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A major hurdle in brain-machine interfaces (BMI) is the lack of
an implantable neural interface system that remains viable for
a lifetime. This paper explores the fundamental system design
trade-offs and ultimate size, power, and bandwidth scaling limits
of neural recording systems built from low-power CMOS circuitry
coupled with ultrasonic power delivery and backscatter commu-
nication. In particular, we propose an ultra-miniature as well as
extremely compliant system that enables massive scaling in the
number of neural recordings from the brain while providing a path
towards truly chronic BMI. These goals are achieved via two fun-
damental technology innovations: 1) thousands of 10 – 100 µm
scale, free-floating, independent sensor nodes, or neural dust,
that detect and report local extracellular electrophysiological data,
and 2) a sub-cranial interrogator that establishes power and com-
munication links with the neural dust. For 100 µm scale sensing
nodes embedded 2 mm into the brain, ultrasonic power transmis-
sion can enable 7 % efficiency power links (-11.6 dB), resulting in
a received power of ∼500 µW with a 1 mm2 interrogator, which
is >107 more than EM transmission at similar scale (40 pW). Ex-
treme efficiency of ultrasonic transmission and CMOS front-ends
can enable the scaling of the sensing nodes down to 10’s of µm.

ultrasounic energy harvesting | backscatter communication | chronic extra-
cellular recording systems | brain-machine interfaces

Half a century of scientific and engineering effort has yielded
a vast body of knowledge about the brain as well as a set of

tools for stimulating and recording from neurons across multiple
brain structures. However, for clinically relevant applications such
as brain-machine interfaces (BMI), a tetherless, high density, chronic
interface to the brain remains as one of the grand challenges of the
21st century.

Currently, the majority of neural recording is done through
the direct electrical measurement of potential changes near relevant
neurons during depolarization events called action potentials (AP).
While the specifics vary across several prominent technologies, all
of these interfaces share several characteristics: a physical, electrical
connection between the active area inside the brain and electronic
circuits near the periphery (from which, increasingly, data is sent
out wirelessly from a "hub") [1–4]; a practical upper bound of sev-
eral hundred implantable recording sites [5–8]; and the development
of a biological response around the implanted electrodes which de-
grades recording performance over time [9–12]. To date, chronic
clinical neural implants have proved to be successful in the short
range (months to a few years) and for a small number of channels
(10’s to 100’s) [13]. Chronic recording from thousands of sites in a
clinically relevant manner with little or no tissue response would be
a game changer.

Outside the scope of clinical neuroprosthetics, the need for large
scale recording of ensembles of neurons was recently emphasized by
the Brain Research through Advancing Innovative Neurotechnolo-
gies (BRAIN) initiative in April 2013 by U.S. President Obama [15]
and several related opinion papers [13, 14]. Currently, there are nu-
merous modalities with which one can extract information from the
brain. Advances in imaging technologies such as functional magnetic
resonance imaging (fMRI), electroencephalography (EEG), positron

emission tomography (PET), and magnetoencephalography (MEG)
have provided a wealth of information about collective behaviors of
groups of neurons [16]. Numerous efforts are focusing on intra- [17]
and extra-cellular [18] electrophysiological recording and stimula-
tion, molecular recording [19], optical recording [20], and hybrid
techniques such as opto-genetic stimulation [21] and photo-acoustic
[22] methods to perturb and record the individual activity of neu-
rons in large (and, hopefully scalable) ensembles. All modalities, of
course, have some fundamental tradeoffs and are usually limited in
temporal or spatial resolution, portability, power, invasiveness, etc.
Note that a comprehensive recent review of tradeoffs focused on
recording from all neurons in a mouse brain can be found in Mar-
blestone et al. [23].

System Concept
Low-power CMOS circuits coupled with ultrasonic harvesting and
backscatter communication can provide a toolset from which to build
scalable, chronic extracellular recording systems.

This paper focuses on the fundamental system design trade-offs
and ultimate size, power, and bandwidth scaling limits of systems
built from low-power CMOS coupled with ultrasonic power deliv-
ery and backscatter communication. In particular, we propose an
ultra-miniature as well as extremely compliant system, shown in Fig.
1, that enables massive scaling in the number of neural recordings
from the brain while providing a path towards truly chronic BMI.
These goals are achieved via two fundamental technology innova-
tions: 1) thousands of 10 – 100 µm scale, free-floating, independent
sensor nodes, or neural dust, that detect and report local extracellular
electrophysiological data, and 2) a sub-cranial interrogator that es-
tablishes power and communication links with the neural dust. The
interrogator is placed beneath the skull and below the dura mater, to
avoid strong attenuation of ultrasound by bone and is powered by
an external transceiver via RF power transfer. During operation, the
sub-cranial interrogator couples ultrasound energy into the tissue and
performs both spatial and frequency discrimination with sufficient
bandwidth to interrogate each sensing node. Neural dust can be ei-
ther an active node, which rectifies or recovers power at the sensing
node to activate CMOS electronics for data pre-processing, encoding,
and transmission, or a passive node, which maximizes the reflectivity
of the dust as a function of a measured potential. For both schemes,
neural dust can communicate the recorded neural data back to the in-
terrogator by modulating the amplitude, frequency, and/or phase of
the incoming ultrasound wave. The descriptions of each scheme and
the modulation mechanism of each sensing node are detailed in the
later sections.

Several energy modalities exist for powering and communicating
with implants, but many of them are unsuitable for the size scales
associated with neural dust.

The requirements for any computational platform interfacing with
microelectrodes to acquire useful neural signals (e.g., for high quality
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Fig. 1. Neural dust system diagram showing the placement of ultrasonic inter-
rogator under the skull and the independent neural dust sensing nodes dispersed
throughout the brain.

motor control) are fairly stringent [7, 24]. The two primary con-
straints on the implanted device are size and power. These are dis-
cussed in greater detail below, but we list them briefly next. First,
implants placed into cortical tissue with scales larger than one or
two cell diameters have well-documented tissue responses which
are ultimately detrimental to performance and occur on the time-
scale of months [25, 26]. Note that some debate exists as to what
role mechanical anchoring outside the cortex plays in performance
degradation. Second, all electrical potentials (extra-cellular or oth-
erwise) are by definition measured differentially, so as devices scale
down and the distance between recording points decreases accord-
ingly, the absolute magnitude of the measured potential will also
decrease. This decreased amplitude necessitates reductions in the
front-end noise, which in turns requires higher power (i.e., for a fixed
bandwidth, lowering the noise floor requires increased power con-
sumption). Smaller devices, however, collect less power, and build-
ing sufficiently low-power electronics may be extremely challenging.
Additionally, to eliminate the risk of infection associated with the
transcutaneous/trans-cranial wires required for communication and
power, such tethers should be avoided as much as possible; a wire-
less hub is therefore essential to relay the information recorded by
the device through the skull.

High attenuation in brain tissue and geometry-dependent magnetic
coupling limit the transfer efficiency of electromagnetics, especially
for miniature implants.

The most popular existing wireless transcutaneous energy transfer
technique relies on electromagnetics (EM) as the energy modal-
ity [27]. An external transmitter generates and transfers information
through purely electric [28] or magnetic [29] near field or electro-
magnetic far field coupling [30]; this energy can be harvested by the
implanted device and converted into a stable DC supply voltage. En-
ergy transmission via magnetic near field has been used in a wide va-
riety of medical applications and is the principal source of power for
cochlear implants [31]. As EM requires no moving parts or the need
for chemical processing or temperature gradients, it is considered
more robust and stable than other forms energy scavenging. When

Fig. 2. (a) Total channel loss in 2 mm brain tissue, due to both tissue and prop-
agation loss, increases exponentially with frequency, resulting in a 20 dB of loss
at 10 GHz. (b) The mutual coupling, and therefore link efficiency, also reduces
dramatically with the scaling of chiplet dimensions.

used in-body, however, EM coupling power density is restricted by
the potential adverse health effects associated with excess tissue heat-
ing in the vicinity of the human body due to electromagnetic fields.
This is regulated by the well known FCC and IEEE-recommended
levels [32]. Roughly, the upper limit for EM power density transiting
through tissue is set by the minimum required to heat a model sam-
ple of human tissue by 1◦C. For electromagnetic waves, the output
power density is frequency dependent and cannot exceed a maximum
of 10 mW/cm2.

Consider, in this context, the problem of transmitting EM power
to (and information from) very small CMOS chiplets embedded in
tissue; does this approach scale to allow high density neural record-
ings? Regardless of the specific implementation, any such chiplet
will contain a resonant component that couples to the EM waves;
such a system can be modeled as a series/parallel RLC (for the pur-
poses of this exercise, one may presume that a suitable method exists
for modulating the quality factor or mutual coupling of the RLC as a
function of neural activity). Given this, the performance of electro-
magnetic power transfer suffers from two fundamental issues. First,
the extreme constraint on the size of the node limits the maximum
achievable values of the passives. Assuming a planar square loop
inductor, calculations predict the resonant frequency of a 100 µm
neural dust would be ∼10 GHz. Fig. 2 (a) plots the modeled chan-
nel loss, or the attenuation of the EM signal as it propagates through
2 mm of brain tissue, due to tissue absorption and beam spreading,
as a function of frequency. We observe that there is an exponential
relationship between the channel loss and the frequency, and at 10
GHz – the total combined loss for one-way transmission is approx-
imately 20 dB. Moreover, at these very small footprints (compared
to the wavelength, which is in millimeter range), the receive antenna
efficiency becomes quite small, thereby easily adding roughly 20 dB
of additional loss, resulting in a total gain of at most -40 dB. The tis-
sue absorption loss penalty incurred by operating at a high frequency
can be reduced by increasing the capacitance density using 3D inter-
digitized capacitor layouts, but even then, as shown in Fig. 2 (b),
scaling down the dimensions of the chiplets increases the resonant
frequency of the link, causing an exponential increase in the tissue
absorption loss and the overall channel loss, and the efficiency of EM
transmission becomes miniscule.

To make matters worse, the mutual coupling between the trans-
mitter and receiver coils drops dramatically and significantly de-
grades the transfer efficiency and increases the sensitivity to mis-
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Table 1. Comparison of both the scale and the loss incurred in brain tissue
between ultrasound and EM radiation, displaying the stark differences in the
achievable spatial resolution (set by the wavelength) and the tissue/path loss
for operating frequency of a 100 µm neural dust (*Attenuation of ultrasound
in brain is 0.5 dB/(cm·MHz) [40]).

alignments [33, 34]. As shown in Fig. 2 (b), EM transmission with
a 100 µm neural dust embedded 2 mm into the cortex results in 64
dB of transmission loss. Given a 1 mm2 transmitter aperture out-
putting 100 µW of power – limited by the need to satisfy safety
regulations on output power density of 10 mW/cm2 – the resulting
received power at the neural dust is ∼40 pW. This is orders of mag-
nitude smaller than the power consumption imposed by noise require-
ments on the front-end amplification circuitry (refer to later sections
for further discussion). As a result, prior work by [1], which features
the most energy-efficient and smallest wirelessly EM powered neu-
ral recording system to date, at 2.5 µW/channel and 250 µm x 450
µm, is limited in terms of further dimensional scaling and increasing
the range (the effective range within brain tissue for this work was 0.6
mm). We conclude that due to the non-linear interplay of form factor,
speed of light, and frequency spectra of tissue absorption, EM power
transmission is not an appropriate energy modality for the powering
of 10’s of µm sized neural dust implants.

Ultrasound is attractive for in-tissue communication given its short
wavelength and low attenuation.

Ultrasonic transducers have found application in various disciplines
including imaging, high intensity focused ultrasound (HIFU), non-
destructive testing of materials, communication and power deliv-
ery through steel walls, underwater communications, transcutaneous
power delivery, and energy harvesting [35–38]. The idea of us-
ing acoustic waves to transmit energy was first proposed in 1958
by Rosen [39] to describe the energy coupling between two piezo-
electric transducers. Unlike electromagnetics, using ultrasound as
an energy transmission modality never entered into widespread con-
sumer application and was often overlooked because the efficiency of
electromagnetics for short distances and large apertures is superior.
However, at the scales discussed here and in tissue (i.e., aqueous me-
dia) the low acoustic velocity allows operation at dramatically lower
frequencies, and more importantly, the acoustic loss in tissue is gen-
erally substantially smaller than the attenuation of electromagnetics
in tissue (Table 1).

As mentioned earlier, the relatively low acoustic velocity of ultra-
sound results in substantially reduced wavelength compared to EM.
For example, 10 MHz ultrasound in brain tissue has a wavelength λ
= 150 µm, while for 10 GHz EM, λ = 5 mm [40]. This smaller wave-
length implies that for the same transmission distance, ultrasonic sys-
tems are much more likely to operate in the far-field, and hence offer
more isotropic characteristics than an EM transmitter (i.e., the ultra-
sonic radiator can obtain larger spatial coverage). This opens up the
prospect of interrogation of multiple nodes via frequency binning.
More importantly, the acoustic loss in brain tissue is fundamentally
smaller than the attenuation of electromagnetics in tissue because
acoustic transmission relies on compression and rarefaction of the
tissue rather than time-varying electric/magnetic fields that gener-
ate displacement currents on the surface of the tissue [41]. This is
also manifested by the stark difference in the time-averaged accept-
able intensity for ultrasound for cephalic applications, regulated by
FDA, which is approximately 9x (94 mW/cm2) for general-purpose
devices and 72x (720 mW/cm2) more than EM for devices conform-

ing to output display standards (ODS) (recall EM is limited to 10
mW/cm2) [42].

As an aside, in order to increase the instantaneous power cap-
tured by an implant, FDA regulations would allow an interrogator
to transmit up to 190 W/cm2 of spatial peak pulse-averaged power
density. This approach, however, must be taken with caution as
more in-depth studies of the thermal impact of duty-cycled oper-
ation on the tissue are necessary to determine safe parameters of
the applied duty-cycle and meet the time-averaged power level con-
straint [43, 44]. Also, as demonstrated by a body of work investigat-
ing the effectiveness of ultrasound as a means of modulating neuronal
activity [45–48], systems operating in this regime may be capable of
micro-stimulating the brain at a CW time-averaged output intensity
as low as 1 W/cm2 [49], and cause tissue ablation through heating and
cavitation at intensities in the focal region of 100 - 1000 W/cm2 [50].

Piezoelectric ultrasonic transducers suitable for implanted applica-
tions are available.

Piezoelectricity refers to the phenomenon present in certain solid
(usually crystalline) materials where there is an interaction between
the mechanical and electrical states. As a result, piezoelectric ma-
terials can transduce electrical energy into mechanical energy and
vice versa by changing lattice structure, and this state change is ac-
cessible via either electrical stimulation or mechanical deformation.
These materials serve as a critical component in the construction of
probes that generate ultrasonic waves to enable ultrasound technol-
ogy used in the medical industry. A relatively wide range of piezo-
electric materials are available, each suitable for different applica-
tions. For instance, materials such as single crystal lithium niobate
(LiNbO3) and polymer PVDF are excellent choices for fabricating
large aperture single element transducers due to their low dielectric
permittivity [51]. On the other hand, a ceramic compound known as
lead zirconate titanate (PZT) is a popular choice for high performance
diagnostic ultrasonic imaging due to its greater sensitivity, higher op-
erational temperature, and exceptional electromechanical coupling
coefficient. The electromechanical coupling coefficient is a figure of
merit used to describe the ability of a material to convert one form of
energy into another, and is defined as the ratio of stored mechanical
energy to total stored energy in a given material. The lead content
of PZT makes it difficult to introduce into human tissue in chronic
applications; several works have demonstrated encapsulation as an
option to avoid this issue [52, 53], but the long-term stability of such
encapsulation layers remain to be investigated.

Luckily, biocompatible piezoelectric materials exist with proper-
ties similar (but generally inferior) to PZT; these include barium ti-
tanate (BaTiO3), aluminum nitride (AlN) and zinc oxide (ZnO) [54].
Although the dielectric coefficients of AlN and ZnO are less than
one-hundredth that of BaTiO3 (which can result in an improvement
in the signal to noise ratio due to the lower parallel plate capacitance),
their piezoelectric coefficient (which is critical to the link efficiency)
is one-tenth that of BaTiO3. Therefore, BaTiO3 transducers are as-
sumed for the remainder of the paper. Clearly, material engineering
to synthesize higher performance piezoelectric composite materials
and reliability studies to assess performance over extended periods
of operation are both active areas of research that can significantly
contribute to the realization of neural dust.

System design and constraints: Power Delivery
There are several implementation strategies for the neural dust. A
neural dust can be an active node, which consists of a piezoelectric
transducer to recover power at the sensing site to activate CMOS
electronics for data pre-processing, encoding, and transmission, or a
passive node, which maximizes the reflectivity of the dust as a func-
tion of a measured potential. In an active node scheme, the design
of neural dust is heavily constrained in both size and available power
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to the implant. As a result, it is imperative to accurately model the
transmission channel to maximize the power efficiency. Therefore,
this section elaborates design tradeoffs and methodologies for power
delivery optimization.

The propagation characteristics of ultrasound must be considered
in determining the maximum range of neural dust and the optimal
dimension of the external interrogator.

As the pressure field generated by a uniform continuous-wave ex-
cited piezoelectric transducer propagates through the tissue medium,
the characteristics of the pressure field change with distance from the
source. The varying field is typically divided into two segments, near
field and far field. In the near field, the shape of the pressure field is
cylindrical and the envelope of the field oscillates. At some point
distal to the transducer, however, the beam begins to diverge and the
pressure field becomes a spherically spreading wave, which decays
inversely with distance. The transition between the near and far field
is where the pressure field converges to a natural focus, and the dis-
tance at which this occurs is called the Rayleigh distance, defined
as,

L =
(D2 − λ2)

4λ
≈ D2

4λ
,D2 � λ2 [1]

where D is the aperture width of the transmitter and λ is the wave-
length of ultrasound in the propagation medium. In order to maxi-
mize the received power, it is preferable to place the receiver at one
Rayleigh distance where the beam spreading is at a minimum. There-
fore, with 2 mm of transmission distance and a resonant frequency
of 10 MHz (λ = 150 µm), the maximum dimension of the external
interrogator should be ∼1 mm.

Neural dust transducers can be simulated with finite element pack-
ages and incorporated into a KLM-based link model.

Due to the importance of piezoelectric transducers in various appli-
cations, a number of models of the electromechanical operation of
one-dimensional piezoelectric and acoustic phenomena have evolved
over the years. The KLM model is arguably the most common equiv-
alent circuit and is a useful starting point to construct a full link model
with the intent of examining scaling and system constraints [55]. The
basic model includes a piezoelectric transducer with electrodes fully
covering the two largest faces of the transducer. The entire transducer
is modeled as a frequency-dependent three-port network, consisting
of one electrical port (where electric power is applied or collected)
and two acoustical ports (where mechanical waves are produced or
sensed from the front and back faces of the transducer). The parallel-
plate capacitance due to the electrodes and the frequency-dependent
acoustic capacitance are modeled as C and Xi, respectively, and the
transduction between electrical and mechanical domains is modeled
as an ideal electromechanical transformer with a turn ratio of Φ, con-
nected to the middle of a transmission line of length λ/2, as shown
in Fig. 3. Assuming an infinite 2D plate piezoelectric transducer of
thickness h, the resonant frequency is set by h = λ/2; at the resonant
frequency, the ultrasound wave impinging on either the front or back
face of the transducer will undergo a 180◦ phase shift to reach the
other side, causing the largest displacement between the two faces.
This observation implies that phase inversion only exists at the odd
harmonics of the fundamental mode in a given geometry.

The KLM model, however, was derived under the assumption
of pure one-dimensional thickness vibration, and therefore can only
provide a valid representation for a piezoelectric transducer with an
aspect ratio (width/thickness) greater than 10 that mainly resonates
in the thickness mode [56]. Given the extreme miniaturization tar-
get for the neural dust, a cube dimension (aspect ratio of 1:1:1) is
a better approximation of the geometry than a plate (aspect ratio >

Fig. 3. KLM model of a neural dust piezoelectric transducer, showing one elec-
trical port and two mechanical ports. Coupling between the domains is modeled
with an ideal electromechanical transformer.

10:10:1). Due to Poisson’s ratio and the associated mode coupling
between resonant modes along each of the three axes of the cube,
changing aspect ratio alters the resonant frequencies [57]. The piezo-
electric transducers for both the interrogator and the neural dust must
be designed to resonate at the same frequency to maximize the link
efficiency. In the model below, we assume the neural dust nodes are
cubic and the external transceiver is approximately planar (i.e., 2D)
so care must be taken not to confuse the thickness of the interrogator
and the neural dust.

In order to obtain KLM parameters for the neural dust transducer,
we simulated a cube transducer using a 3D finite element package
(COMSOL Multiphysics) to model both the resonant frequency shift
vs. a plate and the manifestation of spurious tones and higher reso-
nances. The effect of resonance shift is included in the KLM model
by extracting the effective acoustic impedance of the neural dust from
the COMSOL model. To match the resonant frequency of the inter-
rogator and the neural dust, the interrogator thickness is varied to
match the fundamental thickness mode of the neural dust. Approxi-
mately 66 % of the total output energy is contained in the main thick-
ness resonance; this is modeled as a loss term. Coupling into other
modes, however, can be reduced by stretching BaTiO3 in the [110]
direction because BaTiO3 is both anisotropic and partially auxetic,
exhibiting negative Poisson’s ratio and therefore providing gain when
stretched [58, 59]. Well-engineered placement of electrodes may en-
able orientation-insensitive implant nodes and can allow multi-node
ad-hoc type communication networks. More on this topic will be
elaborated in the discussion section.

The maximum energy transfer efficiency can be found via a link model
consisting of a cascade of two-port networks.

A good model of the ultrasonic channel is crucial in order to as-
sess the tradeoffs in optimizing systems for energy transfer through
lossy brain tissue. The complete energy link model is shown in Fig.
4 and can be divided into three parts: (1) the ultrasonic interrogator
or transmitter, (2) tissue, and (3) the neural dust or receiver. A sig-
nal generator and amplifying stages produce power for the ultrasonic
transmitter through an impedance matching circuit that provides con-
jugate matching at the input. The ultrasonic wave launched by the
interrogator penetrates brain tissue, modeled as a lossy transmission
line, and a fraction of that energy is harvested by the ultrasonic re-
ceiver, or neural dust. We evaluated embedding the receiver up to
2 mm into the tissue, which generates an AC voltage at the electri-
cal port of the piezoelectric transducer in response to the incoming
ultrasonic energy.

In order to compute the link energy transfer efficiency, the model
can be decomposed to a set of linear and time-invariant two-port pa-
rameters, representing a linear relationship between the input and
output voltage. Here, we choose to represent the input-to-output re-
lationship using ABCD parameters, which simplify analysis of cas-
cades of two-port networks through simple matrix multiplication.
By representing the link model with the two-port network, we can
come to conclusions concerning optimal power transfer efficiency (or
"gain").
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Generally, maximum link efficiency (Gmax) is achieved when
we can conjugate match both the input and the output of a two-
port network. However, with a 100 µm neural dust node, the output
impedance level is such that it would require∼100 µH of inductance
to perfectly conjugate match the output of the two port link network.
Given the compact form factor of the neural dust, it is completely
infeasible to obtain such inductance with electrical means, and there-
fore Gmax is an unachievable figure of merit. It may be possible to
approach Gmax by mechanical means such as the addition of ma-
terial layers that perform an acoustic impedance transformation, or
similarly, by electromechanical means such as utilizing microma-
chined acoustic resonators. We do not explore the first option in
detail as it would likely lead to thickness increases on order of in-
teger fractions of a wavelength (but see Fig. 5 (b) and below); the
second option is touched upon in Discussion and Conclusion. There-
fore, for comparison and scaling analysis, we assume we only have
impedance control at the input, or the interrogator side, and therefore,
power gain (Gp) is the suitable figure-of-merit.

For a 100 µm node embedded 2 mm into the brain, ultrasonic power
transmission can enable 7 % efficiency power links (-11.6 dB), re-
sulting in a received power of ∼500 µW with a 1 mm2 interrogator.

The complete link model is implemented in MATLAB with the lim-
itations of the KLM model (as outlined in the previous section) cor-
rected via COMSOL simulations. Given a 1 mm2 interrogator, Fig.
5 plots both the efficiency of the link and the received power at the
sensor node as the size of the dust node scales and the thickness of the
interrogating transducer is adjusted to match the resonant frequency
of the dust node and the tissue (i.e., transmission line resonator). We
note that the maximum efficiency of the KLM-adapted link model,
where the interrogator is fully immersed in the tissue medium, is lim-
ited to 50 % because both the back and front side of the interrogator
are loaded by the tissue layer. This results in an efficiency drop of 3
dB as the ultrasonic energy couples to both the front and back face of
the transducer equally. Additionally, without any impedance match-
ing, since the acoustic impedance of the tissue (1.5 MRayls) and that
of BaTiO3 (30 MRayls) are drastically different, significant reflection
occurs at their boundaries. Depending on the thickness of neural dust
and the resonant frequency of the network, ultrasonic waves launched
by the interrogator undergo varying phase changes through the lossy
tissue. Thus, the efficiency of a system with smaller dust nodes can
be improved if the total propagation distance happens to be a multiple
of a wavelength of the ultrasound. As a result, for dust nodes greater
than 100 µm, we note that the efficiency does not monotonically in-
crease with the dimension. On the other hand, for a dust node that

Fig. 4. Complete single interrogator, single neural dust power and communica-
tion through link models.

is less than 100 µm in dimension, because the wavelength associated
with the network’s resonant frequency is much smaller than its tissue
propagation distance, the link efficiency depends more heavily on the
cross-sectional area of the neural dust. Therefore, we note that the
efficiency will drop at least quadratically with the reduction of neural
dust dimension. The efficiency of the link can be improved with a
λ/4 matching layer for impedance transformation, but the improve-
ment is limited due to the loss from the material (e.g., attenuation of
graphite epoxy is ∼16 dB/(cm·MHz) [60] compared to that in brain
tissue which is 0.5 dB/(cm·MHz) [40]) as shown in Fig. 5 (b). Note
that for the case with this matching layer, the efficiency is worse for
dust nodes that are >500 µm since the loss of the matching layer
outweighs that of the tissue.

More specifically, simulation of the complete link indicates that
for a 100 µm node embedded 2 mm into the brain, ultrasonic power
transmission can enable 7 % efficiency power transmission (-11.6
dB). As shown in Fig. 5 (a), the optimal transmission frequency is 8
MHz; half of this peak Gp can be maintained for carrier frequencies
that are±2 MHz separated from this peak. At the resonant frequency,
we can receive up to ∼500 µW at the neural dust node (resulting in
nano-meters of total displacement) with a 1 mm2 interrogator, which
is >107 more than EM transmission at the same size scale (40 pW in
Fig. 2). Scaling of neural dust also indicates that approximately 3.5
µW can be recovered by a dust node as small as 20 µm through ultra-
sonic transmission, which is still in the realm of feasibility to operate
a state-of-the-art CMOS neural front-end. Designing an ultra-energy
efficient neural front-end in CMOS in such small footprint (20 µm
x 20 µm), however, is an extremely challenging problem and is dis-
cussed in detail below.

System design and constraints: Sensing / Communication
Extracting neural potential recording from a noisy environment is a
challenging problem.

The electrical activity of neurons is most directly measured as an
electrical potential across the cellular membrane. As a result, the
highest fidelity measurement can be achieved using patch-clamp
methods, where a glass pipette is placed in the vicinity of the cell and
an intra-cellular electrical connection is established by penetrating
the cellular membrane and sealing the membrane around the pipette.
While this approach is well studied and commonly practiced, it does
not scale well and is currently not useful for chronic implants due to

Fig. 5. (a) Ultrasonic power transfer efficiency vs. operating frequency for a 100
µm neural dust (b) Link efficiency with and without a matching layer as a function
of the neural dust side dimension.
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the complexity of the procedure (but see [61–63]). Due to these lim-
itations, clinically-relevant, implantable recordings are taken extra-
cellularly; that is, electrical measurements are taken entirely outside
the cells.

A typical extracellular electrophysiological recording of neural
activity in tissue usually records electrical potential differences be-
tween one electrode placed in-tissue near the neural activity and a
second electrode "far away" which acts as a global ground or counter
electrode (depending on the configuration). The recorded signal con-
sists of three components: an electrochemical offset that appears as
a DC offset, typically in the range of 100’s of mV, low-frequency
(0.1 – 600 Hz) changes [64] (∼0.5 mV amplitude) often termed
local field potential (LFP) from a spatial average of neural activ-
ity in the neighborhood of electrodes and high frequency (0.8 – 10
kHz) action potential (AP) or spiking events (∼100 µV) associated
with the discharge of individual neurons in the vicinity of the elec-
trode [6]. Ignoring noise inherent in the recording equipment (which
is usually not insubstantial), there are two main sources of corti-
cal recording noise: thermal noise generated by the recording elec-
trode and the tissue interface and biological interference which arises
from asynchronous neural activity in close proximity to the recording
site. Therefore, neural signal acquisition chains often rely on obtain-
ing a maximum signal level at the front-ends and/or separating the
µV-level desired signal from large offsets and low frequency distur-
bances.

Spatial separation of recording electrodes to maximize the achiev-
able differential signal on neural dust is the bottleneck for scaling.

Free-floating extracellular recording at untethered, ultra-small dust
nodes poses a major challenge in scaling. Unlike the needle-like mi-
croelectrode shanks that can measure time-domain electrical poten-
tial at each recording site in relation to a common electrode, placed
relatively far away, both the recording and the common electrode
must be placed within the same (very small) footprint. Although the
two are interchangeable, the separation and therefore, the maximum
differential signal between the electrodes are inherently limited by
the neural dust footprint, and follow the dipole-dipole voltage char-
acteristic that decreases quadratically (unless very near a cell body, in
which case it appears to scale exponentially; see [65] for a more thor-
ough review) with increasing separation distance. Since the power
available to the implant has a fixed upper bound (see above), the re-
duction of extracellular potential amplitude as the neural dust dimen-
sions are scaled down in the presence of biological, thermal, elec-
tronic, and mechanical noise (which do not scale), causes the signal-
to-noise (SNR) ratio to degrade significantly; this places heavy con-
straints on the CMOS front-ends for processing and extracting the
signal from extremely noisy measurements. Therefore, if we con-
sider sufficient SNR at the input of the neural front-ends as one of the
design variables, the scaling of neural dust (as depicted in Fig. 5 (b))
must be revisited.

Careful co-optimization of piezoelectric transducer and CMOS front-
end circuitry can push the operation of neural dust down at least to
the 50 µm scale.

Focusing specifically on the scaling of a cubic neural dust, we run
into the inherent limitation in the maximum achievable differential
signal (discussed above). At a separation distance of 100 µm between
recording electrodes, we expect a 10 µV AP amplitude [data derived
from [66]], with the amplitude further reducing quadratically as the
separation is reduced. Since the power available to the neural dust is
limited, the design goal of a front-end architecture is to minimize the
input-referred noise within this power budget. The power efficiency
factor (NEF2 · Vdd) quantifies the tradeoff between power and noise
[24] and extrapolating from the measurement result of a previous
CMOS neural front-end design (NEF2 · Vdd of 9.42 [1]), we can es-

Fig. 6. As we scale down the neural dust size, more power is needed to keep the
noise floor down to maintain SNR while less power is captured. The intersection
of these two trends is the smallest node that will still operate. Scaling with an
SNR of 3 shows operation down to 50 µm. The analysis assumes the use of
BaTiO3, two different FDA-approved ultrasonic energy transfer protocols, and
does not include the use of matching layers.

timate the relationship between the input-referred noise level and the
DC power consumption of an optimally designed front-end architec-
ture as we scale. The fundamental limit to the NEF2 ·Vdd occurs at a
supply voltage of at least ∼4 kBT/q or 100 mV, in order to reliably
operate the FET, and by definition, the NEF of 1 for a single BJT am-
plifier [67]. In principle, one could push the supply voltage down to
∼2 kBT/q, but in practice 100 mV is already extremely aggressive.

Fixing the input SNR to 3, which should be sufficient for extract-
ing neural signals, we can evaluate the scaling capability of neural
dust as shown in Fig. 6. We assumed the use of BaTiO3 in the model
described in the section above and do not include the use of matching
layers. We also assumed that the interrogator’s output power is con-
strained by the two different FDA-approved ultrasonic energy trans-
fer protocols. We note that there exists an inherent tradeoff between
the power available to the implant and the exponential increase in the
power required to achieve an SNR of 3 with the reduction of spacing
between the electrodes. The point of intersection in Fig. 6 denotes the
minimum size of neural dust that enables the operation of the com-
plete link. For the stated assumptions, this occurs at 50 µm, which is
greater than the dimension at which the thermal noise from the elec-
trode (R = 20 kΩ and BW = 10 kHz) limits further scaling. This ef-
fectively means that, staying within FDA-approved ultrasound power
limits, assuming an SNR of 3 is required, neural dust nodes smaller
than 50 µm cannot receive enough power to distinguish neural activ-
ity from noise. Note that the cross-over assumes 100 % efficiency in
the rectifier and zero overhead cost in the remaining circuitry, both
of which will not be true in practice (i.e., the actual size limit will be
larger than this).

Given the lower size limit for scaling these systems, as well as
the need to implant them entirely in the cortex, both wireless power
and communication schemes are required for the neural dust nodes.
The communication strategy is detailed below.

Neural electrophysiological data can be reported back via backscat-
tering – i.e., modulating reflection of the incident carrier.

Radio frequency identification (RFID) technologies have found broad
adoption in the past decade, and were made possible by advances
in wireless powering techniques as well as the improved energy-
efficiency of the computational substrates. In general, RFID em-
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ploys two different mechanisms to communicate with sensor tags:
active and passive [68]. When queried, active tags, which are battery-
powered and contain a low power radio like conventional wireless de-
vices, internally generate electromagnetic radiation in order to trans-
mit the data back to the reader. In contrast, passive and semi-passive
tags transmit data by modulating the incoming RF energy and re-
radiating the modulated RF energy back to the reader, a method
called backscattering. Modulation of the backscattered RF energy
can be achieved by varying the load impedance, which changes the
coefficient of reflectivity. Furthermore, backscattering is amenable
to parallel communication among sensor tags and one interrogator
distinguishing among different receivers by using frequency diver-
sity [69]. Multi-mode strategies are discussed in Discussion and Con-
clusion.

For the ultra-miniature, chronic implants discussed here (which
have stringent requirements on both the size and power available to
the implant), broadcasting the information back to the interrogator
via backscattering is a more attractive choice than building a fully
active transmitter on the implant. As a passive device, backscattering
receivers do not need batteries or significant capacitive energy stor-
age, thus extending lifetimes, eliminating the risk of battery leakage,
and removing the significant impediment to size scaling that would
be created by the dramatically reduced capacitance available on a
small node. The powering and communication strategies developed
for electromagnetic backscattering can be applied to any link, regard-
less of the transmission channel modality (i.e., ultrasound).

Co-integration of CMOS and piezoelectric transducer is challenging,
but CMOS can provide dynamic control over the load impedance.

The CMOS component of an active neural dust node must at least
consist of a full-wave bridge rectifier to convert the harvested piezo-
electric AC signal to a DC level and regulators to generate a stable
and appropriate DC supply voltage for the rest of the CMOS circuitry.
The basic architecture of the CMOS front-ends will depend on the
application. For the acquisition of the entire neural signal trace, we
must capture both the LFP and action potentials. Given the relative
amplitude, DC offset, and frequency range of these signals, the cir-
cuit must operate at a full bandwidth of 0 to 10 kHz with >70 dB of
input dynamic range [24]. Researchers have demonstrated a mixed-
signal data acquisition architecture solution to extract LFP and action
potentials, originally proposed in [24], which cancels the DC offset
in the analog domain to alleviate the dynamic range constraints and
to eliminate bulky passive components used in [70, 71]. Therefore,
the CMOS front-ends include rectifiers, voltage regulators, low-noise
amplifiers, DC-coupled analog-to-digital converters (ADC) and mod-

ulators to communicate the decoded information back to the inter-
rogator.

Co-integration and packaging challenges and – most importantly
– the footprint of current CMOS neural front-ends present major
roadblocks to the active implant approach. The smallest CMOS
neural front-end system published to date, not including rectifiers
and modulators, occupies approximately 100 µm2 of silicon real es-
tate [24], and packing the same functionality onto a smaller foot-
print may not be plausible. Thinned, multi-substrate integration to
meet the volume requirements while keeping the overall CMOS area
constant may resolve this issue, but requires substantial further tech-
nology development to represent a viable solution. Scaling the ac-
tive electronics to appropriate dimensions is clearly a bottleneck, but
presents an enticing opportunity for further innovation to address the
issue.

System design and constraints: Passive node
A MOSFET (Metal-Oxide-Semiconductor field effect transistor) may
be used to modulate the impedance of the transducer as a function of
neural signals, obviating the need for active front-ends.

Ideally, the simplest neural dust would consist of a piezoelectric
transducer with a set of surface electrodes that can record the oc-
currence of a neural spike, and the extracted measurement can be
reported back to the interrogator by somehow encoding the informa-
tion on top of the incoming ultrasound wave. The design methodol-
ogy we adopt here is that of elimination: starting with current neural
front-end architectures that consist of, but are not limited to, rec-
tifiers, high resolution ADC, amplifiers, regulators and modulators,
we start eliminating each component to truly understand its impact
on overall system performance, and therefore assess its necessity for
inclusion on the dust node itself. Rectifiers and voltage regulators are
essential to provide a stable DC power supply for the transistors in
the system. In order to prevent variations in the electrical response
of the circuits with the variation of its power supply, it is important
to have sufficient amount of capacitance to curb any supply ripple
and filter out high frequency electrical noise. As a result, these two
components tend to occupy the largest amount of space in the CMOS
die footprint.

Here, let us re-examine the need for a DC supply as we entertain
the idea of completely eliminating both the rectifiers and the voltage
regulators. In this scenario, the piezoelectric transducer harvests the
incoming ultrasonic wave and directly converts it to an AC electrical
voltage. At this point, the design goal essentially boils down to devis-

Fig. 7. A process of elimination leads to a simple architecture (right) where we utilize a FET to vary the electrical load impedance, changing the ultrasonic wave
reflectivity at the dust and modifying the backscattered wave.
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ing ways of encoding neural data on top of this incoming ultrasound
wave, to be reported back to the interrogator via modulation.

We propose a method outlined in Fig. 7, where the drain (D)
and source (S) of a single FET sensor are connected to the two termi-
nals of a piezoelectric transducer while the FET modulates the cur-
rent IDS as a function of a gate (G) to source voltage, VGS . In this
scheme, given that the supplied VDS of the FET is an AC voltage that
swings both positive and negative, the body (B) of the FET must be
biased carefully. Normally, for an NFET, the body is connected to the
source voltage to prevent the diode at the B-S and B-D junctions from
turning on. However, keep in mind that since a FET is a symmetric
device, the source and drain are defined only by which terminal is at
a lower potential. Therefore, the electrical source/drain terminals, or
left/right for disambiguation (from a cross section of MOS device),
swap physical sides every half cycle of the harvested AC waveform.
As a result, simply shorting the body to either physical terminal of
the FET causes the diode formed at the B-S and B-D junctions to
be forward-biased, so care must be taken to avoid neural signal from
modulating the incoming sinusoid only half of the cycle.

As a result, we propose an alternative biasing scheme for the FET
to modulate the entire sinusoid as shown in Fig. 7. The resistors Rb

act to cause the neural potential to appear between the gate and both
of the left/right terminals of the transistors while superimposing the
AC waveform from the ultrasonic transducer across these same two
terminals. In this manner, even though the electrical source/drain ter-
minals swap every half cycle, during both halves of the cycle the VGS

of the FET is modulated by the neural signal.
The circuit achieves this superposition by relying on the fact

that the neural signals occupy a much lower frequency band than
the ultrasound, and that the ultrasound transducer itself has a capac-
itive output impedance (Cpiezo). Thus, Rb should be chosen so that
1/(Rb · Cpiezo) is placed well above the bandwidth of Vneural (>10
kHz) but well below the ultrasound frequency (∼10 MHz for a 100
µm node). Rb along with the transistor width must also be chosen
carefully to achieve the best reflectivity, as will be described shortly.

Since modulation of IDS in turn modulates the impedance seen
across the two piezoelectric drive terminals, the FET effectively mod-
ulates the backscattered signal seen by a distant transmitter. The
change in the nominal level of IDS is a function of VGS , which can
be up to 10 µV (Vneural) for a 100 µm dust node near an active neu-
ron. The sensitivity, S, to the action potential, then, is defined as the
change in IDS with respect to VGS normalized by the nominal IDS

(in addition to the current through Rb) and Vneural,

S =
Vneural

IDS + VDS/2Rb
· ∂IDS

∂VGS
= Vneural ·

gm
IDS + VDS/2Rb

[2]

Since gm (transconductance of a FET) is directly proportional to
IDS , in order to maximize gm/IDS (i.e., achieves the largest gm for
a given IDS), we would like to operate the FET in its steepest region
– specifically, deep sub-threshold where it looks like a bipolar junc-
tion transistor (BJT). Therefore, the nominal VGS bias can be 0 V,
which simplifies the bias circuitry. The modulation of the current is
equivalent to a change in the effective impedance of the FET, or the
electrical load to the piezoelectric transducer. This variation in the
load impedance affects the ultrasonic wave reflectivity at the neural
dust and modifies the wave that is backscattered. Note that in or-
der to maximize the sensitivity (i.e., operating the transistor in deep
sub-threshold), the system should be constrained such that the piezo-
electric voltage is never too large compared to the threshold voltage.

A SPICE simulation of a typical low-threshold voltage NFET in
a standard 65 nm CMOS technology was used in order to assess the
nominal current level and the change in the effective impedance of
the electrical load with Vneural. We assumed that we can implement
suitably large Rb in sufficiently small area of the neural dust nodes.
As previously mentioned, in deep sub-threshold, the FET behaves as
a BJT, where the physical limit on the achievable gm/IDS = q/kBT ,

determined by the Boltzmann distribution of carriers. As a result, we
can obtain S = 400 ppm for Vneural = 10 µV with a perfect BJT.
Given the non-ideality factors associated with FETs, the sensitivity
is reduced by a factor of 1.5 – 2, to roughly 250 ppm, which is con-
firmed by the simulation.

The implication of the modification in the electrical properties of
the NFET (output load of the piezoelectric transducer) on the change
in the acoustic signal and the corresponding design specifications for
the interrogator is discussed in detail below.

System design and constraints: Interrogator
Shorter transmission distance and larger aperture of the interrogator
allow efficient trans-cranial power delivery via electromagnetics.

The focus of the paper up to this point has been on the constraints
associated with scaling the neural dust. In order to interface with the
BMI electronics and to post-process recorded neural data for brain
mapping, an interrogator that can extract the information of the sen-
sor nodes, perform precise localization and addressing, and provide
power for the communication needs to be designed. To achieve a
BMI-relevant density of neural recordings, neural dust implants may
need to be spaced as close as 100 µm (embedded up to a depth of
2 mm into the cortex). On the other hand, the interrogator elements
will be larger than the sensor nodes and will be spaced at a larger
pitch (between 100 µm and 1 mm). Furthermore, for the prelimi-
nary system, we assume that the interrogator is placed beneath the
skull and below the dura mater, to avoid strong attenuation of ultra-
sound by bone (∼22 dB/(cm·MHz) [40]) and to prevent wave reflec-
tion and efficiency loss from impedance mismatch between different
tissue layers and the skull. The complete trans-cranial transmitter
system then would nominally contain an EM link to couple infor-
mation through the skull [72]. We do not discuss the design of the
RF trans-cranial communication link as that is covered in other work.

Sufficient receiver sensitivity is required by the interrogator to re-
solve the occurrence of a neural spike.

A different set of challenges exist in implementing circuitry to gener-
ate, collect and process neural data. Namely, innovative approaches
are essential to 1) ensure that the interrogator/sensor combination
has sufficient sensitivity to meet the necessary data resolution for
BMI and 2) allow for combination of various multi-node interroga-
tion strategies to distinguish among different sensor nodes.

For the analysis carried out in this paper, we assumed that the
power and size constraints of the neural dust, and not the interroga-
tor, are the major bottlenecks in the scaling of ultrasound-mediated
neural dust system. In order to verify the validity of this assumption,
we can examine, to the zeroth order, the power required by the inter-
rogator to achieve certain receiver sensitivity for a passive implemen-
tation of the neural dust node. From the complete link model shown
in Fig. 4, we note that the change in the electrical impedance of the
NFET load induces a change in the input admittance (or the input
power) of the two-port network. The interrogator (receiver) must be
able to detect this change in the input power level in order to resolve
the occurrence of a neural spike. Therefore, we need to determine the
size of the FET sensor on the dust node that maximizes the change in
the input power level of the two-port network, or,

∆Pin ∝
∣∣∣∣Yin,spike − Yin,nom

Yin,nom

∣∣∣∣ [3]

where Yin,spike and Yin,nom denote input admittance of the two-port
network with and without a neural spike, respectively. Fig. 8 shows
the result of the optimization problem with a standard 65 nm CMOS
technology. For 100 µm and 20 µm dust nodes, 75 µm and 16 µm
width FET maximize ∆Pin, respectively. Note that since the op-
timum transistor width (i.e., nominal impedance) for achieving the
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Fig. 8. Change in the input power level (i.e., power at the interrogator) as a
function of transistors width for a 65nm CMOS process and with (a) 100 µm and
(b) 20 µm neural dust nodes.

largest reflection is pretty flat, passive node is insensitive to the ef-
fects of threshold variability in the transistors and DC offsets in the
neural electrodes.

The FET sensor design variable (transistor width), however, is
constrained due to the thermal noise of the FET (which sets the lower
limit) and the maximum available power at the node and the neural
dust form factor (which set the upper limits). Clearly, the small foot-
print of the neural dust restricts the maximum effective width of the
FET sensor that we can pack on the dust, and we term this the area
limit. More importantly, we need to ensure that the thermal voltage
noise of the FET does not overwhelm the AP voltage. As a result,
for a fixed bandwidth, in order to lower this voltage noise floor of the
FET, it is necessary to increase the bias current, and hence the power
consumption given a fixed output voltage. Given a simple single-
ended transistor amplifier with a single dominant pole, a bias current
of IDS , and a transconductance of gm, the minimum bias current
required can be derived as,

IDS =
π

4
· 4kBT

v2n
· kBT

q
·BW [4]

where v2n is the input-referred voltage noise. As a result, the FET
must be large enough to be able to sustain this minimum bias cur-
rent. Therefore, for a BW = 10 kHz and voltage SNR at the input
of the FET of 3 (which sets v2n based on Vneural), we can compute
the minimum allowable size of the FET, restricted by the noise limit.
Finally, in order to reliably operate the FET, the drain-source voltage
of the FET must be at least∼4 kBT/q or 100 mV. As a result, neural
dust must capture enough power from the interrogator to sustain both
100 mV and the minimum current required to ensure that the thermal
noise does not dominate the AP voltage. This is defined as the power
limit.

With such restrictions, Fig. 8 shows that for a 100 µm dust node,
we can design a FET sensor to generate a 16.6 ppm change in the
input power with a measured Vneural. This results in ∼120 nW (-39
dBm) of backscattered power at the input given a 1 mm2 interroga-
tor aperture outputting 7.2 mW of power to satisfy safety regulations
on output power density of 720 mW/cm2. With such power levels,
given a thermal noise spectral density of -174 dBm/Hz of input noise
power, 10 kHz of BW, 10 dB of noise figure, and 10 dB of SNR,
a traditional CMOS receiver should be sensitive enough to detect at
minimum -114 dBm of input power. A number of highly-sensitivity

Fig. 9. Neural dust with an ultra-compliant flexible polyimide "tail", populated
with recording sites, can be envisioned to bypass the limits of the achievable
differential signal between two electrodes placed on a neural dust footprint.

receivers with < mW of DC power consumption have been demon-
strated (e.g., [73]).

For a 20 µm dust, however, Fig. 8 shows that the upper limit on
the FET size imposed by the power limit is lower than the lower limit
set by the noise limit, indicating that the passive implementation of
neural dust system scales roughly to 20 µm.

Re-design of neural dust node
The scaling of both active and passive node implementations pre-
sented above is limited by the noise requirement of the front-end ar-
chitectures, which is determined by the achievable differential signals
between the electrodes. Decoupling the inherent tradeoff between the
size of individual implants and the achievable SNR can improve the
scaling of these implementations.

Re-thinking the design of neural dust can enhance its scalability.

Since the trade-off derives directly not from the neural dust dimen-
sion, but from electrode separation, one approach may be to add very
small footprint (∼1 – 5 µm wide) "tails" which position a single (or
multiple) electrode relatively far (> 50 – 100 µm) from the base of
the neural dust implant. This would result in the design shown in
Fig. 9, where instead of placing a single differential surface elec-
trode on neural dust, the neural dust can consist of a short strand of
flexible and ultra-compliant substrate populated with recording sites.
Assuming that the achievable electrode separation in the tail of a 20
µm node is 100 µm, this implies that the noise limit, as shown in Fig.
8, will set the lower bound to 0.4 µm of transistor width and allow
the design of a FET sensor on the dust node that achieves the opti-
mal sensitivity, at 2.3e-3 ppm. This corresponds to 16.6 pW (-77.8
dBm) of backscattered power at the input, which is still in the realm
of feasibility with a traditional CMOS receiver [73]. Therefore, this
approach can address one of the major pitfalls with only a minor ad-
justment to the original idea as this neural dust still operates under
the same principle as before, but has higher achievable SNR.

Note that the exact technology used for the previous analysis is
not critical to the conclusion we drew. Although the absolute value
of the impedance level is important since it determines the reflection
coefficient, and therefore, the efficacy of the backscatter, as shown in
Fig. 8, the analysis above indicates that the optimal transistor width
for the maximal sensitivity is small compared to the available neu-
ral dust footprint. Therefore, although the threshold voltage (hence
the nominal impedance level per transistor width) may vary among
different technology nodes, achieving the optimal impedance level
within the footprint may not be an issue.

In addition, since the analysis above does not take into accounts
additional interference (e.g., ultrasonic wave reflection from other
structures in the brain, such as vasculature), the sensitivity require-
ment of the interrogator are more stringent than predicted earlier.
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Such reflections will likely lead to intersymbol interference. In the
case of an active node, such interference can be dealt with through
adaptive equalization and/or error correcting codes [74]. For the pas-
sive system – which is effectively "transmitting" analog information
back to the interrogator through the backscatter – some form of fil-
tering could be applied to reverse the effects of these reflections.
Alternatively, one could potentially utilize a pulse-based system to
uniquely discriminate the various reflections based on their arrival
times.

Discussion and Conclusions
The analysis presented points to three major challenges in the realiza-
tion of ultra-small, ultrasound-based neural recording systems. The
first is the design and demonstration of front-ends suitable for op-
erating within the extreme constraints of decreasing available power
and decreasing SNR with scale. This could be addressed with a com-
bination of CMOS process and design innovation as well as thinned,
multi-substrate integration strategies (see, for example, [75,76]). The
second challenge is the integration of extremely small piezoelectric
transducers and CMOS electronics in a properly encapsulated pack-
age. The above discussion assumed the entire neural dust implant
was encapsulated in an inert polymer or insulator film (a variety of
such coatings are used routinely in neural recording devices; these in-
clude parylene, polyimide, silicon nitride and silicon dioxide, among
others) while exposing two recording electrodes to the brain. The
addition of "tails" as discussed above presents additional fabrication
challenges. The third challenge arises in the design and implementa-
tion of suitably sensitive sub-cranial transceivers which can operate
at low power (to avoid heating between skull and brain). In addition
to these three challenges, this paper does not discuss how to deliver
neural dust nodes into the cortex. The most direct approach would be
to implant them at the tips of fine-wire arrays similar to those already
used for neural recording. Neural dust nodes would be fabricated or
post-fab assembled on the tips of array shanks, held there by surface
tension or resorbable layers; a recent result demonstrates a similar
approach to implant untethered LEDs into neural tissue [77]. Once

inserted and free, the array shanks would be withdrawn, allowing the
tissue to heal. Kinetic delivery might also be an option, but there is
no existing data to evaluate what effect such a method would have on
brain tissue or the devices themselves.

The trans-cranial transmitter design also introduces multi-
interrogator, multi-node communication possibilities that will need
to be developed in order to enable the large number of recording sites
envisioned in this paper. Because the neural dust nodes are smaller
than a wavelength, the reflected signals will be subject to diffraction.
With multiple nodes embedded and sufficiently wide transceivers,
this presents an interesting inverse problem of potential benefit in
resolving signals from different nodes. An alternative approach to
multi-node communication would be to fabricate nodes with a va-
riety of resonant frequencies and use frequency discrimination (i.e.,
each dust transmits on its own frequency channel). Lastly, neural
dust nodes with aspect ratios close to 1:1:1 will not only couple en-
ergy into modes along the two axes perpendicular to the transmission
axis, they will also re-radiate along those axes. This means nodes ly-
ing near each other on a "horizontal" plane (relative to the top surface
of the cortex) may see inter-node signal mixing. This has interesting
implications for node-to-node communication.

Lastly, one of the more compelling possibilities would be to
harness the considerable volume of research that has gone into
micro- and nanoelectromechanical RF resonators (which easily op-
erate in the MHz range [78, 79] and thin-film piezoelectric trans-
ducers [54, 80] to produce devices with better power coupling as a
function of scale, thus facilitating extremely small (10’s of µm) dust
nodes. This remains an open opportunity.

ACKNOWLEDGMENTS. The authors would like to thank Tim J. Blanche of Allen
Institute of Brain Science, Konrad P. Kording of Northwestern University, Adam
H. Marblestone of Harvard University, Emmanuel Quevy of Silicon Laboratories,
Mikhail G. Shapiro of California Institute of Technology, Bradley M. Zamft of the
US Department of Energy, and William Biederman, Peter Ledochowitsch, Nathan
Narevsky, Christopher Sutardja, and Daniel J. Yeager of UC Berkeley for valuable
discussions. This work was supported by the NSF Graduate Fellowship for DS
and the Bakar Fellowship for JMC and MMM.

1. Biederman W, Yeager DJ, Narevsky N, Koralek AC, Carmena JM, Alon E, Rabaey
JM (2013) A Fully-Integrated, Miniaturized (0.125 mm2) 10.5 µW Wireless Neural
Sensor. IEEE J Solid-State Circuits 48(4):960-70.

2. Fan D, et al. (2011) A wireless multi-channel recording system for freely behaving
mice and rats. PLoS One 6(7): 1-9.

3. Miranda H, Gilja V, Chestek CA, Shenoy KV, Meng TH (2010) HermesD : A High-Rate
Long-Range Wireless Transmission System for Simultaneous Multichannel Neural
Recording Applications. IEEE Trans BioCAS 4(3):181-91.

4. Szuts TA, et al. (2011) A wireless multi-channel neural amplifier for freely moving
animals. Nat Neurosci 14(2):263-9.

5. Stevenson I, Kording K (2011) How advances in neural recording affect data analy-
sis. Nat Neurosci 14(2):139-42.

6. Nicolelis MAL, Dimitrov D, Carmena JM, Crist R, Lehew G, Kralik JD, Wise SP (2003)
Chronic, multisite, multielectrode recordings in macaque monkeys. Proc Natl Acad
Sci 100:11041-6

7. Harrison RR, Watkins PT, Kier RJ, Lovejoy RO, Black DJ, Greger B, Solzbacher F
(2007) A Low-Power Integrated Circuit for a Wireless 100-Electrode Neural Record-
ing System. IEEE J Solid-State Circuits 42(1):123-33.

8. Ganguly K, Carmena JM (2009) Emergence of a stable cortical map for neuropros-
thetic control. PLoS Bio 7(7):1-13.

9. Turner JN, Shain W, Szarowski DH, Andersen M, Martins S, Isaacson, M, Craighead
H (1999) Cerebral astrocyte response to micromachined silicon implants. Experi-
mental Neurology 156:33-49.

10. Polikov VS, Tresco PA, Reichert WM (2005) Response of brain tissue to chronically
implanted neural electrodes. J Neurosci Met 148:1-18.

11. Chestek CA, et al. (2011) Long-term stability of neural prosthetic control signals
from silicon cortical arrays in rhesus macaque motor cortex. J Neural Engineering
8:1-11

12. Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP (2005) Reliability of
signals from a chronically implanted, silicon-based electrode array in non-human
primate primary motor cortex. IEEE Trans on NeuralSRE 13(4):524-41.

13. Alivisatos AP, et al. (2013) The Brain Activity Map. Science 339:1284-5.

14. Alivisatos AP, et al. (2013) Nanotools for neuroscience and brain activity mapping.
ACS Nano 7(3):1850-66.

15. Press Release: whitehouse.gov/infographics/brain-initiative (2013)
16. Buzsaki G (2004) Large-scale recording of neuronal ensembles. Nat Neurosci

7(5):446-51.
17. Xie C, Lin Z, Hanson L, Cui Y, Cui B (2012) Intracellular recording of action potentials

by nanopillar electroporation.Nat Nanotech 7:185-90.
18. Du J, Riedel-Kruse IH, Nawroth JC, Roukes ML, Laurent G, Masmanidis SC (2009)

High-resolution three-dimensional extracellular recording of neuronal activity with
microfabricated electrode arrays. J Neurophysiol 101:1671-8.

19. Zamft BM, Marblestone AH, Kording K, Schmidt D, Martin-Alarcon D, Tyo K, Boy-
den ES, Church G (2012). Measuring Cation Dependent DNA Polymerase Fidelity
Landscapes by Deep Sequencing. PLoS One 7(8):1-10.

20. Ziv Y, Burns LD, Cocker ED, Hamel EO, Ghosh KK, Kitch LJ, El Gamal A, Schnitzer
MJ (2013). Long-term dynamics of CA1 hippocampal place codes. Nat Neurosci
16:264-6.

21. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, Tsai L, Moore
CI (2010) Targeted optogenetic stimulation and recording of neurons in vivo using
cell-type-specific expression of Channelrhodopsin-2. Nat Prot 5:247-54.

22. Filonov GS, Krumholz A, Xia J, Yao J, Wang LV, Verkhusha VV (2012) Deep-
tissue photoacoustic tomography of a genetically encoded near-infrared fluores-
cent probe. Angewandte Chemie 51:1448-51.

23. Marblestone AH, Zamft BM, Maguire YG, Shapiro MG, Cybulski T, Glaser JI, Stranges
PB, Kalhor R, Dalrymple DA, Seo D, Alon E, Maharbiz MM, Carmena JM, Rabaey JM,
Boyden ES, Church GM, Kording KP (2013) Physical Principles for Scalable Neural
Recording. arXiv:1306.5709 [q-bio.NC].

24. Muller R, Gambini S, Rabaey JM (2012) A 0.013 mm2 5µW DC-coupled neural signal
acquisition IC with 0.5 V supply. IEEE J Solid-State Circuits 47(1):232-43.

25. Seymour JP, Kipke DR (2006) Fabrication of polymer neural probes with sub-cellular
features for reduced tissue encapsulation. IEEE EMBS Conf 4606-9.

26. Marin C, Fernandez E (2010) Biocompatibility of intracortical microelectrodes: cur-
rent status and future prospects. Front Neuroeng 3:1-6.

10 Seo, D. et al.



27. Rabaey JM, et al. (2011) Powering and communicating with mm-size implants. IEEE
DATE Conf 1-6.

28. Sodagar AM, Amiri P (2009) Capacitive coupling for power and data telemetry to
implantable biomedical microsystems. IEEE EMBS Conf 411-4.

29. Lee SB, Lee H, Kiani M, Jow U, Ghovanloo M (2010) An inductively powered scalable
32-channel wireless neural recording system-on-a-chip for neuroscience applica-
tions. IEEE Trans BioCAS 4(6):360-71.

30. Yakovlev A, Kim S, Poon A (2012) Implantable biomedical devices: Wireless pow-
ering and communication. IEEE Comm Mag 50(4):152-9.

31. Clark GM (2003) Cochlear implants: fundamentals and applications. New York:
Springer-Verlag.

32. IEEE (2006) C95.1-2005 IEEE Standard for Safety Levels with Respect to Human
Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz.

33. Salim A, Baldi A, Ziaie B (2003) Inductive link modeling and design guidelines for
optimum power transfer in implantable wireless microsystems. IEEE EMBS Conf
3368-71.

34. Fotopoulou K, Flynn BW (2011) Wireless power transfer in loosely coupled links:
Coil misalignment model. IEEE Trans Magnetics 47(2):416-30.

35. Ishida K, et al. (2013) Insole Pedometer With Piezoelectric Energy Harvester and 2
V Organic Circuits. IEEE J Solid-State Circuits 48(1):255-64.

36. Wong SH, Kupnik M, Butts-Pauly K, Khuri-Yakub BT (2007) Advantages of Capac-
itive Micromachined Ultrasonics Transducers (CMUTs) for High Intensity Focused
Ultrasound (HIFU). IEEE Ultrasonics Symp:1313-6.

37. Ozeri S, Shmilovitz D (2010) Ultrasonic transcutaneous energy transfer for powering
implanted devices. Ultrasonics 50(6):556-66.

38. Richards CD, Anderson MJ, Bahr DF, Richards RF (2004) Efficiency of energy con-
version for devices containing a piezoelectric component. J Micromech Microeng
14:717-21.

39. Rosen CA, Fish KA, Rothenberg HC (1958) Electromechanical Transducer. US
patent no. 2830274.

40. Hoskins PR, Martin K, Thrush A, editors (2010) Diagnostic Ultrasound: Physics and
Equipment. New York: Cambridge University Press.

41. Leighton TG (2007) What is ultrasound? Progress Biophysics & Molecular Biology
93:3-83.

42. FDA (2008) Information for Manufacturers Seeking Marketing Clearance of Diag-
nostic Ultrasound Systems and Transducers.

43. Tufail Y, Yoshihiro A, Pati S, Li MM, Tyler WJ (2011) Ultrasonic neuromodulation by
brain stimulation with transcranial ultrasound. Nat Prot 6(9):1453-70.

44. King RL, Brown JR, Newsome WT, Butts-Pauly K (2012) Effective Parameters For
Ultrasound-Induced In Vivo Neurostimulation. Ultrasound Med & Bio 39(2):312-31.

45. Foley JL, Little JW, Vaezy S (2007) Image-guided high-intensity focused ultrasound
for conduction block of peripheral nerves. Annals Biomed Engineering 35(1):109-
19.

46. Krasovitski B, Frenkel V, Shoham S, Kimmel E (2011) Intramembrane cavitation
as a unifying mechanism for ultrasound-induced bioeffects. Proc Natl Acad Sci
108(8):1-6.

47. Tyler WJ, Tufail Y, Finsterwald M, Tauchmann ML, Olson EJ, Majestic C (2008) Re-
mote excitation of neuronal circuits using low-intensity, low-frequency ultrasound.
PLoS One 3(10):1-11.

48. Hameroff S, et al. (2013). Transcranial Ultrasound (TUS) effects on mental states: A
pilot study. Brain Stim 6:409-15.

49. Tsui P, Wang S, Huang C (2005) In vitro effects of ultrasound with different energies
on the conduction properties of neural tissue. Ultrasonics 43:560-65.

50. Zhou, Y. (2011). High intensity focused ultrasound in clinical tumor ablation. World
J Clin Oncol 2(1):8-27.

51. Shung KK, Cannata JM, Zhou QF (2007) Piezoelectric materials for high frequency
medical imaging applications: A review. J Electroceram 19:139-45.

52. Zenner HP, et al. (2000) Human studies of a piezoelectric transducer and a micro-
phone for a totally implantable electronic hearing device. Am J Otol 21(2):196-204.

53. Maleki T, Cao N, Song S, Kao C, Ko SA, Ziaie B (2011) An ultrasonically powered
implantable micro-oxygen generator (IMOG). IEEE Trans BioE 58(11):3104-11.

54. Przybyla RJ, Shelton SE, Guedes A, Izyumin II, Kline MH, Horsley DA, Boser BE
(2011) In-air rangefinding with an aln piezoelectric micromachined ultrasound trans-
ducer. IEEE Sensors J 11(11):2690-7.

55. Krimholtz R, Leedom DA, Matthaei GA (1970) New equivalent circuits for elementary
piezoelectric transducers. Electronics Lett 6(13):398-9.

56. Roa-Prada S, Scarton HA, Saulnier GJ, Shoudy DA, Ashdown JD, Das PK, Gavens
AJ (2013) An Ultrasonic Through-Wall Communication (UTWC) System Model. J Vib
Acoust 135(1):1-12.

57. Holland R (1968). Resonant properties of piezoelectric ceramic rectangular paral-
lelepipeds. J Acoust Soc Am 43(5):988-97.

58. Baughman RH, Shacklette JM, Zakhidov AA, Stafstrom S (1998) Negative Poisson’s
ratios as a common feature of cubic metals. Nature 392:362-5.

59. Aleshin VI, Raevski IP (2012). Negative Poisson’s ratio and piezoelectric anisotropy
of tetragonal ferroelectric single crystals. J Appl Phys 112:1-8.

60. Mills DM, Smith SW (2002) Multi-layered PZT/polymer composites to increase
signal-to-noise ratio and resolution for medical ultrasound transducers part II: Thick
film technology. IEEE Ultrasonics 49(7):1005-14.

61. Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR (2012) Auto-
mated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat Met 9:585-
7.

62. Robinson JT, Jorgolli M, Park H (2013) Nanowire electrodes for high-density stimu-
lation and measurement of neural circuits. Front Neural Circuits 7:1-5.

63. Yao J, Yan H, Lieber CM (2013) A nanoscale combing technique for the large-scale
assembly of highly aligned nanowires. Nat Nanotech 8:329-35.

64. Belitski A, et al. (2008) Low-frequency local field potentials and spikes in primary
visual cortex convey independent visual information. J Neurosci 28(22):5696-709.

65. Gold C, Henze DA, Koch C (2007) Using extracellular action potential recordings to
constrain compartmental models. J Comput Neurosci 23:39-58.

66. Du J, Blanche TJ, Harrison RR, Lester HA, Masmanidis SC (2011) Multiplexed, high
density electrophysiology with nanofabricated neural probes. PLoS One 6(10):1-11.

67. Steyaert MSJ, Sansen WM, Zhongyuan C (1987) A micropower low-noise mono-
lithic instrumentation amplifier for medical purposes. IEEE J Solid-State Circuits
22(6):1163-8.

68. Weinstein R (2005) RFID: a technical overview and its application to the enterprise.
IEEE IT Pro 27:33.

69. Finkenzeller K (2003) RFID Handbook: Fundamentals and Applications in Contact-
less Smart Cards and Identification. Wiley, New York.

70. Yazicioglu RF, Kim S, Torfs T, Kim H, Van Hoof C (2011) A 30 µW Analog Signal Pro-
cessor ASIC for Portable Biopotential Signal Monitoring. IEEE J Solid-State Circuits
46(1):209-23.

71. Fan Q, Huijsing J, Makinwa K (2012) A capacitively coupled chopper instrumen-
tation amplifier with a ±30V common-mode range, 160dB CMRR and 5µV offset.
IEEE ISSCC 374-6.

72. Sanni A, Vilches A, Toumazou C (2012) Inductive and Ultrasonic Multi-Tier Interface
for Low-Power, Deeply Implantable Medical Devices. IEEE Trans BioCAS 6(4):297-
308.

73. Otis B, Chee YH, Rabaey JM (2005) A 400 µW-RX, 1.6 mW-TX super-regenerative
transceiver for wireless sensor networks. IEEE ISSCC 396-7.

74. Proakis JG (2000) Digital Communication. McGraw-Hill.
75. Sillon N, Astier A, Boutry H, Di Cioccio L, Henry D, Leduc P (2008) Enabling tech-

nologies for 3D integration: From packaging miniaturization to advanced stacked
ICs. IEEE Elect Dev Meeting 1-4.

76. Smith B, Kwok P, Thompson J, Mueller A, Racz L (2010) Demonstration of a Novel
Hybrid Silicon-Resin High Density Interconnect (HDI) Substrate. IEEE Proc Elect
Comp Tech Conf 816-21.

77. Kim T, et al. (2013) Injectable, Cellular-Scale Optoelectronics with Applications for
Wireless Optogenetics. Science 340:211-6.

78. Sadek AS, Karabalin RB, Du J, Roukes ML, Koch C, Masmanidis SC (2010) Wiring
nanoscale biosensors with piezoelectric nanomechanical resonators. Nano Lett
10:1769-73.

79. Lin Y, Li S, Ren Z, Nguyen CTC (2005) Low phase noise array-composite microme-
chanical wine-glass disk oscillator. IEEE Elec Dev Meeting 1-4.

80. Trolier-McKinstry S, Muralt P (2004) Thin film piezoelectrics for MEMS. J Electroce-
ram 12:7-17.

Seo, D. et al. 11


	System Concept
	System design and constraints: Power Delivery
	System design and constraints: Sensing / Communication
	System design and constraints: Passive node
	System design and constraints: Interrogator
	Re-design of neural dust node
	Discussion and Conclusions

