type": "array",
 "value": "[concat(parameters('firstArray'), parameters('secondArray'))]"
 }
 }
}

NAME TYPE VALUE

return Array ["1-1", "1-2", "1-3", "2-1", "2-2", "2-3"]

contains

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

container Yes array, object, or string The value that contains the
value to find.

itemToFind Yes string or int The value to find.

Return valueReturn value

ExamplesExamples

The output from the preceding example with the default values is:

contains (container, itemToFind)

Checks whether an array contains a value, an object contains a key, or a string contains a substring. The string
comparison is case-sensitive. However, when testing if an object contains a key, the comparison is case-insensitive.

True if the item is found; otherwise, False.

The following example template shows how to use contains with different types:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/contains.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringToTest": {
 "type": "string",
 "defaultValue": "OneTwoThree"
 },
 "objectToTest": {
 "type": "object",
 "defaultValue": {"one": "a", "two": "b", "three": "c"}
 },
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "stringTrue": {
 "type": "bool",
 "value": "[contains(parameters('stringToTest'), 'e')]"
 },
 "stringFalse": {
 "type": "bool",
 "value": "[contains(parameters('stringToTest'), 'z')]"
 },
 "objectTrue": {
 "type": "bool",
 "value": "[contains(parameters('objectToTest'), 'one')]"
 },
 "objectFalse": {
 "type": "bool",
 "value": "[contains(parameters('objectToTest'), 'a')]"
 },
 "arrayTrue": {
 "type": "bool",
 "value": "[contains(parameters('arrayToTest'), 'three')]"
 },
 "arrayFalse": {
 "type": "bool",
 "value": "[contains(parameters('arrayToTest'), 'four')]"
 }
 }
}

NAME TYPE VALUE

stringTrue Bool True

stringFalse Bool False

objectTrue Bool True

objectFalse Bool False

arrayTrue Bool True

arrayFalse Bool False

The output from the preceding example with the default values is:

dataUri

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToConvert Yes string The value to convert to a
data URI.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringToTest": {
 "type": "string",
 "defaultValue": "Hello"
 },
 "dataFormattedString": {
 "type": "string",
 "defaultValue": "data:;base64,SGVsbG8sIFdvcmxkIQ=="
 }
 },
 "resources": [],
 "outputs": {
 "dataUriOutput": {
 "value": "[dataUri(parameters('stringToTest'))]",
 "type" : "string"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[dataUriToString(parameters('dataFormattedString'))]"
 }
 }
}

NAME TYPE VALUE

dataUriOutput String data:text/plain;charset=utf8;base64,SGV
sbG8=

toStringOutput String Hello, World!

dataUriToString

dataUri(stringToConvert)

Converts a value to a data URI.

A string formatted as a data URI.

The following example template converts a value to a data URI, and converts a data URI to a string:

The output from the preceding example with the default values is:

dataUriToString(dataUriToConvert)

Converts a data URI formatted value to a string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/datauri.json

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

dataUriToConvert Yes string The data URI value to
convert.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "stringToTest": {
 "type": "string",
 "defaultValue": "Hello"
 },
 "dataFormattedString": {
 "type": "string",
 "defaultValue": "data:;base64,SGVsbG8sIFdvcmxkIQ=="
 }
 },
 "resources": [],
 "outputs": {
 "dataUriOutput": {
 "value": "[dataUri(parameters('stringToTest'))]",
 "type" : "string"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[dataUriToString(parameters('dataFormattedString'))]"
 }
 }
}

NAME TYPE VALUE

dataUriOutput String data:text/plain;charset=utf8;base64,SGV
sbG8=

toStringOutput String Hello, World!

empty

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

A string containing the converted value.

The following example template converts a value to a data URI, and converts a data URI to a string:

The output from the preceding example with the default values is:

empty(itemToTest)

Determines if an array, object, or string is empty.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/datauri.json

itemToTest Yes array, object, or string The value to check if it's
empty.

PARAMETER REQUIRED TYPE DESCRIPTION

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testArray": {
 "type": "array",
 "defaultValue": []
 },
 "testObject": {
 "type": "object",
 "defaultValue": {}
 },
 "testString": {
 "type": "string",
 "defaultValue": ""
 }
 },
 "resources": [
],
 "outputs": {
 "arrayEmpty": {
 "type": "bool",
 "value": "[empty(parameters('testArray'))]"
 },
 "objectEmpty": {
 "type": "bool",
 "value": "[empty(parameters('testObject'))]"
 },
 "stringEmpty": {
 "type": "bool",
 "value": "[empty(parameters('testString'))]"
 }
 }
}

NAME TYPE VALUE

arrayEmpty Bool True

objectEmpty Bool True

stringEmpty Bool True

endsWith

Returns True if the value is empty; otherwise, False.

The following example template checks whether an array, object, and string are empty.

The output from the preceding example with the default values is:

endsWith(stringToSearch, stringToFind)

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/empty.json

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToSearch Yes string The value that contains the
item to find.

stringToFind Yes string The value to find.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "startsTrue": {
 "value": "[startsWith('abcdef', 'ab')]",
 "type" : "bool"
 },
 "startsCapTrue": {
 "value": "[startsWith('abcdef', 'A')]",
 "type" : "bool"
 },
 "startsFalse": {
 "value": "[startsWith('abcdef', 'e')]",
 "type" : "bool"
 },
 "endsTrue": {
 "value": "[endsWith('abcdef', 'ef')]",
 "type" : "bool"
 },
 "endsCapTrue": {
 "value": "[endsWith('abcdef', 'F')]",
 "type" : "bool"
 },
 "endsFalse": {
 "value": "[endsWith('abcdef', 'e')]",
 "type" : "bool"
 }
 }
}

NAME TYPE VALUE

startsTrue Bool True

startsCapTrue Bool True

startsFalse Bool False

endsTrue Bool True

Determines whether a string ends with a value. The comparison is case-insensitive.

True if the last character or characters of the string match the value; otherwise, False.

The following example template shows how to use the startsWith and endsWith functions:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/startsendswith.json

endsCapTrue Bool True

endsFalse Bool False

NAME TYPE VALUE

first

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The value to retrieve the first
element or character.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "arrayOutput": {
 "type": "string",
 "value": "[first(parameters('arrayToTest'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[first('One Two Three')]"
 }
 }
}

NAME TYPE VALUE

arrayOutput String one

stringOutput String O

format

first(arg1)

Returns the first character of the string, or first element of the array.

A string of the first character, or the type (string, int, array, or object) of the first element in an array.

The following example template shows how to use the first function with an array and string.

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/first.json

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

formatString Yes string The composite format string.

arg1 Yes string, integer, or boolean The value to include in the
formatted string.

additional arguments No string, integer, or boolean Additional values to include
in the formatted string.

RemarksRemarks

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "greeting": {
 "type": "string",
 "defaultValue": "Hello"
 },
 "name": {
 "type": "string",
 "defaultValue": "User"
 },
 "numberToFormat": {
 "type": "int",
 "defaultValue": 8175133
 }
 },
 "resources": [
],
 "outputs": {
 "formatTest": {
 "type": "string",
 "value": "[format('{0}, {1}. Formatted number: {2:N0}', parameters('greeting'), parameters('name'),
parameters('numberToFormat'))]"
 }
 }
}

NAME TYPE VALUE

formatTest String Hello, User. Formatted number:
8,175,133

guid

format(formatString, arg1, arg2, ...)

Creates a formatted string from input values.

Use this function to format a string in your template. It uses the same formatting options as the
System.String.Format method in .NET.

The following example template shows how to use the format function.

The output from the preceding example with the default values is:

https://docs.microsoft.com/dotnet/api/system.string.format

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

baseString Yes string The value used in the hash
function to create the GUID.

additional parameters as
needed

No string You can add as many strings
as needed to create the
value that specifies the level
of uniqueness.

RemarksRemarks

"[guid(subscription().subscriptionId)]"

"[guid(resourceGroup().id)]"

"[guid(resourceGroup().id, deployment().name)]"

Return valueReturn value

ExamplesExamples

guid(baseString, ...)

Creates a value in the format of a globally unique identifier based on the values provided as parameters.

This function is helpful when you need to create a value in the format of a globally unique identifier. You provide
parameter values that limit the scope of uniqueness for the result. You can specify whether the name is unique
down to subscription, resource group, or deployment.

The returned value isn't a random string, but rather the result of a hash function on the parameters. The returned
value is 36 characters long. It isn't globally unique. To create a new GUID that isn't based on that hash value of the
parameters, use the newGuid function.

The following examples show how to use guid to create a unique value for commonly used levels.

Unique scoped to subscription

Unique scoped to resource group

Unique scoped to deployment for a resource group

A string containing 36 characters in the format of a globally unique identifier.

The following example template returns results from guid:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/guid.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {},
 "variables": {},
 "resources": [],
 "outputs": {
 "guidPerSubscription": {
 "value": "[guid(subscription().subscriptionId)]",
 "type": "string"
 },
 "guidPerResourceGroup": {
 "value": "[guid(resourceGroup().id)]",
 "type": "string"
 },
 "guidPerDeployment": {
 "value": "[guid(resourceGroup().id, deployment().name)]",
 "type": "string"
 }
 }
}

indexOf

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToSearch Yes string The value that contains the
item to find.

stringToFind Yes string The value to find.

Return valueReturn value

ExamplesExamples

indexOf(stringToSearch, stringToFind)

Returns the first position of a value within a string. The comparison is case-insensitive.

An integer that represents the position of the item to find. The value is zero-based. If the item isn't found, -1 is
returned.

The following example template shows how to use the indexOf and lastIndexOf functions:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/indexof.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "firstT": {
 "value": "[indexOf('test', 't')]",
 "type" : "int"
 },
 "lastT": {
 "value": "[lastIndexOf('test', 't')]",
 "type" : "int"
 },
 "firstString": {
 "value": "[indexOf('abcdef', 'CD')]",
 "type" : "int"
 },
 "lastString": {
 "value": "[lastIndexOf('abcdef', 'AB')]",
 "type" : "int"
 },
 "notFound": {
 "value": "[indexOf('abcdef', 'z')]",
 "type" : "int"
 }
 }
}

NAME TYPE VALUE

firstT Int 0

lastT Int 3

firstString Int 2

lastString Int 0

notFound Int -1

last

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The value to retrieve the last
element or character.

Return valueReturn value

ExamplesExamples

The output from the preceding example with the default values is:

last (arg1)

Returns last character of the string, or the last element of the array.

A string of the last character, or the type (string, int, array, or object) of the last element in an array.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": ["one", "two", "three"]
 }
 },
 "resources": [
],
 "outputs": {
 "arrayOutput": {
 "type": "string",
 "value": "[last(parameters('arrayToTest'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[last('One Two Three')]"
 }
 }
}

NAME TYPE VALUE

arrayOutput String three

stringOutput String e

lastIndexOf

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToSearch Yes string The value that contains the
item to find.

stringToFind Yes string The value to find.

Return valueReturn value

ExamplesExamples

The following example template shows how to use the last function with an array and string.

The output from the preceding example with the default values is:

lastIndexOf(stringToSearch, stringToFind)

Returns the last position of a value within a string. The comparison is case-insensitive.

An integer that represents the last position of the item to find. The value is zero-based. If the item isn't found, -1 is
returned.

The following example template shows how to use the indexOf and lastIndexOf functions:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/last.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/indexof.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "firstT": {
 "value": "[indexOf('test', 't')]",
 "type" : "int"
 },
 "lastT": {
 "value": "[lastIndexOf('test', 't')]",
 "type" : "int"
 },
 "firstString": {
 "value": "[indexOf('abcdef', 'CD')]",
 "type" : "int"
 },
 "lastString": {
 "value": "[lastIndexOf('abcdef', 'AB')]",
 "type" : "int"
 },
 "notFound": {
 "value": "[indexOf('abcdef', 'z')]",
 "type" : "int"
 }
 }
}

NAME TYPE VALUE

firstT Int 0

lastT Int 3

firstString Int 2

lastString Int 0

notFound Int -1

length

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

arg1 Yes array or string The array to use for getting
the number of elements, or
the string to use for getting
the number of characters.

Return valueReturn value

The output from the preceding example with the default values is:

length(string)

Returns the number of characters in a string, or elements in an array.

An int.

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "arrayToTest": {
 "type": "array",
 "defaultValue": [
 "one",
 "two",
 "three"
]
 },
 "stringToTest": {
 "type": "string",
 "defaultValue": "One Two Three"
 }
 },
 "resources": [],
 "outputs": {
 "arrayLength": {
 "type": "int",
 "value": "[length(parameters('arrayToTest'))]"
 },
 "stringLength": {
 "type": "int",
 "value": "[length(parameters('stringToTest'))]"
 }
 }
}

NAME TYPE VALUE

arrayLength Int 3

stringLength Int 13

newGuid

RemarksRemarks

The following example template shows how to use length with an array and string:

The output from the preceding example with the default values is:

newGuid()

Returns a value in the format of a globally unique identifier. This function can only be used in the default
value for a parameter.

You can only use this function within an expression for the default value of a parameter. Using this function
anywhere else in a template returns an error. The function isn't allowed in other parts of the template because it
returns a different value each time it's called. Deploying the same template with the same parameters wouldn't
reliably produce the same results.

The newGuid function differs from the guid function because it doesn't take any parameters. When you call guid
with the same parameter, it returns the same identifier each time. Use guid when you need to reliably generate the
same GUID for a specific environment. Use newGuid when you need a different identifier each time, such as
deploying resources to a test environment.

If you use the option to redeploy an earlier successful deployment, and the earlier deployment includes a

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/length.json

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "guidValue": {
 "type": "string",
 "defaultValue": "[newGuid()]"
 }
 },
 "resources": [
],
 "outputs": {
 "guidOutput": {
 "type": "string",
 "value": "[parameters('guidValue')]"
 }
 }
}

NAME TYPE VALUE

guidOutput string b76a51fc-bd72-4a77-b9a2-
3c29e7d2e551

parameter that uses newGuid, the parameter isn't reevaluated. Instead, the parameter value from the earlier
deployment is automatically reused in the rollback deployment.

In a test environment, you may need to repeatedly deploy resources that only live for a short time. Rather than
constructing unique names, you can use newGuid with uniqueString to create unique names.

Be careful redeploying a template that relies on the newGuid function for a default value. When you redeploy and
don't provide a value for the parameter, the function is reevaluated. If you want to update an existing resource
rather than create a new one, pass in the parameter value from the earlier deployment.

A string containing 36 characters in the format of a globally unique identifier.

The following example template shows a parameter with a new identifier.

The output from the preceding example varies for each deployment but will be similar to:

The following example uses the newGuid function to create a unique name for a storage account. This template
might work for test environment where the storage account exists for a short time and isn't redeployed.

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "guidValue": {
 "type": "string",
 "defaultValue": "[newGuid()]"
 }
 },
 "variables": {
 "storageName": "[concat('storage', uniqueString(parameters('guidValue')))]"
 },
 "resources": [
 {
 "type": "Microsoft.Storage/storageAccounts",
 "name": "[variables('storageName')]",
 "location": "West US",
 "apiVersion": "2018-07-01",
 "sku":{
 "name": "Standard_LRS"
 },
 "kind": "StorageV2",
 "properties": {}
 }
],
 "outputs": {
 "nameOutput": {
 "type": "string",
 "value": "[variables('storageName')]"
 }
 }
}

NAME TYPE VALUE

nameOutput string storagenziwvyru7uxie

padLeft

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

valueToPad Yes string or int The value to right-align.

totalLength Yes int The total number of
characters in the returned
string.

paddingCharacter No single character The character to use for left-
padding until the total
length is reached. The
default value is a space.

The output from the preceding example varies for each deployment but will be similar to:

padLeft(valueToPad, totalLength, paddingCharacter)

Returns a right-aligned string by adding characters to the left until reaching the total specified length.

If the original string is longer than the number of characters to pad, no characters are added.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testString": {
 "type": "string",
 "defaultValue": "123"
 }
 },
 "resources": [],
 "outputs": {
 "stringOutput": {
 "type": "string",
 "value": "[padLeft(parameters('testString'),10,'0')]"
 }
 }
}

NAME TYPE VALUE

stringOutput String 0000000123

replace

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

originalString Yes string The value that has all
instances of one string
replaced by another string.

oldString Yes string The string to be removed
from the original string.

newString Yes string The string to add in place of
the removed string.

Return valueReturn value

ExamplesExamples

A string with at least the number of specified characters.

The following example template shows how to pad the user-provided parameter value by adding the zero
character until it reaches the total number of characters.

The output from the preceding example with the default values is:

replace(originalString, oldString, newString)

Returns a new string with all instances of one string replaced by another string.

A string with the replaced characters.

The following example template shows how to remove all dashes from the user-provided string, and how to
replace part of the string with another string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/padleft.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/replace.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testString": {
 "type": "string",
 "defaultValue": "123-123-1234"
 }
 },
 "resources": [],
 "outputs": {
 "firstOutput": {
 "type": "string",
 "value": "[replace(parameters('testString'),'-', '')]"
 },
 "secondOutput": {
 "type": "string",
 "value": "[replace(parameters('testString'),'1234', 'xxxx')]"
 }
 }
}

NAME TYPE VALUE

firstOutput String 1231231234

secondOutput String 123-123-xxxx

skip

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

originalValue Yes array or string The array or string to use for
skipping.

numberToSkip Yes int The number of elements or
characters to skip. If this
value is 0 or less, all the
elements or characters in the
value are returned. If it's
larger than the length of the
array or string, an empty
array or string is returned.

Return valueReturn value

ExamplesExamples

The output from the preceding example with the default values is:

skip(originalValue, numberToSkip)

Returns a string with all the characters after the specified number of characters, or an array with all the elements
after the specified number of elements.

An array or string.

The following example template skips the specified number of elements in the array, and the specified number of
characters in a string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/skip.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testArray": {
 "type": "array",
 "defaultValue": [
 "one",
 "two",
 "three"
]
 },
 "elementsToSkip": {
 "type": "int",
 "defaultValue": 2
 },
 "testString": {
 "type": "string",
 "defaultValue": "one two three"
 },
 "charactersToSkip": {
 "type": "int",
 "defaultValue": 4
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "array",
 "value": "[skip(parameters('testArray'),parameters('elementsToSkip'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[skip(parameters('testString'),parameters('charactersToSkip'))]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Array ["three"]

stringOutput String two three

split

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

inputString Yes string The string to split.

delimiter Yes string or array of strings The delimiter to use for
splitting the string.

The output from the preceding example with the default values is:

split(inputString, delimiter)

Returns an array of strings that contains the substrings of the input string that are delimited by the specified
delimiters.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "firstString": {
 "type": "string",
 "defaultValue": "one,two,three"
 },
 "secondString": {
 "type": "string",
 "defaultValue": "one;two,three"
 }
 },
 "variables": {
 "delimiters": [",", ";"]
 },
 "resources": [],
 "outputs": {
 "firstOutput": {
 "type": "array",
 "value": "[split(parameters('firstString'),',')]"
 },
 "secondOutput": {
 "type": "array",
 "value": "[split(parameters('secondString'),variables('delimiters'))]"
 }
 }
}

NAME TYPE VALUE

firstOutput Array ["one", "two", "three"]

secondOutput Array ["one", "two", "three"]

startsWith

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToSearch Yes string The value that contains the
item to find.

stringToFind Yes string The value to find.

Return valueReturn value

An array of strings.

The following example template splits the input string with a comma, and with either a comma or a semi-colon.

The output from the preceding example with the default values is:

startsWith(stringToSearch, stringToFind)

Determines whether a string starts with a value. The comparison is case-insensitive.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/split.json

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "startsTrue": {
 "value": "[startsWith('abcdef', 'ab')]",
 "type" : "bool"
 },
 "startsCapTrue": {
 "value": "[startsWith('abcdef', 'A')]",
 "type" : "bool"
 },
 "startsFalse": {
 "value": "[startsWith('abcdef', 'e')]",
 "type" : "bool"
 },
 "endsTrue": {
 "value": "[endsWith('abcdef', 'ef')]",
 "type" : "bool"
 },
 "endsCapTrue": {
 "value": "[endsWith('abcdef', 'F')]",
 "type" : "bool"
 },
 "endsFalse": {
 "value": "[endsWith('abcdef', 'e')]",
 "type" : "bool"
 }
 }
}

NAME TYPE VALUE

startsTrue Bool True

startsCapTrue Bool True

startsFalse Bool False

endsTrue Bool True

endsCapTrue Bool True

endsFalse Bool False

string

ParametersParameters

True if the first character or characters of the string match the value; otherwise, False.

The following example template shows how to use the startsWith and endsWith functions:

The output from the preceding example with the default values is:

string(valueToConvert)

Converts the specified value to a string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/startsendswith.json

PARAMETER REQUIRED TYPE DESCRIPTION

valueToConvert Yes Any The value to convert to
string. Any type of value can
be converted, including
objects and arrays.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testObject": {
 "type": "object",
 "defaultValue": {
 "valueA": 10,
 "valueB": "Example Text"
 }
 },
 "testArray": {
 "type": "array",
 "defaultValue": [
 "a",
 "b",
 "c"
]
 },
 "testInt": {
 "type": "int",
 "defaultValue": 5
 }
 },
 "resources": [],
 "outputs": {
 "objectOutput": {
 "type": "string",
 "value": "[string(parameters('testObject'))]"
 },
 "arrayOutput": {
 "type": "string",
 "value": "[string(parameters('testArray'))]"
 },
 "intOutput": {
 "type": "string",
 "value": "[string(parameters('testInt'))]"
 }
 }
}

NAME TYPE VALUE

objectOutput String {"valueA":10,"valueB":"Example Text"}

arrayOutput String ["a","b","c"]

A string of the converted value.

The following example template shows how to convert different types of values to strings:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/string.json

intOutput String 5

NAME TYPE VALUE

substring

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToParse Yes string The original string from
which the substring is
extracted.

startIndex No int The zero-based starting
character position for the
substring.

length No int The number of characters for
the substring. Must refer to
a location within the string.
Must be zero or greater.

Return valueReturn value

RemarksRemarks

"parameters": {
 "inputString": { "type": "string", "value": "1234567890" }
},
"variables": {
 "prefix": "[substring(parameters('inputString'), 0, 11)]"
}

ExamplesExamples

substring(stringToParse, startIndex, length)

Returns a substring that starts at the specified character position and contains the specified number of characters.

The substring. Or, an empty string if the length is zero.

The function fails when the substring extends beyond the end of the string, or when length is less than zero. The
following example fails with the error "The index and length parameters must refer to a location within the string.
The index parameter: '0', the length parameter: '11', the length of the string parameter: '10'.".

The following example template extracts a substring from a parameter.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/substring.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testString": {
 "type": "string",
 "defaultValue": "one two three"
 }
 },
 "resources": [],
 "outputs": {
 "substringOutput": {
 "value": "[substring(parameters('testString'), 4, 3)]",
 "type": "string"
 }
 }
}

NAME TYPE VALUE

substringOutput String two

take

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

originalValue Yes array or string The array or string to take
the elements from.

numberToTake Yes int The number of elements or
characters to take. If this
value is 0 or less, an empty
array or string is returned. If
it's larger than the length of
the given array or string, all
the elements in the array or
string are returned.

Return valueReturn value

ExamplesExamples

The output from the preceding example with the default values is:

take(originalValue, numberToTake)

Returns a string with the specified number of characters from the start of the string, or an array with the specified
number of elements from the start of the array.

An array or string.

The following example template takes the specified number of elements from the array, and characters from a
string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/take.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testArray": {
 "type": "array",
 "defaultValue": [
 "one",
 "two",
 "three"
]
 },
 "elementsToTake": {
 "type": "int",
 "defaultValue": 2
 },
 "testString": {
 "type": "string",
 "defaultValue": "one two three"
 },
 "charactersToTake": {
 "type": "int",
 "defaultValue": 2
 }
 },
 "resources": [],
 "outputs": {
 "arrayOutput": {
 "type": "array",
 "value": "[take(parameters('testArray'),parameters('elementsToTake'))]"
 },
 "stringOutput": {
 "type": "string",
 "value": "[take(parameters('testString'),parameters('charactersToTake'))]"
 }
 }
}

NAME TYPE VALUE

arrayOutput Array ["one", "two"]

stringOutput String on

toLower

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToChange Yes string The value to convert to
lower case.

Return valueReturn value

The output from the preceding example with the default values is:

toLower(stringToChange)

Converts the specified string to lower case.

The string converted to lower case.

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testString": {
 "type": "string",
 "defaultValue": "One Two Three"
 }
 },
 "resources": [],
 "outputs": {
 "toLowerOutput": {
 "value": "[toLower(parameters('testString'))]",
 "type": "string"
 },
 "toUpperOutput": {
 "type": "string",
 "value": "[toUpper(parameters('testString'))]"
 }
 }
}

NAME TYPE VALUE

toLowerOutput String one two three

toUpperOutput String ONE TWO THREE

toUpper

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToChange Yes string The value to convert to
upper case.

Return valueReturn value

ExamplesExamples

The following example template converts a parameter value to lower case and to upper case.

The output from the preceding example with the default values is:

toUpper(stringToChange)

Converts the specified string to upper case.

The string converted to upper case.

The following example template converts a parameter value to lower case and to upper case.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/tolower.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/tolower.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testString": {
 "type": "string",
 "defaultValue": "One Two Three"
 }
 },
 "resources": [],
 "outputs": {
 "toLowerOutput": {
 "value": "[toLower(parameters('testString'))]",
 "type": "string"
 },
 "toUpperOutput": {
 "type": "string",
 "value": "[toUpper(parameters('testString'))]"
 }
 }
}

NAME TYPE VALUE

toLowerOutput String one two three

toUpperOutput String ONE TWO THREE

trim

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToTrim Yes string The value to trim.

Return valueReturn value

ExamplesExamples

The output from the preceding example with the default values is:

trim (stringToTrim)

Removes all leading and trailing white-space characters from the specified string.

The string without leading and trailing white-space characters.

The following example template trims the white-space characters from the parameter.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/trim.json

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "testString": {
 "type": "string",
 "defaultValue": " one two three "
 }
 },
 "resources": [],
 "outputs": {
 "return": {
 "type": "string",
 "value": "[trim(parameters('testString'))]"
 }
 }
}

NAME TYPE VALUE

return String one two three

uniqueString

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

baseString Yes string The value used in the hash
function to create a unique
string.

additional parameters as
needed

No string You can add as many strings
as needed to create the
value that specifies the level
of uniqueness.

RemarksRemarks

tcvhiyu5h2o5o

The output from the preceding example with the default values is:

uniqueString (baseString, ...)

Creates a deterministic hash string based on the values provided as parameters.

This function is helpful when you need to create a unique name for a resource. You provide parameter values that
limit the scope of uniqueness for the result. You can specify whether the name is unique down to subscription,
resource group, or deployment.

The returned value isn't a random string, but rather the result of a hash function. The returned value is 13
characters long. It isn't globally unique. You may want to combine the value with a prefix from your naming
convention to create a name that is meaningful. The following example shows the format of the returned value. The
actual value varies by the provided parameters.

The following examples show how to use uniqueString to create a unique value for commonly used levels.

"[uniqueString(subscription().subscriptionId)]"

"[uniqueString(resourceGroup().id)]"

"[uniqueString(resourceGroup().id, deployment().name)]"

"resources": [{
 "name": "[concat('storage', uniqueString(resourceGroup().id))]",
 "type": "Microsoft.Storage/storageAccounts",
 ...

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "resources": [],
 "outputs": {
 "uniqueRG": {
 "value": "[uniqueString(resourceGroup().id)]",
 "type" : "string"
 },
 "uniqueDeploy": {
 "value": "[uniqueString(resourceGroup().id, deployment().name)]",
 "type" : "string"
 }
 }
}

uri

ParametersParameters

Unique scoped to subscription

Unique scoped to resource group

Unique scoped to deployment for a resource group

The following example shows how to create a unique name for a storage account based on your resource group.
Inside the resource group, the name isn't unique if constructed the same way.

If you need to create a new unique name each time you deploy a template, and don't intend to update the resource,
you can use the utcNow function with uniqueString. You could use this approach in a test environment. For an
example, see utcNow.

A string containing 13 characters.

The following example template returns results from uniquestring:

uri (baseUri, relativeUri)

Creates an absolute URI by combining the baseUri and the relativeUri string.

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/uniquestring.json

PARAMETER REQUIRED TYPE DESCRIPTION

baseUri Yes string The base uri string.

relativeUri Yes string The relative uri string to add
to the base uri string.

Return valueReturn value

ExamplesExamples

"templateLink": "[uri(deployment().properties.templateLink.uri, 'nested/azuredeploy.json')]"

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "variables": {
 "uriFormat": "[uri('http://contoso.com/resources/', 'nested/azuredeploy.json')]",
 "uriEncoded": "[uriComponent(variables('uriFormat'))]"
 },
 "resources": [
],
 "outputs": {
 "uriOutput": {
 "type": "string",
 "value": "[variables('uriFormat')]"
 },
 "componentOutput": {
 "type": "string",
 "value": "[variables('uriEncoded')]"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[uriComponentToString(variables('uriEncoded'))]"
 }
 }
}

NAME TYPE VALUE

uriOutput String http://contoso.com/resources/nested/az
uredeploy.json

componentOutput String http%3A%2F%2Fcontoso.com%2Fresou
rces%2Fnested%2Fazuredeploy.json

The value for the baseUri parameter can include a specific file, but only the base path is used when constructing
the URI. For example, passing http://contoso.com/resources/azuredeploy.json as the baseUri parameter results in a
base URI of http://contoso.com/resources/ .

A string representing the absolute URI for the base and relative values.

The following example shows how to construct a link to a nested template based on the value of the parent
template.

The following example template shows how to use uri, uriComponent, and uriComponentToString:

The output from the preceding example with the default values is:

https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/uri.json
http://contoso.com/resources/nested/azuredeploy.json

toStringOutput String http://contoso.com/resources/nested/az
uredeploy.json

NAME TYPE VALUE

uriComponent

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

stringToEncode Yes string The value to encode.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "variables": {
 "uriFormat": "[uri('http://contoso.com/resources/', 'nested/azuredeploy.json')]",
 "uriEncoded": "[uriComponent(variables('uriFormat'))]"
 },
 "resources": [
],
 "outputs": {
 "uriOutput": {
 "type": "string",
 "value": "[variables('uriFormat')]"
 },
 "componentOutput": {
 "type": "string",
 "value": "[variables('uriEncoded')]"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[uriComponentToString(variables('uriEncoded'))]"
 }
 }
}

NAME TYPE VALUE

uriOutput String http://contoso.com/resources/nested/az
uredeploy.json

componentOutput String http%3A%2F%2Fcontoso.com%2Fresou
rces%2Fnested%2Fazuredeploy.json

uricomponent(stringToEncode)

Encodes a URI.

A string of the URI encoded value.

The following example template shows how to use uri, uriComponent, and uriComponentToString:

The output from the preceding example with the default values is:

http://contoso.com/resources/nested/azuredeploy.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/uri.json
http://contoso.com/resources/nested/azuredeploy.json

toStringOutput String http://contoso.com/resources/nested/az
uredeploy.json

NAME TYPE VALUE

uriComponentToString

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

uriEncodedString Yes string The URI encoded value to
convert to a string.

Return valueReturn value

ExamplesExamples

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "variables": {
 "uriFormat": "[uri('http://contoso.com/resources/', 'nested/azuredeploy.json')]",
 "uriEncoded": "[uriComponent(variables('uriFormat'))]"
 },
 "resources": [
],
 "outputs": {
 "uriOutput": {
 "type": "string",
 "value": "[variables('uriFormat')]"
 },
 "componentOutput": {
 "type": "string",
 "value": "[variables('uriEncoded')]"
 },
 "toStringOutput": {
 "type": "string",
 "value": "[uriComponentToString(variables('uriEncoded'))]"
 }
 }
}

NAME TYPE VALUE

uriOutput String http://contoso.com/resources/nested/az
uredeploy.json

componentOutput String http%3A%2F%2Fcontoso.com%2Fresou
rces%2Fnested%2Fazuredeploy.json

uriComponentToString(uriEncodedString)

Returns a string of a URI encoded value.

A decoded string of URI encoded value.

The following example template shows how to use uri, uriComponent, and uriComponentToString:

The output from the preceding example with the default values is:

http://contoso.com/resources/nested/azuredeploy.json
https://github.com/Azure/azure-docs-json-samples/blob/master/azure-resource-manager/functions/uri.json
http://contoso.com/resources/nested/azuredeploy.json

toStringOutput String http://contoso.com/resources/nested/az
uredeploy.json

NAME TYPE VALUE

utcNow

ParametersParameters

PARAMETER REQUIRED TYPE DESCRIPTION

format No string The URI encoded value to
convert to a string. Use
either standard format
strings or custom format
strings.

RemarksRemarks

Return valueReturn value

ExamplesExamples

utcNow(format)

Returns the current (UTC) datetime value in the specified format. If no format is provided, the ISO 8601
(yyyyMMddTHHmmssZ) format is used. This function can only be used in the default value for a parameter.

You can only use this function within an expression for the default value of a parameter. Using this function
anywhere else in a template returns an error. The function isn't allowed in other parts of the template because it
returns a different value each time it's called. Deploying the same template with the same parameters wouldn't
reliably produce the same results.

If you use the option to redeploy an earlier successful deployment, and the earlier deployment includes a
parameter that uses utcNow, the parameter isn't reevaluated. Instead, the parameter value from the earlier
deployment is automatically reused in the rollback deployment.

Be careful redeploying a template that relies on the utcNow function for a default value. When you redeploy and
don't provide a value for the parameter, the function is reevaluated. If you want to update an existing resource
rather than create a new one, pass in the parameter value from the earlier deployment.

The current UTC datetime value.

The following example template shows different formats for the datetime value.

http://contoso.com/resources/nested/azuredeploy.json
https://docs.microsoft.com/dotnet/standard/base-types/standard-date-and-time-format-strings
https://docs.microsoft.com/dotnet/standard/base-types/custom-date-and-time-format-strings

{
 "$schema": "https://schema.management.azure.com/schemas/2015-01-01/deploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "utcValue": {
 "type": "string",
 "defaultValue": "[utcNow()]"
 },
 "utcShortValue": {
 "type": "string",
 "defaultValue": "[utcNow('d')]"
 },
 "utcCustomValue": {
 "type": "string",
 "defaultValue": "[utcNow('M d')]"
 }
 },
 "resources": [
],
 "outputs": {
 "utcOutput": {
 "type": "string",
 "value": "[parameters('utcValue')]"
 },
 "utcShortOutput": {
 "type": "string",
 "value": "[parameters('utcShortValue')]"
 },
 "utcCustomOutput": {
 "type": "string",
 "value": "[parameters('utcCustomValue')]"
 }
 }
}

NAME TYPE VALUE

utcOutput string 20190305T175318Z

utcShortOutput string 03/05/2019

utcCustomOutput string 3 5

The output from the preceding example varies for each deployment but will be similar to:

The next example shows how to use a value from the function when setting a tag value.

{
 "$schema": "https://schema.management.azure.com/schemas/2018-05-01/subscriptionDeploymentTemplate.json#",
 "contentVersion": "1.0.0.0",
 "parameters": {
 "utcShort": {
 "type": "string",
 "defaultValue": "[utcNow('d')]"
 },
 "rgName": {
 "type": "string"
 }
 },
 "resources": [
 {
 "type": "Microsoft.Resources/resourceGroups",
 "apiVersion": "2018-05-01",
 "name": "[parameters('rgName')]",
 "location": "westeurope",
 "tags":{
 "createdDate": "[parameters('utcShort')]"
 },
 "properties":{}
 }
],
 "outputs": {
 "utcShort": {
 "type": "string",
 "value": "[parameters('utcShort')]"
 }
 }
}

Next steps
For a description of the sections in an Azure Resource Manager template, see Authoring Azure Resource
Manager templates.
To merge multiple templates, see Using linked templates with Azure Resource Manager.
To iterate a specified number of times when creating a type of resource, see Create multiple instances of
resources in Azure Resource Manager.
To see how to deploy the template you've created, see Deploy an application with Azure Resource Manager
template.

Deletion of Azure resources for complete mode
deployments
7/17/2019 • 11 minutes to read • Edit Online

Microsoft.AAD
RESOURCE TYPE COMPLETE MODE DELETION

DomainServices Yes

DomainServices/oucontainer No

microsoft.aadiam
RESOURCE TYPE COMPLETE MODE DELETION

diagnosticSettings No

diagnosticSettingsCategories No

Microsoft.Addons
RESOURCE TYPE COMPLETE MODE DELETION

supportProviders No

Microsoft.ADHybridHealthService
RESOURCE TYPE COMPLETE MODE DELETION

aadsupportcases No

addsservices No

agents No

This article describes how resource types handle deletion when not in a template that is deployed in complete
mode.

The resource types marked with Yes are deleted when the type isn't in the template deployed with complete
mode.

The resource types marked with No aren't automatically deleted when not in the template; however, they're
deleted if the parent resource is deleted. For a full description of the behavior, see Azure Resource Manager
deployment modes.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/complete-mode-deletion.md

anonymousapiusers No

configuration No

logs No

reports No

services No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.Advisor
RESOURCE TYPE COMPLETE MODE DELETION

configurations No

generateRecommendations No

recommendations No

suppressions No

Microsoft.AlertsManagement
RESOURCE TYPE COMPLETE MODE DELETION

actionRules No

alerts No

alertsList No

alertsSummary No

alertsSummaryList No

smartDetectorAlertRules No

smartDetectorRuntimeEnvironments No

smartGroups No

Microsoft.AnalysisServices
RESOURCE TYPE COMPLETE MODE DELETION

servers Yes

Microsoft.ApiManagement
RESOURCE TYPE COMPLETE MODE DELETION

reportFeedback No

service Yes

validateServiceName No

Microsoft.Attestation
RESOURCE TYPE COMPLETE MODE DELETION

attestationProviders No

Microsoft.Authorization
RESOURCE TYPE COMPLETE MODE DELETION

classicAdministrators No

denyAssignments No

elevateAccess No

locks No

permissions No

policyAssignments No

policyDefinitions No

policySetDefinitions No

providerOperations No

roleAssignments No

roleDefinitions No

Microsoft.Automation
RESOURCE TYPE COMPLETE MODE DELETION

automationAccounts Yes

automationAccounts/configurations Yes

automationAccounts/jobs No

automationAccounts/runbooks Yes

automationAccounts/softwareUpdateConfigurations No

automationAccounts/webhooks No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.Azure.Geneva
RESOURCE TYPE COMPLETE MODE DELETION

environments No

environments/accounts No

environments/accounts/namespaces No

environments/accounts/namespaces/configurations No

Microsoft.AzureActiveDirectory
RESOURCE TYPE COMPLETE MODE DELETION

b2cDirectories Yes

Microsoft.AzureStack
RESOURCE TYPE COMPLETE MODE DELETION

registrations Yes

registrations/customerSubscriptions No

registrations/products No

Microsoft.Batch
RESOURCE TYPE COMPLETE MODE DELETION

batchAccounts Yes

Microsoft.Billing
RESOURCE TYPE COMPLETE MODE DELETION

billingAccounts No

billingAccounts/billingProfiles No

billingAccounts/billingProfiles/billingSubscriptions No

billingAccounts/billingProfiles/invoices No

billingAccounts/billingProfiles/invoices/pricesheet No

billingAccounts/billingProfiles/operationStatus No

billingAccounts/billingProfiles/paymentMethods No

billingAccounts/billingProfiles/policies No

billingAccounts/billingProfiles/pricesheet No

billingAccounts/billingProfiles/products No

billingAccounts/billingProfiles/transactions No

billingAccounts/billingSubscriptions No

billingAccounts/departments No

billingAccounts/eligibleOffers No

billingAccounts/enrollmentAccounts No

billingAccounts/invoices No

billingAccounts/invoiceSections No

billingAccounts/invoiceSections/billingSubscriptions No

billingAccounts/invoiceSections/billingSubscriptions/transfer No

billingAccounts/invoiceSections/importRequests No

billingAccounts/invoiceSections/initiateImportRequest No

billingAccounts/invoiceSections/initiateTransfer No

billingAccounts/invoiceSections/operationStatus No

billingAccounts/invoiceSections/products No

billingAccounts/invoiceSections/transfers No

billingAccounts/products No

RESOURCE TYPE COMPLETE MODE DELETION

billingAccounts/projects No

billingAccounts/projects/billingSubscriptions No

billingAccounts/projects/importRequests No

billingAccounts/projects/initiateImportRequest No

billingAccounts/projects/operationStatus No

billingAccounts/projects/products No

billingAccounts/transactions No

billingPeriods No

BillingPermissions No

billingProperty No

BillingRoleAssignments No

BillingRoleDefinitions No

CreateBillingRoleAssignment No

departments No

enrollmentAccounts No

importRequests No

importRequests/acceptImportRequest No

importRequests/declineImportRequest No

invoices No

transfers No

transfers/acceptTransfer No

transfers/declineTransfer No

transfers/operationStatus No

usagePlans No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.BingMaps

RESOURCE TYPE COMPLETE MODE DELETION

mapApis Yes

updateCommunicationPreference No

Microsoft.BizTalkServices
RESOURCE TYPE COMPLETE MODE DELETION

BizTalk Yes

Microsoft.Blueprint
RESOURCE TYPE COMPLETE MODE DELETION

blueprintAssignments No

blueprintAssignments/assignmentOperations No

blueprintAssignments/operations No

blueprints No

blueprints/artifacts No

blueprints/versions No

blueprints/versions/artifacts No

Microsoft.BotService
RESOURCE TYPE COMPLETE MODE DELETION

botServices Yes

botServices/channels No

botServices/connections No

Microsoft.Cache
RESOURCE TYPE COMPLETE MODE DELETION

Redis Yes

RedisConfigDefinition No

Microsoft.Capacity

RESOURCE TYPE COMPLETE MODE DELETION

appliedReservations No

calculatePrice No

catalogs No

commercialReservationOrders No

reservationOrders No

reservationOrders/calculateRefund No

reservationOrders/merge No

reservationOrders/reservations No

reservationOrders/reservations/revisions No

reservationOrders/return No

reservationOrders/split No

reservationOrders/swap No

reservations No

resources No

validateReservationOrder No

Microsoft.Cdn
RESOURCE TYPE COMPLETE MODE DELETION

edgenodes No

profiles Yes

profiles/endpoints Yes

profiles/endpoints/customdomains No

profiles/endpoints/origins No

validateProbe No

Microsoft.CertificateRegistration

RESOURCE TYPE COMPLETE MODE DELETION

certificateOrders Yes

certificateOrders/certificates No

validateCertificateRegistrationInformation No

Microsoft.ClassicCompute
RESOURCE TYPE COMPLETE MODE DELETION

capabilities No

domainNames No

domainNames/capabilities No

domainNames/internalLoadBalancers No

domainNames/serviceCertificates No

domainNames/slots No

domainNames/slots/roles No

moveSubscriptionResources No

operatingSystemFamilies No

operatingSystems No

quotas No

resourceTypes No

validateSubscriptionMoveAvailability No

virtualMachines No

virtualMachines/diagnosticSettings No

Microsoft.ClassicInfrastructureMigrate
RESOURCE TYPE COMPLETE MODE DELETION

classicInfrastructureResources No

Microsoft.ClassicNetwork

RESOURCE TYPE COMPLETE MODE DELETION

capabilities No

expressRouteCrossConnections No

expressRouteCrossConnections/peerings No

gatewaySupportedDevices No

networkSecurityGroups No

quotas No

reservedIps No

virtualNetworks No

virtualNetworks/remoteVirtualNetworkPeeringProxies No

virtualNetworks/virtualNetworkPeerings No

Microsoft.ClassicStorage
RESOURCE TYPE COMPLETE MODE DELETION

capabilities No

disks No

images No

osImages No

osPlatformImages No

publicImages No

quotas No

storageAccounts No

storageAccounts/services No

storageAccounts/services/diagnosticSettings No

storageAccounts/vmImages No

vmImages No

Microsoft.CognitiveServices

RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

Microsoft.Commerce
RESOURCE TYPE COMPLETE MODE DELETION

RateCard No

UsageAggregates No

Microsoft.Compute
RESOURCE TYPE COMPLETE MODE DELETION

availabilitySets Yes

disks Yes

images Yes

restorePointCollections Yes

restorePointCollections/restorePoints No

sharedVMImages Yes

sharedVMImages/versions Yes

snapshots Yes

virtualMachines Yes

virtualMachines/diagnosticSettings No

virtualMachines/extensions Yes

virtualMachineScaleSets Yes

virtualMachineScaleSets/extensions No

virtualMachineScaleSets/networkInterfaces No

virtualMachineScaleSets/publicIPAddresses No

virtualMachineScaleSets/virtualMachines No

virtualMachineScaleSets/virtualMachines/networkInterfaces No

Microsoft.Consumption
RESOURCE TYPE COMPLETE MODE DELETION

AggregatedCost No

Balances No

Budgets No

Charges No

CostTags No

credits No

events No

Forecasts No

lots No

Marketplaces No

Pricesheets No

products No

ReservationDetails No

ReservationRecommendations No

ReservationSummaries No

ReservationTransactions No

Tags No

Terms No

UsageDetails No

Microsoft.ContainerInstance
RESOURCE TYPE COMPLETE MODE DELETION

containerGroups Yes

serviceAssociationLinks No

Microsoft.ContainerRegistry

RESOURCE TYPE COMPLETE MODE DELETION

registries Yes

registries/builds No

registries/builds/cancel No

registries/builds/getLogLink No

registries/buildTasks Yes

registries/buildTasks/steps No

registries/eventGridFilters No

registries/getBuildSourceUploadUrl No

registries/GetCredentials No

registries/importImage No

registries/queueBuild No

registries/regenerateCredential No

registries/regenerateCredentials No

registries/replications Yes

registries/runs No

registries/runs/cancel No

registries/scheduleRun No

registries/tasks Yes

registries/updatePolicies No

registries/webhooks Yes

registries/webhooks/getCallbackConfig No

registries/webhooks/ping No

Microsoft.ContainerService
RESOURCE TYPE COMPLETE MODE DELETION

containerServices Yes

managedClusters Yes

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.ContentModerator
RESOURCE TYPE COMPLETE MODE DELETION

applications Yes

updateCommunicationPreference No

Microsoft.CortanaAnalytics
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

Microsoft.CostManagement
RESOURCE TYPE COMPLETE MODE DELETION

Alerts No

BillingAccounts No

Connectors Yes

Departments No

Dimensions No

EnrollmentAccounts No

Query No

register No

Reportconfigs No

Reports No

Microsoft.CustomerInsights
RESOURCE TYPE COMPLETE MODE DELETION

hubs Yes

hubs/authorizationPolicies No

hubs/connectors No

hubs/connectors/mappings No

hubs/interactions No

hubs/kpi No

hubs/links No

hubs/profiles No

hubs/roleAssignments No

hubs/roles No

hubs/suggestTypeSchema No

hubs/views No

hubs/widgetTypes No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.DataBox
RESOURCE TYPE COMPLETE MODE DELETION

jobs Yes

Microsoft.DataBoxEdge
RESOURCE TYPE COMPLETE MODE DELETION

DataBoxEdgeDevices Yes

Microsoft.Databricks
RESOURCE TYPE COMPLETE MODE DELETION

workspaces Yes

workspaces/virtualNetworkPeerings No

Microsoft.DataCatalog
RESOURCE TYPE COMPLETE MODE DELETION

catalogs Yes

Microsoft.DataConnect
RESOURCE TYPE COMPLETE MODE DELETION

connectionManagers Yes

Microsoft.DataFactory
RESOURCE TYPE COMPLETE MODE DELETION

dataFactories Yes

dataFactories/diagnosticSettings No

dataFactorySchema No

factories Yes

factories/integrationRuntimes No

Microsoft.DataLakeAnalytics
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

accounts/dataLakeStoreAccounts No

accounts/storageAccounts No

accounts/storageAccounts/containers No

Microsoft.DataLakeStore
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

accounts/eventGridFilters No

accounts/firewallRules No

Microsoft.DataMigration
RESOURCE TYPE COMPLETE MODE DELETION

services Yes

services/projects Yes

Microsoft.DBforMariaDB
RESOURCE TYPE COMPLETE MODE DELETION

servers Yes

servers/recoverableServers No

servers/virtualNetworkRules No

Microsoft.DBforMySQL
RESOURCE TYPE COMPLETE MODE DELETION

servers Yes

servers/recoverableServers No

servers/virtualNetworkRules No

Microsoft.DBforPostgreSQL
RESOURCE TYPE COMPLETE MODE DELETION

servers Yes

servers/advisors No

servers/queryTexts No

servers/recoverableServers No

servers/topQueryStatistics No

servers/virtualNetworkRules No

servers/waitStatistics No

Microsoft.Devices
RESOURCE TYPE COMPLETE MODE DELETION

IotHubs Yes

IotHubs/eventGridFilters No

ProvisioningServices Yes

usages No

Microsoft.DevSpaces
RESOURCE TYPE COMPLETE MODE DELETION

controllers Yes

Microsoft.DevTestLab
RESOURCE TYPE COMPLETE MODE DELETION

labs Yes

labs/serviceRunners Yes

labs/virtualMachines Yes

schedules Yes

Microsoft.DocumentDB
RESOURCE TYPE COMPLETE MODE DELETION

databaseAccountNames No

databaseAccounts Yes

Microsoft.DomainRegistration
RESOURCE TYPE COMPLETE MODE DELETION

domains Yes

domains/domainOwnershipIdentifiers No

generateSsoRequest No

topLevelDomains No

validateDomainRegistrationInformation No

Microsoft.DynamicsLcs
RESOURCE TYPE COMPLETE MODE DELETION

lcsprojects No

lcsprojects/clouddeployments No

lcsprojects/connectors No

Microsoft.EventGrid
RESOURCE TYPE COMPLETE MODE DELETION

domains Yes

domains/topics No

eventSubscriptions No

extensionTopics No

topics Yes

topicTypes No

Microsoft.EventHub
RESOURCE TYPE COMPLETE MODE DELETION

clusters Yes

namespaces Yes

namespaces/authorizationrules No

namespaces/disasterrecoveryconfigs No

namespaces/eventhubs No

namespaces/eventhubs/authorizationrules No

namespaces/eventhubs/consumergroups No

Microsoft.Features
RESOURCE TYPE COMPLETE MODE DELETION

features No

providers No

Microsoft.Gallery
RESOURCE TYPE COMPLETE MODE DELETION

enroll No

galleryitems No

generateartifactaccessuri No

myareas No

myareas/areas No

myareas/areas/areas No

myareas/areas/areas/galleryitems No

myareas/areas/galleryitems No

myareas/galleryitems No

register No

resources No

retrieveresourcesbyid No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.GuestConfiguration
RESOURCE TYPE COMPLETE MODE DELETION

guestConfigurationAssignments No

software No

Microsoft.HanaOnAzure
RESOURCE TYPE COMPLETE MODE DELETION

hanaInstances Yes

Microsoft.HDInsight
RESOURCE TYPE COMPLETE MODE DELETION

clusters Yes

clusters/applications No

Microsoft.ImportExport
RESOURCE TYPE COMPLETE MODE DELETION

jobs Yes

Microsoft.InformationProtection
RESOURCE TYPE COMPLETE MODE DELETION

labelGroups No

labelGroups/labels No

labelGroups/labels/conditions No

labelGroups/labels/subLabels No

labelGroups/labels/subLabels/conditions No

microsoft.insights
RESOURCE TYPE COMPLETE MODE DELETION

actiongroups Yes

activityLogAlerts Yes

alertrules Yes

automatedExportSettings No

autoscalesettings Yes

baseline No

calculatebaseline No

components Yes

components/events No

components/pricingPlans No

components/query No

diagnosticSettings No

diagnosticSettingsCategories No

eventCategories No

eventtypes No

extendedDiagnosticSettings No

logDefinitions No

logprofiles No

logs No

metricAlerts Yes

migrateToNewPricingModel No

myWorkbooks No

queries No

rollbackToLegacyPricingModel No

scheduledqueryrules Yes

vmInsightsOnboardingStatuses No

webtests Yes

workbooks Yes

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.Intune
RESOURCE TYPE COMPLETE MODE DELETION

diagnosticSettings No

diagnosticSettingsCategories No

Microsoft.IoTCentral
RESOURCE TYPE COMPLETE MODE DELETION

IoTApps Yes

Microsoft.IoTSpaces
RESOURCE TYPE COMPLETE MODE DELETION

Graph Yes

Microsoft.KeyVault
RESOURCE TYPE COMPLETE MODE DELETION

deletedVaults No

vaults Yes

vaults/accessPolicies No

vaults/secrets No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.Kusto
RESOURCE TYPE COMPLETE MODE DELETION

clusters Yes

clusters/databases No

clusters/databases/dataconnections No

clusters/databases/eventhubconnections No

Microsoft.LabServices
RESOURCE TYPE COMPLETE MODE DELETION

labaccounts Yes

users No

Microsoft.LocationBasedServices
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

Microsoft.LocationServices
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

Microsoft.LogAnalytics
RESOURCE TYPE COMPLETE MODE DELETION

logs No

Microsoft.Logic

RESOURCE TYPE COMPLETE MODE DELETION

integrationAccounts Yes

workflows Yes

Microsoft.MachineLearning
RESOURCE TYPE COMPLETE MODE DELETION

commitmentPlans Yes

webServices Yes

Workspaces Yes

Microsoft.MachineLearningExperimentation
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

accounts/workspaces Yes

accounts/workspaces/projects Yes

teamAccounts Yes

teamAccounts/workspaces Yes

teamAccounts/workspaces/projects Yes

Microsoft.MachineLearningModelManagement
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

Microsoft.MachineLearningServices
RESOURCE TYPE COMPLETE MODE DELETION

workspaces Yes

workspaces/computes No

Microsoft.ManagedIdentity

RESOURCE TYPE COMPLETE MODE DELETION

Identities No

userAssignedIdentities Yes

Microsoft.Management
RESOURCE TYPE COMPLETE MODE DELETION

getEntities No

managementGroups No

resources No

startTenantBackfill No

tenantBackfillStatus No

Microsoft.Maps
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

accounts/eventGridFilters No

Microsoft.Marketplace
RESOURCE TYPE COMPLETE MODE DELETION

offers No

offerTypes No

offerTypes/publishers No

offerTypes/publishers/offers No

offerTypes/publishers/offers/plans No

offerTypes/publishers/offers/plans/agreements No

offerTypes/publishers/offers/plans/configs No

offerTypes/publishers/offers/plans/configs/importImage No

privategalleryitems No

products No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.MarketplaceApps
RESOURCE TYPE COMPLETE MODE DELETION

classicDevServices Yes

updateCommunicationPreference No

Microsoft.MarketplaceOrdering
RESOURCE TYPE COMPLETE MODE DELETION

agreements No

offertypes No

Microsoft.Media
RESOURCE TYPE COMPLETE MODE DELETION

mediaservices Yes

mediaservices/accountFilters No

mediaservices/assets No

mediaservices/assets/assetFilters No

mediaservices/contentKeyPolicies No

mediaservices/eventGridFilters No

mediaservices/liveEventOperations No

mediaservices/liveEvents Yes

mediaservices/liveEvents/liveOutputs No

mediaservices/liveOutputOperations No

mediaservices/streamingEndpointOperations No

mediaservices/streamingEndpoints Yes

mediaservices/streamingLocators No

mediaservices/streamingPolicies No

mediaservices/transforms No

mediaservices/transforms/jobs No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.Migrate
RESOURCE TYPE COMPLETE MODE DELETION

projects Yes

Microsoft.Network
RESOURCE TYPE COMPLETE MODE DELETION

applicationGateways Yes

applicationSecurityGroups Yes

azureFirewallFqdnTags No

azureFirewalls Yes

bgpServiceCommunities No

connections Yes

ddosCustomPolicies Yes

ddosProtectionPlans Yes

dnsOperationStatuses No

dnszones Yes

dnszones/A No

dnszones/AAAA No

dnszones/all No

dnszones/CAA No

dnszones/CNAME No

dnszones/MX No

dnszones/NS No

dnszones/PTR No

dnszones/recordsets No

dnszones/SOA No

dnszones/SRV No

dnszones/TXT No

expressRouteCircuits Yes

expressRouteServiceProviders No

frontdoors Yes

frontdoorWebApplicationFirewallPolicies Yes

getDnsResourceReference No

interfaceEndpoints Yes

internalNotify No

loadBalancers Yes

localNetworkGateways Yes

natGateways Yes

networkIntentPolicies Yes

networkInterfaces Yes

networkProfiles Yes

networkSecurityGroups Yes

networkWatchers Yes

networkWatchers/connectionMonitors Yes

networkWatchers/lenses Yes

networkWatchers/pingMeshes Yes

privateLinkServices Yes

publicIPAddresses Yes

RESOURCE TYPE COMPLETE MODE DELETION

publicIPPrefixes Yes

routeFilters Yes

routeTables Yes

serviceEndpointPolicies Yes

trafficManagerGeographicHierarchies No

trafficmanagerprofiles Yes

trafficmanagerprofiles/heatMaps No

virtualHubs Yes

virtualNetworkGateways Yes

virtualNetworks Yes

virtualNetworkTaps Yes

virtualWans Yes

vpnGateways Yes

vpnSites Yes

webApplicationFirewallPolicies Yes

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.NotificationHubs
RESOURCE TYPE COMPLETE MODE DELETION

namespaces Yes

namespaces/notificationHubs Yes

Microsoft.OperationalInsights
RESOURCE TYPE COMPLETE MODE DELETION

devices No

linkTargets No

storageInsightConfigs No

workspaces Yes

workspaces/dataSources No

workspaces/linkedServices No

workspaces/query No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.OperationsManagement
RESOURCE TYPE COMPLETE MODE DELETION

managementassociations No

managementconfigurations Yes

solutions Yes

views Yes

Microsoft.PolicyInsights
RESOURCE TYPE COMPLETE MODE DELETION

policyEvents No

policyStates No

policyTrackedResources No

remediations No

Microsoft.Portal
RESOURCE TYPE COMPLETE MODE DELETION

consoles No

dashboards Yes

userSettings No

Microsoft.PowerBI
RESOURCE TYPE COMPLETE MODE DELETION

workspaceCollections Yes

Microsoft.PowerBIDedicated

RESOURCE TYPE COMPLETE MODE DELETION

capacities Yes

Microsoft.ProjectOxford
RESOURCE TYPE COMPLETE MODE DELETION

accounts Yes

Microsoft.RecoveryServices
RESOURCE TYPE COMPLETE MODE DELETION

backupProtectedItems No

vaults Yes

Microsoft.Relay
RESOURCE TYPE COMPLETE MODE DELETION

namespaces Yes

namespaces/authorizationrules No

namespaces/hybridconnections No

namespaces/hybridconnections/authorizationrules No

namespaces/wcfrelays No

namespaces/wcfrelays/authorizationrules No

Microsoft.ResourceGraph
RESOURCE TYPE COMPLETE MODE DELETION

resources No

subscriptionsStatus No

Microsoft.ResourceHealth
RESOURCE TYPE COMPLETE MODE DELETION

availabilityStatuses No

childAvailabilityStatuses No

childResources No

events No

impactedResources No

notifications No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.Resources
RESOURCE TYPE COMPLETE MODE DELETION

deployments No

deployments/operations No

links No

notifyResourceJobs No

providers No

resourceGroups No

resources No

subscriptions No

subscriptions/providers No

subscriptions/resourceGroups No

subscriptions/resourcegroups/resources No

subscriptions/resources No

subscriptions/tagnames No

subscriptions/tagNames/tagValues No

tenants No

Microsoft.SaaS
RESOURCE TYPE COMPLETE MODE DELETION

applications Yes

saasresources No

Microsoft.Scheduler
RESOURCE TYPE COMPLETE MODE DELETION

flows Yes

jobcollections Yes

Microsoft.Search
RESOURCE TYPE COMPLETE MODE DELETION

resourceHealthMetadata No

searchServices Yes

Microsoft.Security
RESOURCE TYPE COMPLETE MODE DELETION

advancedThreatProtectionSettings No

alerts No

allowedConnections No

appliances No

applicationWhitelistings No

AutoProvisioningSettings No

Compliances No

dataCollectionAgents No

discoveredSecuritySolutions No

externalSecuritySolutions No

InformationProtectionPolicies No

jitNetworkAccessPolicies No

monitoring No

monitoring/antimalware No

monitoring/baseline No

monitoring/patch No

policies No

pricings No

securityContacts No

securitySolutions No

securitySolutionsReferenceData No

securityStatus No

securityStatus/endpoints No

securityStatus/subnets No

securityStatus/virtualMachines No

securityStatuses No

securityStatusesSummaries No

settings No

tasks No

topologies No

workspaceSettings No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.SecurityGraph
RESOURCE TYPE COMPLETE MODE DELETION

diagnosticSettings No

diagnosticSettingsCategories No

Microsoft.ServiceBus
RESOURCE TYPE COMPLETE MODE DELETION

namespaces Yes

namespaces/authorizationrules No

namespaces/disasterrecoveryconfigs No

namespaces/eventgridfilters No

namespaces/queues No

namespaces/queues/authorizationrules No

namespaces/topics No

namespaces/topics/authorizationrules No

namespaces/topics/subscriptions No

namespaces/topics/subscriptions/rules No

premiumMessagingRegions No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.ServiceFabric
RESOURCE TYPE COMPLETE MODE DELETION

clusters Yes

clusters/applications No

Microsoft.ServiceFabricMesh
RESOURCE TYPE COMPLETE MODE DELETION

applications Yes

gateways Yes

networks Yes

secrets Yes

volumes Yes

Microsoft.SignalRService
RESOURCE TYPE COMPLETE MODE DELETION

SignalR Yes

Microsoft.Solutions
RESOURCE TYPE COMPLETE MODE DELETION

applianceDefinitions Yes

appliances Yes

applicationDefinitions Yes

applications Yes

jitRequests Yes

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.SQL
RESOURCE TYPE COMPLETE MODE DELETION

managedInstances Yes

managedInstances/databases Yes

managedInstances/databases/backupShortTermRetentionPolici
es

No

managedInstances/databases/schemas/tables/columns/sensiti
vityLabels

No

managedInstances/databases/vulnerabilityAssessments No

managedInstances/databases/vulnerabilityAssessments/rules/
baselines

No

managedInstances/encryptionProtector No

managedInstances/keys No

managedInstances/restorableDroppedDatabases/backupShort
TermRetentionPolicies

No

managedInstances/vulnerabilityAssessments No

servers Yes

servers/administrators No

servers/communicationLinks No

servers/databases Yes

servers/encryptionProtector No

servers/firewallRules No

servers/keys No

servers/restorableDroppedDatabases No

servers/serviceobjectives No

servers/tdeCertificates No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.SqlVirtualMachine
RESOURCE TYPE COMPLETE MODE DELETION

SqlVirtualMachineGroups Yes

SqlVirtualMachineGroups/AvailabilityGroupListeners No

SqlVirtualMachines Yes

Microsoft.Storage
RESOURCE TYPE COMPLETE MODE DELETION

storageAccounts Yes

storageAccounts/blobServices No

storageAccounts/fileServices No

storageAccounts/queueServices No

storageAccounts/services No

storageAccounts/tableServices No

usages No

Microsoft.StorageSync
RESOURCE TYPE COMPLETE MODE DELETION

storageSyncServices Yes

storageSyncServices/registeredServers No

storageSyncServices/syncGroups No

storageSyncServices/syncGroups/cloudEndpoints No

storageSyncServices/syncGroups/serverEndpoints No

storageSyncServices/workflows No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.StorSimple
RESOURCE TYPE COMPLETE MODE DELETION

managers Yes

Microsoft.StreamAnalytics
RESOURCE TYPE COMPLETE MODE DELETION

streamingjobs Yes

streamingjobs/diagnosticSettings No

Microsoft.Subscription
RESOURCE TYPE COMPLETE MODE DELETION

CreateSubscription No

SubscriptionDefinitions No

SubscriptionOperations No

microsoft.support
RESOURCE TYPE COMPLETE MODE DELETION

supporttickets No

Microsoft.TerraformOSS
RESOURCE TYPE COMPLETE MODE DELETION

providerRegistrations Yes

resources Yes

Microsoft.TimeSeriesInsights
RESOURCE TYPE COMPLETE MODE DELETION

environments Yes

environments/accessPolicies No

environments/eventsources Yes

environments/referenceDataSets Yes

RESOURCE TYPE COMPLETE MODE DELETION

microsoft.visualstudio
RESOURCE TYPE COMPLETE MODE DELETION

account Yes

account/extension Yes

account/project Yes

Microsoft.Web
RESOURCE TYPE COMPLETE MODE DELETION

apiManagementAccounts No

apiManagementAccounts/apiAcls No

apiManagementAccounts/apis No

apiManagementAccounts/apis/apiAcls No

apiManagementAccounts/apis/connectionAcls No

apiManagementAccounts/apis/connections No

apiManagementAccounts/apis/connections/connectionAcls No

apiManagementAccounts/apis/localizedDefinitions No

apiManagementAccounts/connectionAcls No

apiManagementAccounts/connections No

billingMeters No

certificates Yes

connectionGateways Yes

connections Yes

customApis Yes

deletedSites No

functions No

hostingEnvironments Yes

hostingEnvironments/multiRolePools No

hostingEnvironments/multiRolePools/instances No

hostingEnvironments/workerPools No

hostingEnvironments/workerPools/instances No

publishingUsers No

recommendations No

resourceHealthMetadata No

runtimes No

serverFarms Yes

serverFarms/workers No

sites Yes

sites/domainOwnershipIdentifiers No

sites/hostNameBindings No

sites/instances No

sites/instances/extensions No

sites/premieraddons Yes

sites/recommendations No

sites/resourceHealthMetadata No

sites/slots Yes

sites/slots/hostNameBindings No

sites/slots/instances No

sites/slots/instances/extensions No

RESOURCE TYPE COMPLETE MODE DELETION

sourceControls No

validate No

verifyHostingEnvironmentVnet No

RESOURCE TYPE COMPLETE MODE DELETION

Microsoft.WindowsDefenderATP
RESOURCE TYPE COMPLETE MODE DELETION

diagnosticSettings No

diagnosticSettingsCategories No

Microsoft.WindowsIoT
RESOURCE TYPE COMPLETE MODE DELETION

DeviceServices Yes

Microsoft.WorkloadMonitor
RESOURCE TYPE COMPLETE MODE DELETION

components No

componentsSummary No

monitorInstances No

monitorInstancesSummary No

monitors No

notificationSettings No

Next steps
To get the same data as a file of comma-separated values, download complete-mode-deletion.csv.

https://github.com/tfitzmac/resource-capabilities/blob/master/complete-mode-deletion.csv

Resource providers for Azure services
6/25/2019 • 2 minutes to read • Edit Online

Match resource provider to service
RESOURCE PROVIDER NAMESPACE AZURE SERVICE

Microsoft.AAD Azure Active Directory Domain Services

microsoft.aadiam Azure Active Directory

Microsoft.Addons core

Microsoft.ADHybridHealthService Azure Active Directory

Microsoft.Advisor Azure Advisor

Microsoft.AlertsManagement Azure Monitor

Microsoft.AnalysisServices Azure Analysis Services

Microsoft.ApiManagement API Management

Microsoft.AppConfiguration core

Microsoft.Authorization Azure Resource Manager

Microsoft.Automation Automation

Microsoft.AzureActiveDirectory Azure Active Directory B2C

Microsoft.AzureStack core

Microsoft.Batch Batch

Microsoft.Billing Billing

Microsoft.BingMaps Bing Maps

Microsoft.BizTalkServices BizTalk Services

Microsoft.Blockchain Azure Blockchain Service

Microsoft.Blueprint Azure Blueprints

Microsoft.BotService Azure Bot Service

This article shows how resource provider namespaces map to Azure services.

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/azure-services-resource-providers.md
file:///T:/hysj/active-directory-domain-services/index.yml
https://docs.microsoft.com/azure/active-directory/
https://docs.microsoft.com/azure/active-directory/
file:///T:/hysj/advisor/index.yml
file:///T:/hysj/azure-monitor/index.yml
https://docs.microsoft.com/azure/analysis-services/
file:///T:/hysj/api-management/index.yml
file:///T:/hysj/azure-resource-manager/index.yml
file:///T:/hysj/automation/index.yml
file:///T:/hysj/active-directory-b2c/index.yml
file:///T:/hysj/batch/index.yml
https://docs.microsoft.com/azure/billing/
https://docs.microsoft.com/BingMaps/#pivot=main&panel=BingMapsAPI
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-move-from-mabs
https://docs.microsoft.com/azure/blockchain/workbench/
https://docs.microsoft.com/azure/governance/blueprints/
https://docs.microsoft.com/azure/bot-service/

Microsoft.Cache Azure Cache for Redis

Microsoft.Capacity core

Microsoft.Cdn Content Delivery Network

Microsoft.CertificateRegistration App Service Certificates

Microsoft.ClassicCompute Classic deployment model virtual machine

Microsoft.ClassicInfrastructureMigrate Classic deployment model migration

Microsoft.ClassicNetwork Classic deployment model virtual network

Microsoft.ClassicStorage Classic deployment model storage

Microsoft.ClassicSubscription Classic deployment model

Microsoft.CognitiveServices Cognitive Services

Microsoft.Commerce core

Microsoft.Compute Virtual Machines

Microsoft.Consumption Cost Management

Microsoft.ContainerInstance Container Instances

Microsoft.ContainerRegistry Container Registry

Microsoft.ContainerService Azure Kubernetes Service (AKS)

Microsoft.ContentModerator Azure Content Moderator

Microsoft.CostManagement Cost Management

Microsoft.CustomerInsights Customer Insights

Microsoft.CustomerLockbox Customer Lockbox for Microsoft Azure

Microsoft.CustomProviders Azure Custom Providers

Microsoft.DataBox Azure Data Box

Microsoft.DataBoxEdge Azure Data Box Edge

Microsoft.Databricks Azure Databricks

Microsoft.DataCatalog Data Catalog

RESOURCE PROVIDER NAMESPACE AZURE SERVICE

https://docs.microsoft.com/azure/azure-cache-for-redis/
file:///T:/hysj/cdn/index.yml
https://docs.microsoft.com/en-us/azure/app-service/web-sites-purchase-ssl-web-site
https://docs.microsoft.com/azure/cognitive-services/
https://docs.microsoft.com/azure/virtual-machines/
https://docs.microsoft.com/azure/cost-management/
https://docs.microsoft.com/azure/container-instances/
https://docs.microsoft.com/azure/container-registry/
https://docs.microsoft.com/azure/aks/
file:///T:/hysj/cognitive-services/Content-Moderator/index.yml
https://docs.microsoft.com/azure/cost-management/
https://docs.microsoft.com/en-us/azure/managed-applications/custom-providers-overview
https://docs.microsoft.com/azure/databox-family/
https://docs.microsoft.com/en-us/azure/databox-online/data-box-edge-overview
https://docs.microsoft.com/azure/azure-databricks/
https://docs.microsoft.com/azure/data-catalog/

Microsoft.DataFactory Data Factory

Microsoft.DataLakeAnalytics Data Lake Analytics

Microsoft.DataLakeStore Azure Data Lake Store

Microsoft.DataMigration Azure Database Migration Service

Microsoft.DBforMariaDB Azure Database for MariaDB

Microsoft.DBforMySQL Azure Database for MySQL

Microsoft.DBforPostgreSQL Azure Database for PostgreSQL

Microsoft.DeploymentManager Azure Deployment Manager

Microsoft.Devices IoT Hub
IoT Hub Device Provisioning Service

Microsoft.DevSpaces Azure Dev Spaces

Microsoft.DevTestLab Azure Lab Services

Microsoft.DocumentDB Azure Cosmos DB

Microsoft.DomainRegistration App Service

Microsoft.EnterpriseKnowledgeGraph Enterprise Knowledge Graph

Microsoft.EventGrid Event Grid

Microsoft.EventHub Event Hubs

Microsoft.Features Azure Resource Manager

Microsoft.Genomics Microsoft Genomics

Microsoft.GuestConfiguration Azure Policy

Microsoft.HanaOnAzure SAP HANA on Azure

Microsoft.HardwareSecurityModules Azure Dedicated HSM

Microsoft.HDInsight HDInsight

Microsoft.HealthcareApis Azure API for FHIR

Microsoft.ImportExport Azure Import/Export

microsoft.insights Azure Monitor

RESOURCE PROVIDER NAMESPACE AZURE SERVICE

https://docs.microsoft.com/azure/data-factory/
https://docs.microsoft.com/azure/data-lake-analytics/
https://docs.microsoft.com/en-us/azure/storage/blobs/data-lake-storage-introduction
https://docs.microsoft.com/azure/dms/
https://docs.microsoft.com/azure/mariadb/
https://docs.microsoft.com/azure/mysql/
https://docs.microsoft.com/azure/postgresql/
https://docs.microsoft.com/azure/iot-hub/
https://docs.microsoft.com/azure/iot-dps/
https://docs.microsoft.com/azure/dev-spaces/
file:///T:/hysj/lab-services/index.yml
file:///T:/hysj/cosmos-db/index.yml
https://docs.microsoft.com/azure/app-service/
https://docs.microsoft.com/azure/event-grid/
file:///T:/hysj/event-hubs/index.yml
file:///T:/hysj/azure-resource-manager/index.yml
https://docs.microsoft.com/azure/genomics/
file:///T:/hysj/governance/policy/index.yml
https://docs.microsoft.com/en-us/azure/virtual-machines/workloads/sap/hana-overview-architecture
file:///T:/hysj/dedicated-hsm/index.yml
file:///T:/hysj/hdinsight/index.yml
file:///T:/hysj/healthcare-apis/index.yml
https://docs.microsoft.com/en-us/azure/storage/common/storage-import-export-service
file:///T:/hysj/azure-monitor/index.yml

Microsoft.Intune Intune

Microsoft.IoTCentral IoT Central

Microsoft.IoTSpaces Azure Digital Twins

Microsoft.KeyVault Key Vault

Microsoft.Kusto Azure Data Explorer

Microsoft.LabServices Azure Lab Services

Microsoft.LocationBasedServices Azure Maps

Microsoft.LocationServices core

Microsoft.LogAnalytics Azure Monitor

Microsoft.Logic Logic Apps

Microsoft.MachineLearning Machine Learning Studio

Microsoft.MachineLearningCompute Machine Learning Service

Microsoft.MachineLearningModelManagement Machine Learning Service

Microsoft.MachineLearningServices Machine Learning Service

Microsoft.ManagedIdentity Managed identities for Azure resources

Microsoft.ManagedLab Azure Lab Services

Microsoft.Management Management Groups

Microsoft.Maps Azure Maps

Microsoft.Marketplace core

Microsoft.MarketplaceApps core

Microsoft.MarketplaceOrdering core

Microsoft.Media Media Services

Microsoft.Migrate Azure Migrate

Microsoft.MixedReality Azure Spatial Anchors

Microsoft.NetApp Azure NetApp Files

RESOURCE PROVIDER NAMESPACE AZURE SERVICE

https://docs.microsoft.com/intune/
https://docs.microsoft.com/azure/iot-central/
file:///T:/hysj/digital-twins/index.yml
file:///T:/hysj/key-vault/index.yml
file:///T:/hysj/data-explorer/index.yml
file:///T:/hysj/lab-services/index.yml
file:///T:/hysj/azure-maps/index.yml
file:///T:/hysj/azure-monitor/index.yml
file:///T:/hysj/logic-apps/index.yml
file:///T:/hysj/machine-learning/studio/index.yml
file:///T:/hysj/machine-learning/service/index.yml
file:///T:/hysj/machine-learning/service/index.yml
file:///T:/hysj/machine-learning/service/index.yml
file:///T:/hysj/active-directory/managed-identities-azure-resources/index.yml
file:///T:/hysj/lab-services/index.yml
https://docs.microsoft.com/azure/governance/management-groups/
file:///T:/hysj/azure-maps/index.yml
file:///T:/hysj/media-services/index.yml
https://docs.microsoft.com/en-us/azure/migrate/migrate-overview
https://docs.microsoft.com/azure/spatial-anchors/
file:///T:/hysj/azure-netapp-files/index.yml

Microsoft.Network Virtual Network
Load Balancer
Application Gateway
Azure DNS
ExpressRoute
VPN Gateway
Traffic Manager
Network Watcher
Azure Firewall
Azure Front Door Service
Azure Bastion

Microsoft.NotificationHubs Notification Hubs

Microsoft.OffAzure Azure Migrate

Microsoft.OperationalInsights Azure Monitor

Microsoft.OperationsManagement Azure Monitor

Microsoft.PolicyInsights Azure Policy

Microsoft.Portal Azure portal

Microsoft.PowerBI Power BI

Microsoft.PowerBIDedicated Power BI Embedded

Microsoft.RecoveryServices Site Recovery

Microsoft.Relay Azure Relay

Microsoft.ResourceGraph Azure Resource Graph

Microsoft.ResourceHealth core

Microsoft.Resources Azure Resource Manager

Microsoft.SaaS core

Microsoft.Scheduler Scheduler

Microsoft.Search Azure Search

Microsoft.Security Security Center

Microsoft.ServiceBus Service Bus

Microsoft.ServiceFabric Service Fabric

Microsoft.ServiceFabricMesh Service Fabric Mesh

RESOURCE PROVIDER NAMESPACE AZURE SERVICE

file:///T:/hysj/virtual-network/index.yml
file:///T:/hysj/load-balancer/index.yml
file:///T:/hysj/application-gateway/index.yml
file:///T:/hysj/dns/index.yml
file:///T:/hysj/expressroute/index.yml
file:///T:/hysj/vpn-gateway/index.yml
file:///T:/hysj/traffic-manager/index.yml
file:///T:/hysj/network-watcher/index.yml
file:///T:/hysj/firewall/index.yml
file:///T:/hysj/frontdoor/index.yml
https://docs.microsoft.com/azure/bastion/
file:///T:/hysj/notification-hubs/index.yml
https://docs.microsoft.com/en-us/azure/migrate/migrate-overview
file:///T:/hysj/azure-monitor/index.yml
file:///T:/hysj/azure-monitor/index.yml
file:///T:/hysj/governance/policy/index.yml
https://docs.microsoft.com/azure/azure-portal/
https://docs.microsoft.com/power-bi/power-bi-overview
https://docs.microsoft.com/azure/power-bi-embedded/
file:///T:/hysj/site-recovery/index.yml
https://docs.microsoft.com/en-us/azure/service-bus-relay/relay-what-is-it
https://docs.microsoft.com/azure/governance/resource-graph/
file:///T:/hysj/azure-resource-manager/index.yml
https://docs.microsoft.com/azure/scheduler/
file:///T:/hysj/search/index.yml
file:///T:/hysj/security-center/index.yml
https://docs.microsoft.com/azure/service-bus/
file:///T:/hysj/service-fabric/index.yml
file:///T:/hysj/service-fabric-mesh/index.yml

Microsoft.SignalRService Azure SignalR Service

Microsoft.SiteRecovery Site Recovery

Microsoft.Solutions Azure Managed Applications

Microsoft.Sql Azure SQL Database

Microsoft.SqlVirtualMachine SQL Server on Azure Virtual Machines

Microsoft.Storage Storage

Microsoft.StorageSync Storage

Microsoft.StorSimple StorSimple

Microsoft.StreamAnalytics Stream Analytics

Microsoft.Subscription core

microsoft.support core

Microsoft.TimeSeriesInsights Time Series Insights

microsoft.visualstudio Azure DevOps

Microsoft.VMwareCloudSimple Azure VMware Solution by CloudSimple

Microsoft.Web App Service
Functions

Microsoft.WindowsDefenderATP Windows Defender Advanced Threat Protection

Microsoft.WindowsIoT Windows 10 IoT Core Services

Microsoft.WorkloadMonitor Azure Monitor

RESOURCE PROVIDER NAMESPACE AZURE SERVICE

Next steps
For more information about resource providers, see Azure resource providers and types

file:///T:/hysj/azure-signalr/index.yml
file:///T:/hysj/site-recovery/index.yml
file:///T:/hysj/managed-applications/index.yml
file:///T:/hysj/sql-database/index.yml
https://docs.microsoft.com/en-us/azure/virtual-machines/windows/sql/virtual-machines-windows-sql-server-iaas-overview
file:///T:/hysj/storage/index.yml
file:///T:/hysj/storage/index.yml
https://docs.microsoft.com/azure/storsimple/
file:///T:/hysj/stream-analytics/index.yml
file:///T:/hysj/time-series-insights/index.yml
https://docs.microsoft.com/azure/devops/?view=azure-devops
https://docs.microsoft.com/azure/vmware-cloudsimple/
file:///T:/hysj/app-service/index.yml
file:///T:/hysj/azure-functions/index.yml
https://docs.microsoft.com/windows/security/threat-protection/windows-defender-atp/windows-defender-advanced-threat-protection
https://docs.microsoft.com/windows-hardware/manufacture/iot/iotcoreservicesoverview
file:///T:/hysj/azure-monitor/index.yml

Manage personal data associated with Azure
Resource Manager
6/18/2019 • 2 minutes to read • Edit Online

NOTENOTE

NOTENOTE

Delete personal data in deployment history

Delete personal data in resource group names

To avoid exposing sensitive information, delete any personal information you may have provided in deployments,
resource groups, or tags. Azure Resource Manager provides operations that let you manage personal data you may
have provided in deployments, resource groups, or tags.

This article provides steps for how to delete personal data from the device or service and can be used to support your
obligations under the GDPR. If you’re looking for general info about GDPR, see the GDPR section of the Service Trust portal.

This article has been updated to use the new Azure PowerShell Az module. You can still use the AzureRM module, which will
continue to receive bug fixes until at least December 2020. To learn more about the new Az module and AzureRM
compatibility, see Introducing the new Azure PowerShell Az module. For Az module installation instructions, see Install Azure
PowerShell.

For deployments, Resource Manager retains parameter values and status messages in the deployment history.
These values persist until you delete the deployment from the history. To see if you have provided personal data in
these values, list the deployments. If you find personal data, delete the deployments from the history.

To list deployments in the history, use:

List By Resource Group
Get-AzResourceGroupDeployment
az group deployment list

To delete deployments from the history, use:

Delete
Remove-AzResourceGroupDeployment
az group deployment delete

The name of the resource group persists until you delete the resource group. To see if you have provided personal
data in the names, list the resource groups. If you find personal data, move the resources to a new resource group,
and delete the resource group with personal data in the name.

To list resource groups, use:

List
Get-AzResourceGroup
az group list

https://github.com/Microsoft/azure-docs/blob/master/articles/azure-resource-manager/resource-manager-personal-data.md
https://servicetrust.microsoft.com/ViewPage/GDPRGetStarted
https://docs.microsoft.com/powershell/azure/new-azureps-module-az
https://docs.microsoft.com/powershell/azure/install-az-ps
https://docs.microsoft.com/rest/api/resources/deployments/listbyresourcegroup
https://docs.microsoft.com/powershell/module/az.resources/Get-AzResourceGroupDeployment
https://docs.microsoft.com/cli/azure/group/deployment#az-group-deployment-list
https://docs.microsoft.com/rest/api/resources/deployments/delete
https://docs.microsoft.com/powershell/module/az.resources/Remove-AzResourceGroupDeployment
https://docs.microsoft.com/cli/azure/group/deployment#az-group-deployment-delete
https://docs.microsoft.com/rest/api/resources/resourcegroups/list
https://docs.microsoft.com/powershell/module/az.resources/Get-AzResourceGroup
https://docs.microsoft.com/cli/azure/group#az-group-list

Delete personal data in tags

Next steps

To delete resource groups, use:

Delete
Remove-AzResourceGroup
az group delete

Tags names and values persist until you delete or modify the tag. To see if you have provided personal data in the
tags, list the tags. If you find personal data, delete the tags.

To list tags, use:

List
Get-AzTag
az tag list

To delete tags, use:

Delete
Remove-AzTag
az tag delete

For an overview of Azure Resource Manager, see the What is Resource Manager?

https://docs.microsoft.com/rest/api/resources/resourcegroups/delete
https://docs.microsoft.com/powershell/module/az.resources/Remove-AzResourceGroup
https://docs.microsoft.com/cli/azure/group#az-group-delete
https://docs.microsoft.com/rest/api/resources/tags/list
https://docs.microsoft.com/powershell/module/az.resources/Get-AzTag
https://docs.microsoft.com/cli/azure/tag#az-tag-list
https://docs.microsoft.com/rest/api/resources/tags/delete
https://docs.microsoft.com/powershell/module/az.resources/Remove-AzTag
https://docs.microsoft.com/cli/azure/tag#az-tag-delete

	Cover Page
	Azure Resource Manager Documentation
	Overview
	What is Resource Manager?

	Quickstarts
	Create templates - portal
	Create templates - VS Code
	Create templates - Visual Studio

	Tutorials
	Utilize template reference
	Create multiple instances
	Set resource deployment order
	Use conditions
	Integrate Key Vault
	Create linked templates
	Deploy VM extensions
	Deploy SQL extensions
	Secure artifacts
	Continuous integration with Azure Pipelines
	Use safe deployment practices
	Use health check in Deployment Manager
	Troubleshoot template deployment

	Samples
	Resource Manager templates
	Code samples

	Concepts
	Template file structure
	Template best practices
	Templates for cloud consistency
	Deployment modes
	Resource deletion
	Deployment Manager
	Overview
	Health check

	Resource Manager and classic deployment
	Azure common security attributes

	How to
	Create templates
	Create template
	Create resource groups and resources at subscription
	Define resource dependencies
	Modularize templates
	Manage secrets
	Create multiple instances
	Use template extensions
	Update resources

	Deploy templates
	Deploy - portal
	Deploy - CLI
	Deploy - PowerShell
	Deploy - REST API
	Secure templates with SAS token
	Use the Azure CLI
	Use Azure PowerShell

	Deploy to multiple resource groups or subscriptions

	CI/CD
	VS project with pipelines

	Export template
	Move
	Move resources
	Resource support
	Troubleshoot move
	Move guidance for services
	App Service
	Azure DevOps
	Classic deployment
	Recovery Services
	Virtual Machines
	Virtual Networks

	Tags
	Tag resources
	Tag support

	Manage
	Manage resource groups
	Use the Azure portal
	Use the Azure CLI
	Use Azure PowerShell

	Manage resources
	Use the Azure portal
	Use the Azure CLI
	Use Azure PowerShell

	Lock resources
	Authentication API to access subscriptions
	Create EA subscriptions
	Grant access to create EA subscriptions
	Authenticate across tenants

	Audit changes
	View activity logs
	View deployment operations

	Troubleshoot deployments
	Troubleshoot deployment errors
	AccountNameInvalid
	InvalidTemplate
	Linux deployment issues
	NoRegisteredProviderFound
	NotFound
	ParentResourceNotFound
	Provisioning and allocation issues for Linux
	Provisioning and allocation issues for Windows
	RequestDisallowedByPolicy
	ReservedResourceName
	ResourceQuotaExceeded
	SkuNotAvailable
	Windows deployment issues

	Resource providers and types
	Throttling requests
	Track asynchronous operations

	Reference
	Template reference
	Template functions
	All functions
	Array and object functions
	Comparison functions
	Deployment functions
	Logical functions
	Numeric functions
	Resource functions
	String functions

	Complete mode deletion
	Resource providers by service
	REST - Resource Manager
	REST - Deployment Manager
	Azure PowerShell
	Azure CLI
	.NET
	Java
	Python

	Resources
	Azure Roadmap
	Pricing calculator
	Service updates
	Stack Overflow
	Manage personal data
	Videos

