
Waukesha

FLARING

Flare to Power

A POWERFUL FUTURE

Topics Covered

01

BUSINESS
OVERVIEW

02

FLARING TODAY

03

ADDRESSING THE
PROBLEM OF FLARING

04

CUSTOMER
SUCCESS

05

APPENDIX:
PRODUCT OVERVIEW
FEATURED SYSTEMS

01 Business Overview

INNIO - Enabling the Energy Transition in More Than 100 Countries

HARNESSING THE POWER OF ENGINEERING, TECHNOLOGY, DIGITIZATION, AND GREEN FUELS

WELLAND, CANADA
Production Units Manufacturing

WAUKESHA, WISCONSIN, USA
Corporate HQ, R&D, Technology
Development, Digital Evolution, reUp
manufacturing, and Support Function
Hub

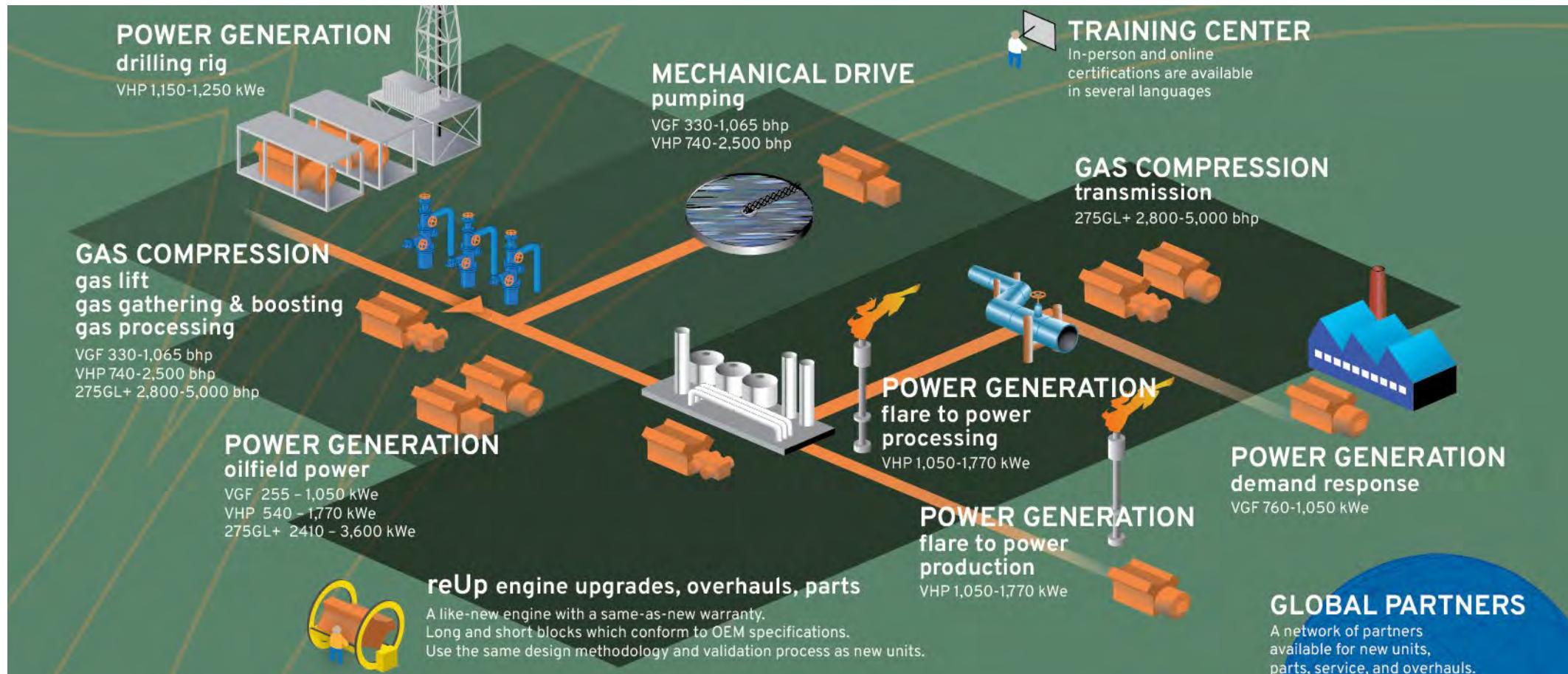
JENBACH, AUSTRIA
INNIO Group Headquarters and Power Generation Hub
for Research, Technology Development, Digital
Evolution, and Manufacturing

Main operating sites

Jenbach, Austria (Headquarters)
Waukesha, USA
Welland, Canada

Delivered Fleet

approx. 55,000 units
~61 GW delivered



Our People

4,000 employees
60 distributors
+ about 40 packagers
3,000+ service personnel
(incl. distributors)

Powering The Worlds Energy Infrastructure

LOW-EMISSION SOLUTIONS TO MEET THE ENERGY CHALLENGES OF TOMORROW, TODAY

Durability and Reliability – Suited for Demanding Applications

VGF

- Gas compression, power generation, & mechanical drive
- **Output:** 400 - 1,175 bhp (230 - 860 kWe)
- Inline 6 and 8, V12 and V16 cylinder configurations
- **Speed range:** 1,200 rpm – 1,800 rpm
- **Delivered engines:** ~6,100
- Introduced in 1987

VHP

- Gas compression, power generation, & mechanical drive
- Fuel flexible rich- and lean- burn engine
- Outstanding in reliability, durability & efficiency
- **Output:** 740 - 2,500 bhp (540 - 1,770 kWe)
- Inline 6, V12 and V16 cylinder configurations
- **Speed range:** 800 rpm – 1,200 rpm
- **Delivered engines:** 18,700+
- Introduced in 1967

275GL+

- Gas compression & power generation
- Fuel flexible lean-burn engine
- Outstanding in efficiency & emissions
- **Output:** 3,750 – 5,000 bhp (2,410 - 3,600 kWe)
- V12, V16 cylinder configurations
- **Speed range:** 750 rpm – 1,000 rpm
- **Delivered engines:** 1,000+
- Introduced in 2009

Waukesha

02 Flaring Today

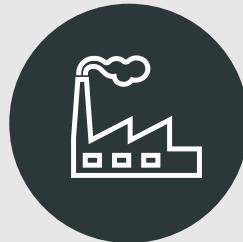
Flaring Today

WHY IS FLARE GAS “WASTED”?

Technological

The infrastructure for capturing and transporting gas is not in place.

Economic


Marketplace for gas/gas products may be small or non-existent in some areas.

Regulatory

Due to regulations, producers may not have the right to sell gas/gas products due to restrictive production licenses

Operational

Flaring may be necessary during certain parts of production such as during drilling or well testing.

Flaring Today

GAS IS FLARED FOR MANY REASONS AND NOT ALL OF THEM ARE AVOIDABLE

Type of Flaring	Examples
Routine 65-85% of all flaring	<ul style="list-style-type: none">• Oil/gas separators• Gas production that exceeds existing gas infrastructure capacity• Process units such as oil storage tanks, tail gas treatment units, etc.
Safety	<ul style="list-style-type: none">• Gas stemming from an accident or incident that jeopardizes the safe operation of the facility• Blow-down gas following emergency shutdown• Gas required for safe and ready condition (purge gas / make-up gas / fuel gas)
Non-Routine	<ul style="list-style-type: none">• Irregular (pronounced peaks and lows) gas production profile• Temporary (partial) failure of equipment• Temporary failure of a customer's facilities that prevents receipt of the gas

Routine flaring is the primary target for sustained mitigation initiatives

Flaring Today

EXPENSIVE AND WASTED GAS

- Flaring: burning waste gas from oil and gas operations, known as flare gas, into the atmosphere
- Harmful for the environment (CH4 emissions)
- Expensive government fines
- Lost revenue opportunities

Equipment KPIs

Maximize
Revenue

Low Cost Of
Ownership

Minimize
Environmental
Impact

\$82 Billion

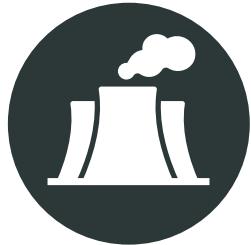
Annually in lost gas revenue due to global flaring⁽¹⁾

The top 12 gas flaring countries flared almost 13 billion cubic feet of gas per day. This amount of energy can power Japan for a year.⁽¹⁾

\$42 Million

Fine for onshore flaring in Nigeria between January and February 2023⁽²⁾

\$27.5 Million


Fine to an oil and gas company for flaring violations in the United States⁽³⁾

Sources:

(1) (2021) [GlobalData: oil-producing countries could lose up to US\\$82 billion a year due to global gas flaring](#) | Oilfield Technology

(2) (2023) [Gas Flaring: FG Imposes N22bn Fine On Oil Firms](#) - Economic Confidential

(3) (2023) [Civil Cases and Settlements](#) | Enforcement | US EPA

Flaring Today

FLARING CONTRIBUTES TO GREENHOUSE GAS (GHG) EMISSIONS

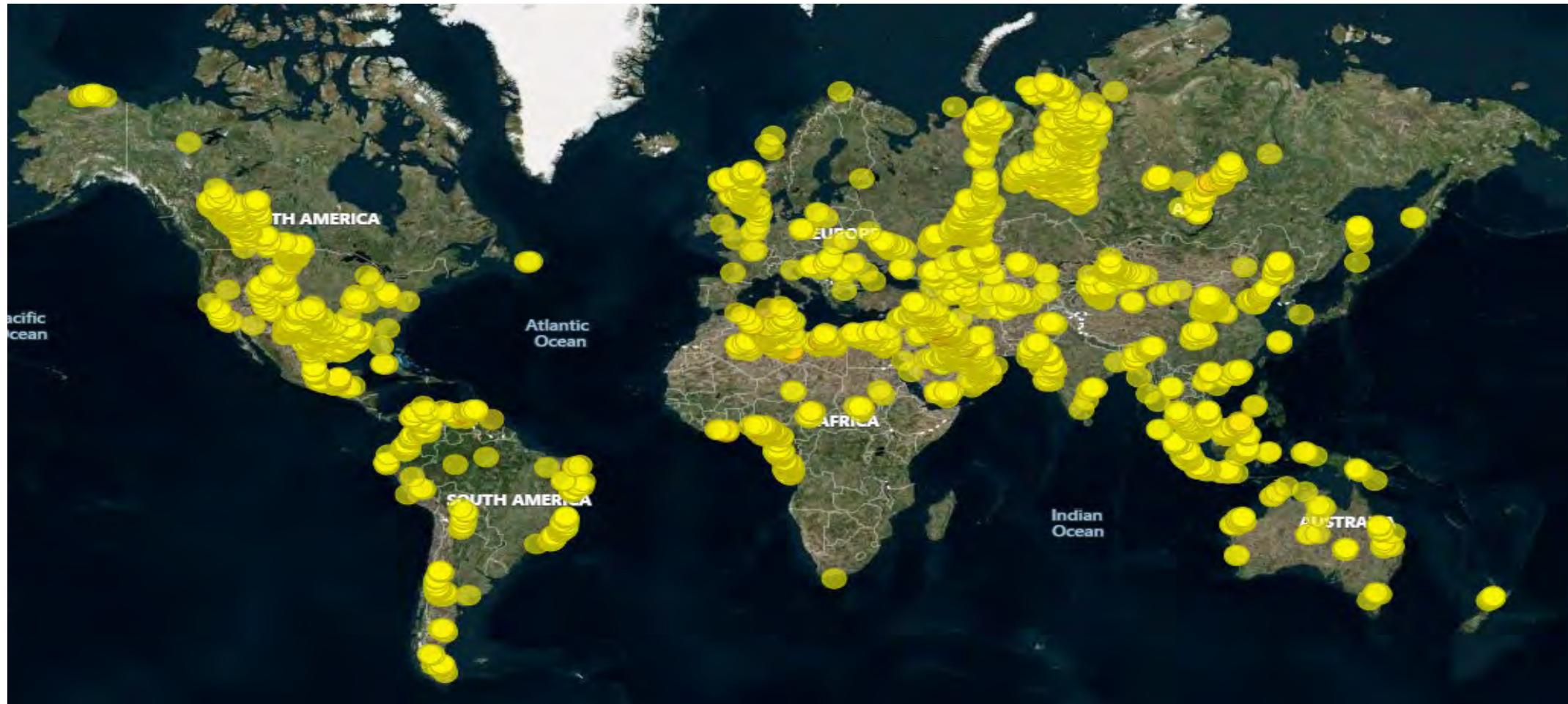
Flaring releases the following chemicals into the atmosphere:

- **Carbon Dioxide (CO₂)³** – contributes to climate change and carbon emissions. Remains in the atmosphere for thousands of years.
- **Methane³** – Absorbs more energy than CO₂. Global warming potential (GWP) 27 – 30 times higher than CO₂ over 100 years.
- **Other Pollutants** – Such as sulfur dioxide, nitrogen oxides, and particulate matter. Can cause respiratory and other health issues for people living nearby, as well as harm plants and wildlife.

350K Tons

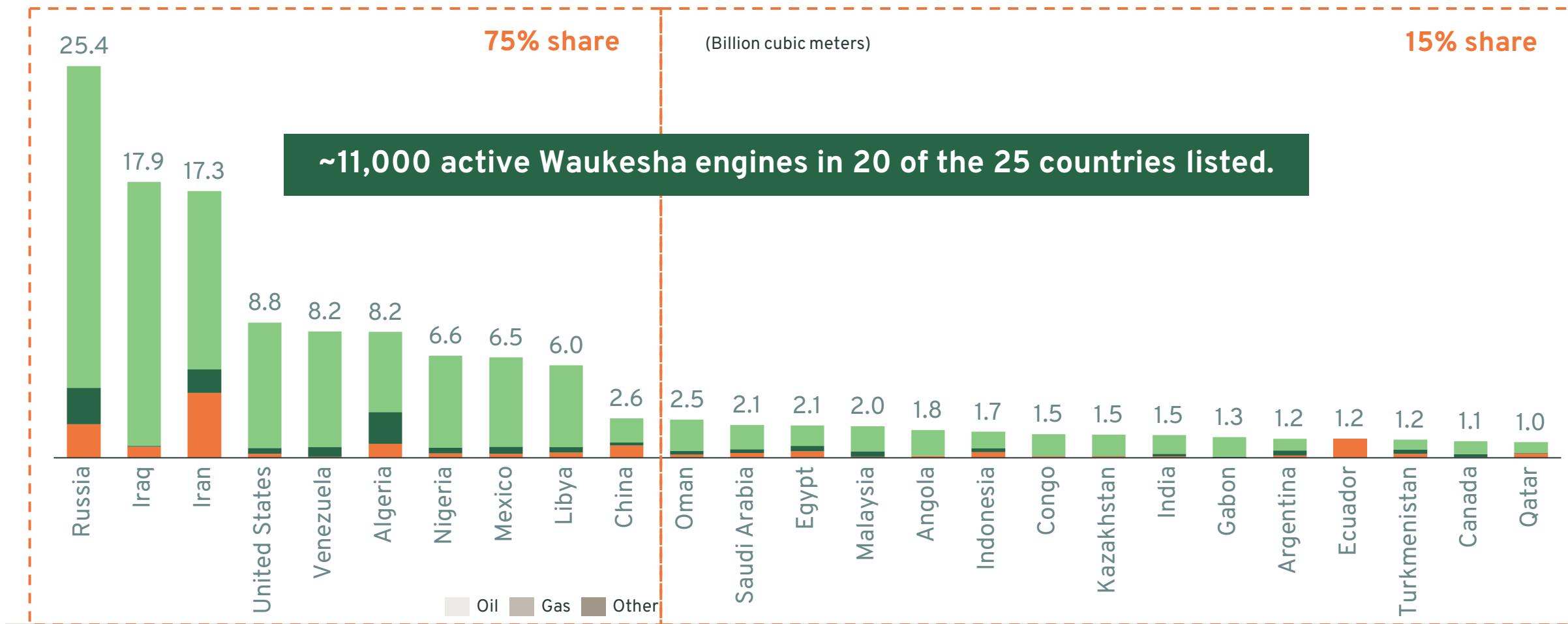
of methane released annually
due to flaring⁽¹⁾

28X


Greater global warming potential
for CH₄ versus CO₂ over a 100-
year period.⁽¹⁾

5X

Higher actual methane emissions
than U.S. EPA estimates, based on
2022 study.⁽²⁾


Flaring Today

144 BCM OF GAS WAS FLARED GLOBALLY IN 2021 – SAME AS THE TOTAL POWER DEMAND OF CANADA

Flaring Today

TOP 10 COUNTRIES ACCOUNTED FOR 75% OF THE TOTAL GLOBAL FLARING VOLUMES IN 2021

Flaring Today

WHAT THE RESEARCH TELLS US ABOUT EMISSIONS | LEAN BURN NATURAL GAS & GAS TURBINES

Colorado State University (2023)³

- ARPA-E grant to develop a closed crankcase breather system to eliminate atmospheric venting
- CAT G3512J (1035 hp) lean-burn natural gas engine.
- Open breathers cause this additional methane emission, but it is often not included in methane calculations
- Waukesha closed breather system used on production VHP 12-cylinder engines since 2006

“According to some estimates, crankcase methane emissions account for 20% or more of total methane emissions from such engine systems.”¹

-Gas Compression Magazine, 2022

University of Michigan (2022)²

- Looked at flaring across three major U.S. oil and gas basins that collectively represent 80-90% of flaring in the U.S.
- The prevalence of unlit or malfunctioning flares and the finding that average flaring efficiency is only 91% – as opposed to the assumed 98% – point to much more methane being emitted from flaring than previously thought.
- Poor flaring performance is creating excess methane pollution with the same climate impact every year as **three million cars**.

(1) <https://gascompressionmagazine.com/2022/02/12/colorado-state-university-and-caterpillar-partner-for-methane-emissions-reduction-project/>

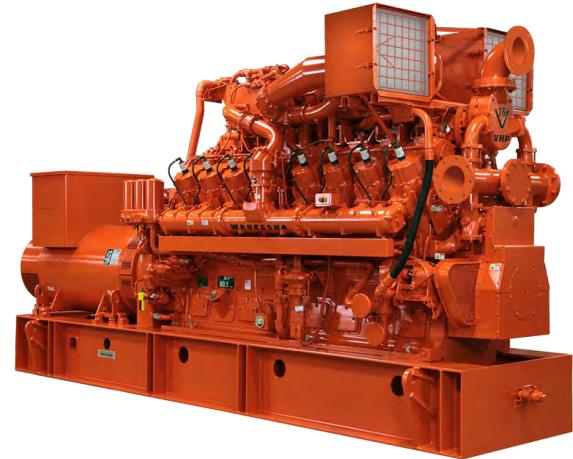
(2) New study finds flaring source of five times more pollution than previously thought (edf.org)

(3) <https://enqr.source.colostate.edu/arpa-e-awards-csu-1-5-million-to-curb-methane-emissions-in-natural-gas-infrastructure/>

Flaring Today

POTENTIAL MITIGATION SOLUTIONS | SELL THE GAS BASED ON CAPEX AND PIPELINE AVAILABILITY

Send by pipe

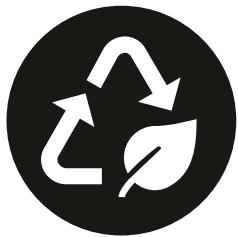

Mitigation solution	Description	Key considerations
Gas export to pipeline	Gas is pre-treated, compressed and sold to a gas pipeline operator with adequate spare capacity	<ul style="list-style-type: none"> Availability of gas pipeline nearby
Gas export to process plant	Gas is compressed and piped to a nearby processing plant	<ul style="list-style-type: none"> High capex for typically long distances; best for large flares

Send by truck

Mitigation solution	Description	Key considerations
Modular compressed natural gas (CNG)	Gas is pretreated and compressed to be transported on trucks as CNG	<ul style="list-style-type: none"> Capex is high and heavily influenced by economies of scale Any need to separate heavier components further increases capex Limited transportation distances
Small-scale LNG	Gas is liquefied in a modular liquefaction plant, converted into LNG	

Flaring Today

POTENTIAL MITIGATION SOLUTIONS UTILIZATION OF FLARE GAS


Mitigation solution	Description	Key considerations
Flare to Power for third party use	Generated power is sold to a grid operator or other off-site off-takers	<ul style="list-style-type: none">• Availability of electrical grid infrastructure nearby• Potential consolidation of flare gas supply for enabling economies of scale• Power plant construction, ownership and operation
Flare to Power for on-site use	Generated power is used by O&G field operator to substitute their existing electricity supply either partially or entirely	<ul style="list-style-type: none">• Existing electricity prices and PPA• Availability of adequate load• Potential consolidation of flare gas supply for de-risking or (supplemental grid power)• Power plant construction, ownership and operation

03 Addressing the Problem of Flaring

Addressing the Problem of Flaring

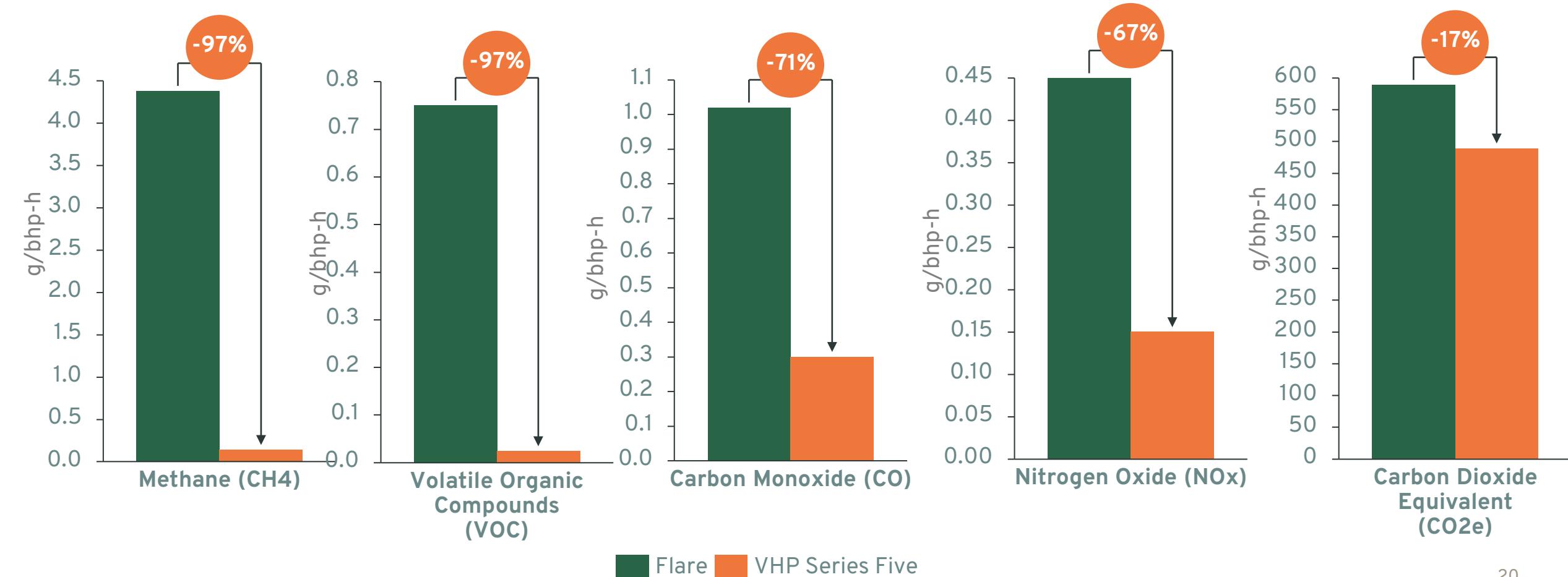
REDUCE EMISSIONS AND MONETIZE THE USE OF FLARE GAS

Lower Emissions

- 1.3 million tons of CO2-equivalent emissions removed annually
- Reduce GHG emissions, as well as VOCs and other regulated pollutants
- Meet government regulations and ESG targets

Utilization of Flare Gas

- Over 200 MW of flare gas to power applications, globally
- Generate power for on-site equipment
- Create new revenue streams.



Fuel Flexibility

- Designed to run on nearly any gas without treatment
- Wide fuel tolerance (700 to 2350 BTU)
- Adjusts to varying fuel qualities without operator intervention.

Addressing the Problem of Flaring

97% METHANE REDUCTION VERSUS FLARING WITH VHP SERIES FIVE

Addressing the Problem of Flaring

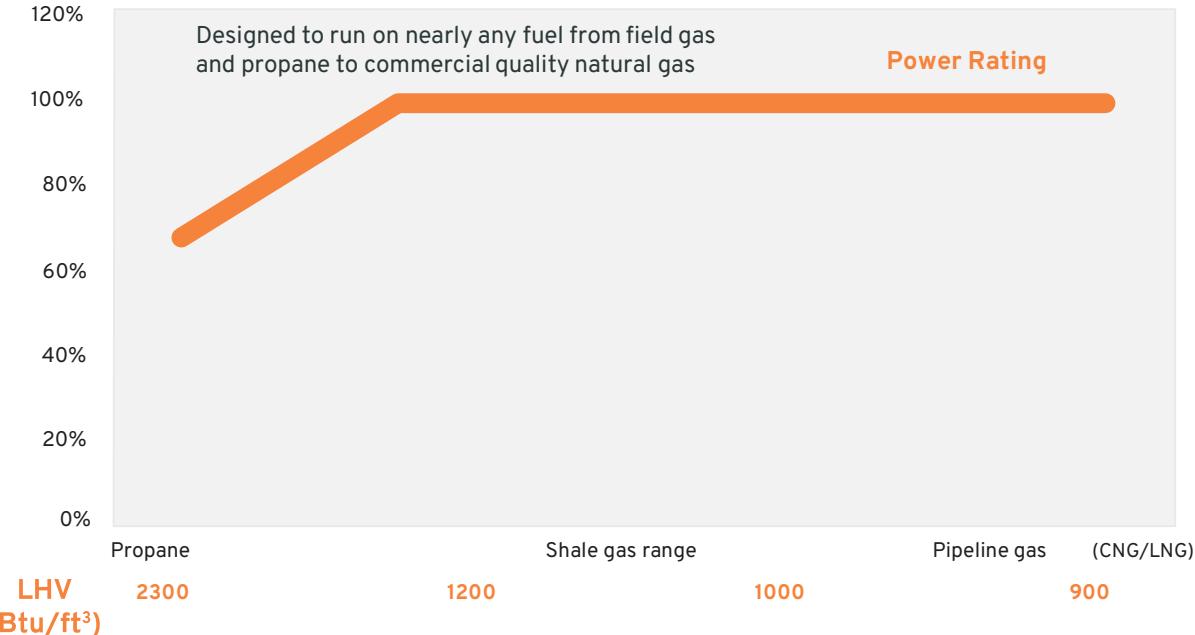
THE WORLD BANK: ZERO ROUTINE FLARING BY 2030 (ZRF) INITIATIVE

Governments, oil companies and development institutions are making the pledge to eliminate routine flaring by 2030.

Governments that made the Pledge		Oil Companies that made the Pledge			
Angola	Denmark	BP	Neptune Energy	ONGC	
Peru	Azerbaijan	KazPetrol Group	Saudi Aramco	Sonatrach	
Morocco	Russian Federation	Pioneer Natural Resources	ConocoPhillips	Galp Energia	
Egypt	Netherlands	Cairn Energy	Niger Delta Petroleum Resources Ltd.	Pan Ocean Oil Corporation Ltd.	
California (U.S.)	France	Kuwait Oil Company	Seplat Petroleum Development Company Plc	TOTAL	
South Sudan	Cameroon	Qatar Petroleum	Ecopetrol	Gazprom Neft	
Niger	Turkmenistan	Cepsa	Nigerian National Petroleum Corporation (NNPC)	Petroamazonas	
Colombia	Kazakhstan	LUKOIL	Seven Energy	Uzbekneftegaz	
Colorado (U.S.)	Ecuador	Range Resources	Eni	Harbour Energy	
Iraq	Bahrain	Chevron	Nile Petroleum Corporation	Petrobras	
Norway	Saudi Arabia	MOL Group	Shell	Vista	
Uzbekistan	Indonesia	Repsol	Entreprise Tunisienne d'Activités Pétrolières	Hess Corporation	
Mexico	United States	Civitas Resources	Oando Energy Resources	Petroleum Development Oman (PDO)	
Germany	New Zealand	Occidental	SOCAR	Wintershall Dea	
Gabon	Canada	Equinor	EOG Resources	KazMunayGas	
Mexico	Oman	Oil India Limited	Société Nationale des Hydrocarbures (SNH)	Petronas	
Nigeria	United Kingdom	ExxonMobil	Société Nationale des Petroles du Congo (SNPC)	Woodside	
Republic of Congo		OMV Group	Frontier Oil Limited	Sonangol	

Addressing the Problem of Flaring

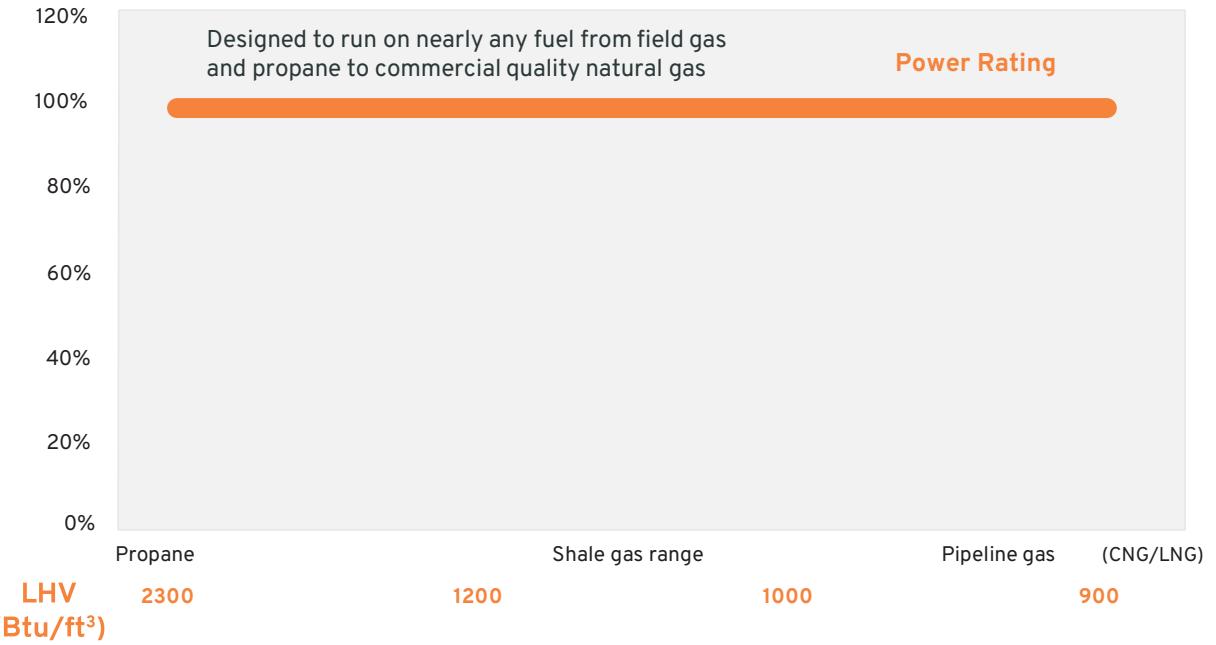
REPLACE EXTERNAL POWER GENERATION SOURCE OR MONETIZE FLARE GAS



Solution	Details
Use on-site as a power source	Generate your own electricity on-site. Eliminate the need for diesel-electric power systems or electric grid connectivity.
Sell for third party use	Monetization of flare gas can take many forms including selling to a grid operator or powering advanced computing systems.

Addressing the Problem of Flaring

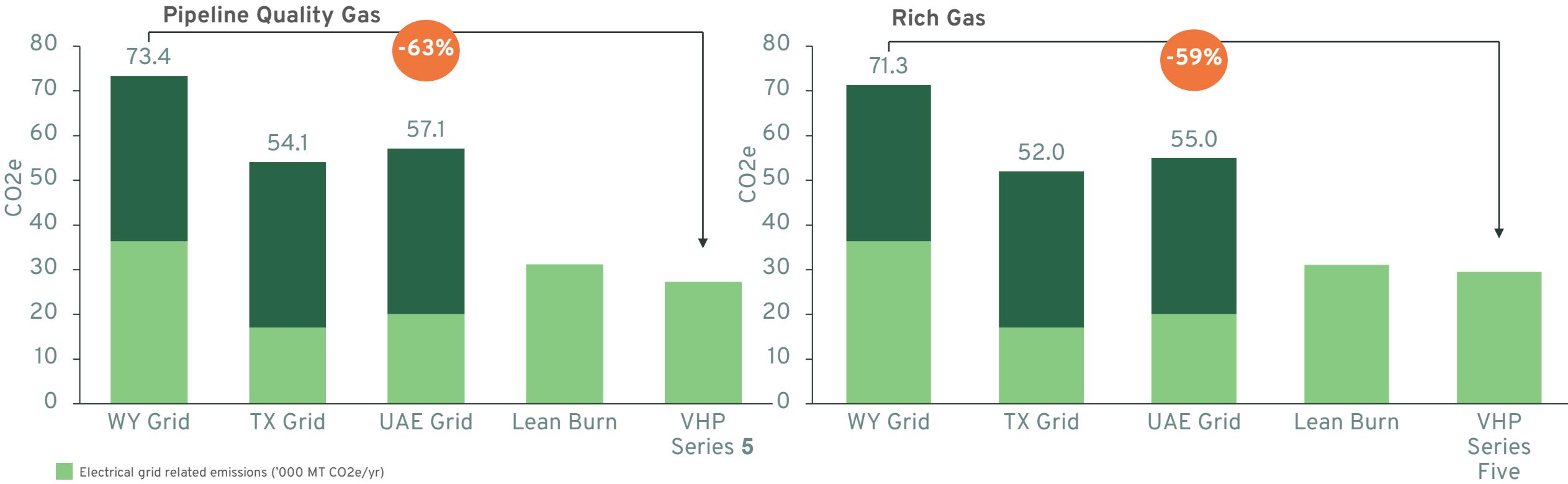
DESIGNED TO RUN ON NEARLY ANY GASEOUS FUEL


VHP Rich-Burn Fuel Flexibility

VHP7044GSI S5 & 9394GSI S5

no derate until 1250 BTU

VHP Rich-Burn Fuel Flexibility

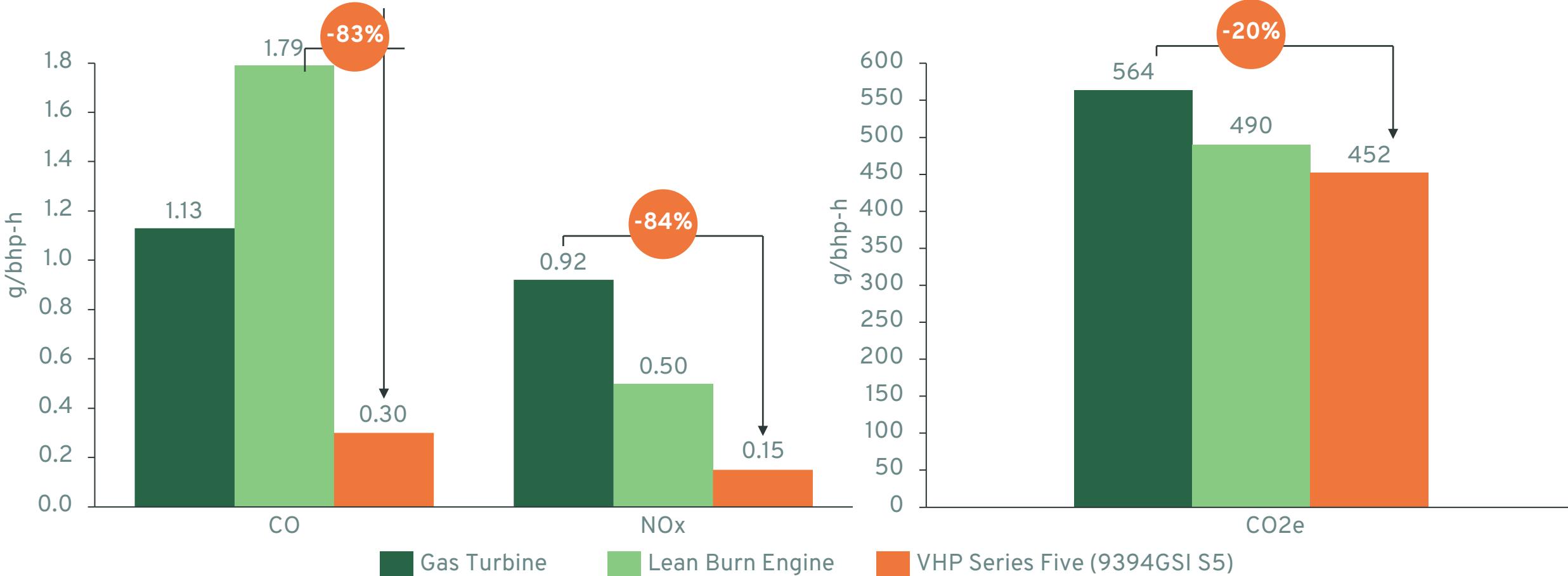

VHP7042GSI S5

no derate until 2350 BTU

Addressing the Problem of Flaring

63% LOWER CO2E THAN THE ELECTRIC GRID

Waukesha's 5MW solution delivers lower emissions while delivering reliable power


Compares the emissions of 5MW of Waukesha engines running on flare gas to the emissions from a burned flare + the emissions reduction due to displacing 5MW of electricity that come from the electric grid.
Note: Assumed flare efficiency @ 95%;

- WY and TX electrical grid carbon intensity calculated using 2021 EPA eGRID data; rich gas @ 1,175 BTU/ft³
- UAE electrical grid carbon intensity calculated using IRENA Energy Profile 2023 GRID data; rich gas @ 1,175 BTU/ft³

lb/MW-hr has been converted to MT CO2e/yr by assuming that the engine is working 24 hours per day/365 days a year and methane emissions have a CO2 equivalency of 25x. VHP Series Five is based on 3 x P9394GSI S5 Genset

Addressing the Problem of Flaring

LOWER NOX, CO, AND CO2E THAN “TYPICAL” NATURAL GAS ENGINES

Note: Turbine emissions based on US EPA CHP Partnership, Catalog of CHP Technologies 2017, Table 3-8, System 1. Turbine NOx and CO emissions corrected for generation only using factor of 2.09. Data uses methane GWP of 25.

Data for lean burn based on a CAT G3516 engine - [G3516 NA Gas Compression Engines](#) | Cat | Caterpillar

Addressing the Problem of Flaring

OPERATION AND MAINTENANCE

Full-scope product support

- Dedicated application engineering support
- Genuine OEM service parts
- Remanufactured service parts (reup)
- Life cycle tools
- Startup and commissioning support
- Factory certified technicians
- Global distribution network

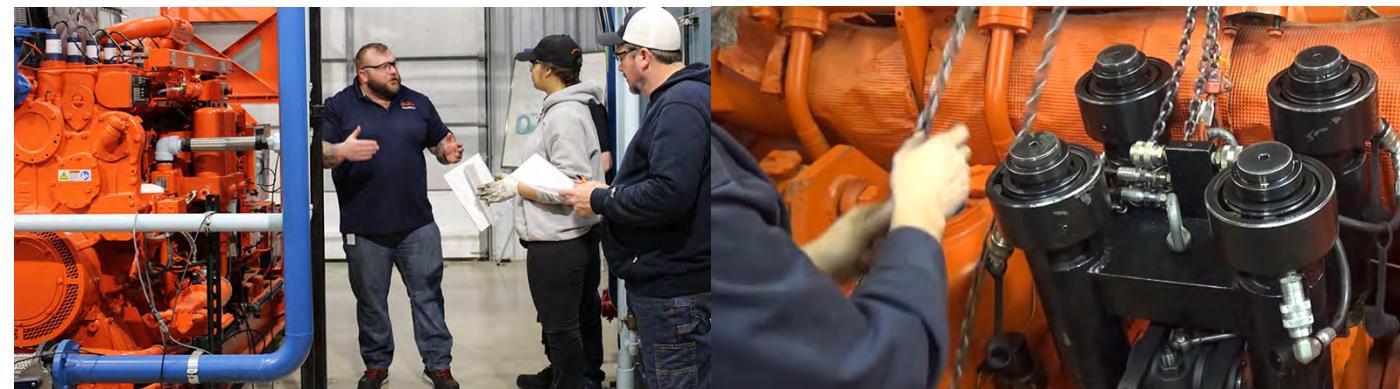
reUp

Life Cycle Maintenance	VHP Series Five
Oil change, spark plugs, O2 sensor	4,000 hours
Air Filter	8,000 hours
Belts, carb, breather, valve timing	8,000 hours
Coils, extensions, breather	16,000 hours
Top End Overhaul, catalyst elements, cylinder heads	24,000 hours
Bottom End Overhaul	48,000 hours

Addressing the Problem of Flaring

WAUKESHA PRODUCT TRAINING CENTER

Waukesha engine learning


- Online subscription-based learning
- Online user groups and discussion boards
- Advanced reporting capabilities for training administrators
- Over 100 elearning modules
- Online and in-person classes available
- Offerings in multiple languages.
- U.S. And international locations

Multiple learning paths

- Certified operator
- Certified technician
- Factory trained technician

Course Offerings

- Gas Engine Technology (GET)
- Engine System Manager (ESM)
- VHP, VGF, 275GL+
- Service bulletin eLearning
- Failure analysis

04 Customer Success

Customer Success

WAUKESHA VHP SERIES FIVE BRINGS ELECTRICAL POWER TO REMOTE STRANDED GAS LOCATIONS

Results:

- The VHP deploys over 200 MW of generation capacity for flare mitigation systems
- Nearly 1.3 million tons of co2-equivalent emissions avoided annually due to the VHP series five
- The VHP converts flared natural gas into electricity. This electricity is then consumed in mobile, modular data centers deployed directly at the well site.
- Through the conversion of flared gas to power, clients have avoided thousands of tons of co2-equivalent emissions annually.

Image Credit: Crusoe Energy Systems

Customer Success

PROVEN PERFORMANCE AROUND THE WORLD

The global Waukesha fleet

- Over 23,000 running engines in over 80 countries
- Over 5,000 engines in power generation applications

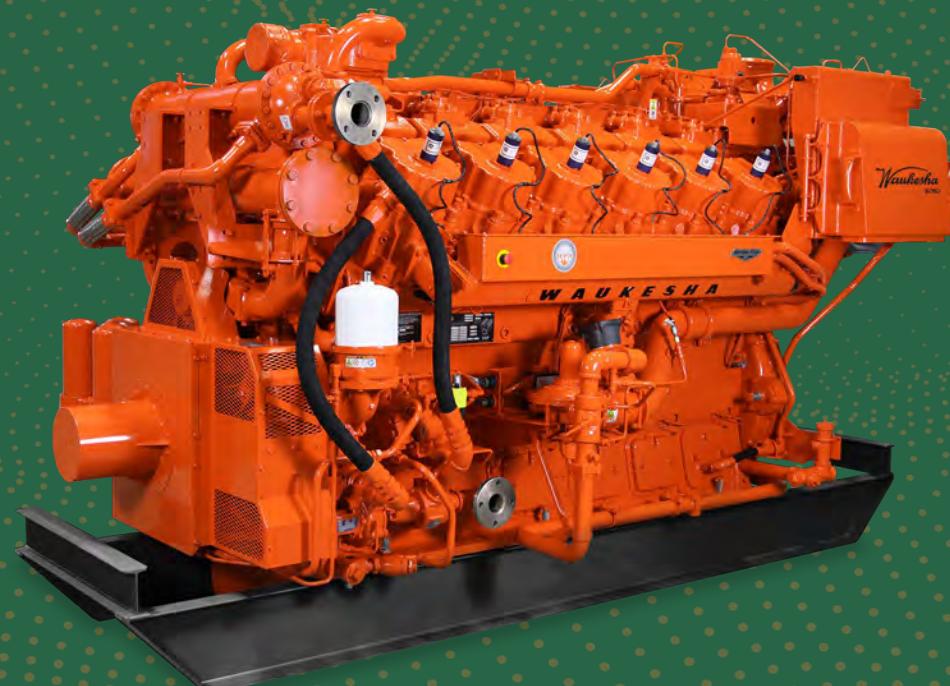
Colombia

- (2) VHP L7104GSI gensets: 2.4 MWe
- Remote oilfield station

Russia

- (4) L7104GSI rental gensets: 4.4 MWe
- Komsomolskoe oil field

China


- (3) L5794 GSI engines: 4,140 BHP

Waukesha

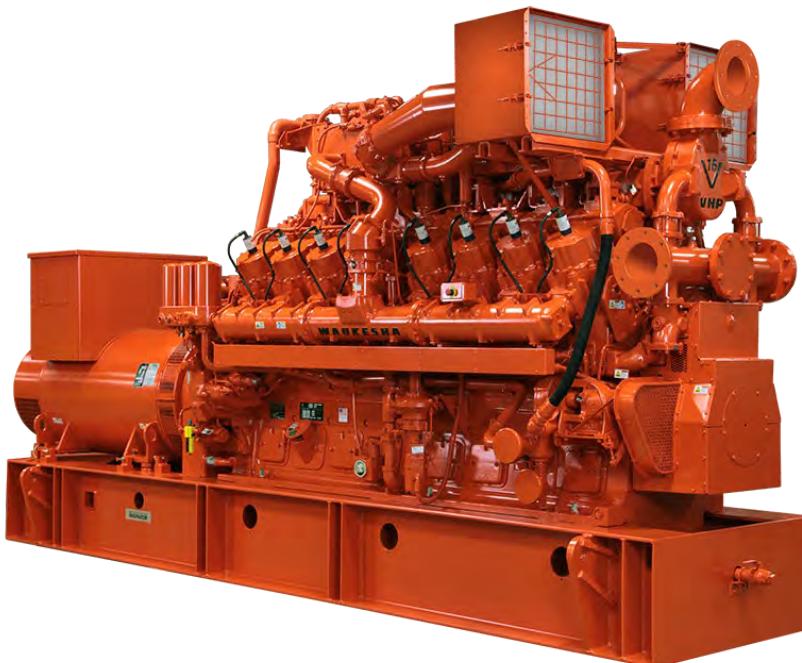
05 Product Overview: VHP Series Five

VHP Series Five

KEY PRODUCT FEATURES

Emissions
0.15 g/hp-hr NOx

Spark Plugs


4,000 hours service intervals with non-precious metal plugs

Lube oil filters

4,000-hr service intervals
(with oil analysis)

ESM2/AFR2 Controls

Integrated control system, superior performance and improved diagnostics

Breather

Advanced closed crankcase breather system removes fugitive methane emissions

emPact catalyst

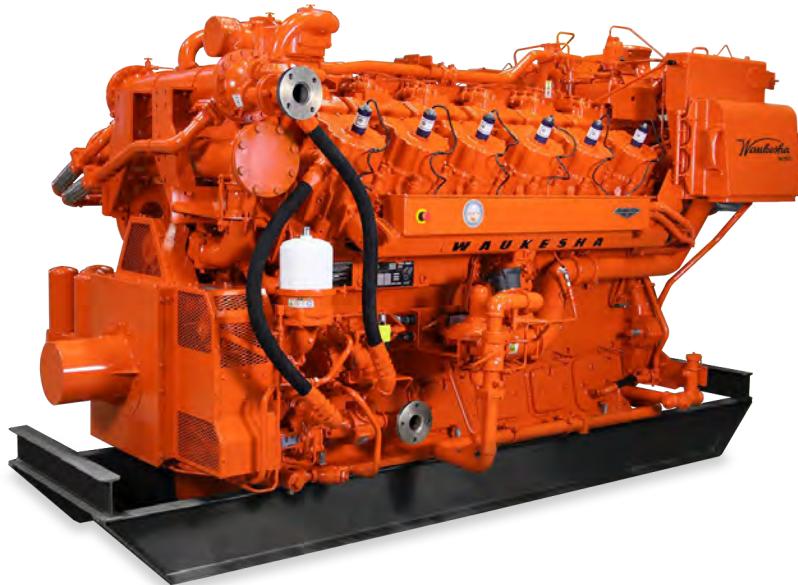
Factory Supplied. Durable and easy maintenance design. Replaceable catalyst elements

Air Filters

Heavy duty design suitable for oil field outdoor environments.

Cylinder Heads

- Enhanced design/improved cooling
- Extended life and improved reliability


Pistons/Rings

- 4,000 hours oil change intervals
- Improved low-load oil consumption
- Improved fuel flexibility

Oilfield Pony Skid

4-point lifting.
3-point mounting

Reduce Emissions with VHP Series Five Gas Engines

VHP Five Series

Enhanced family of engines and gensets @ 1,200 rpm

- 12-cyl: 7042GSI S5 = 1,119 kWb / 1,068 kWe
- 12-cyl: 7044GSI S5 = 1,417 kWb / 1,357 kWe
- 16-cyl: 9394GSI S5 = 1,864 kWb / 1,788 kWe

Lower Emissions

Utilization of Flare Gas

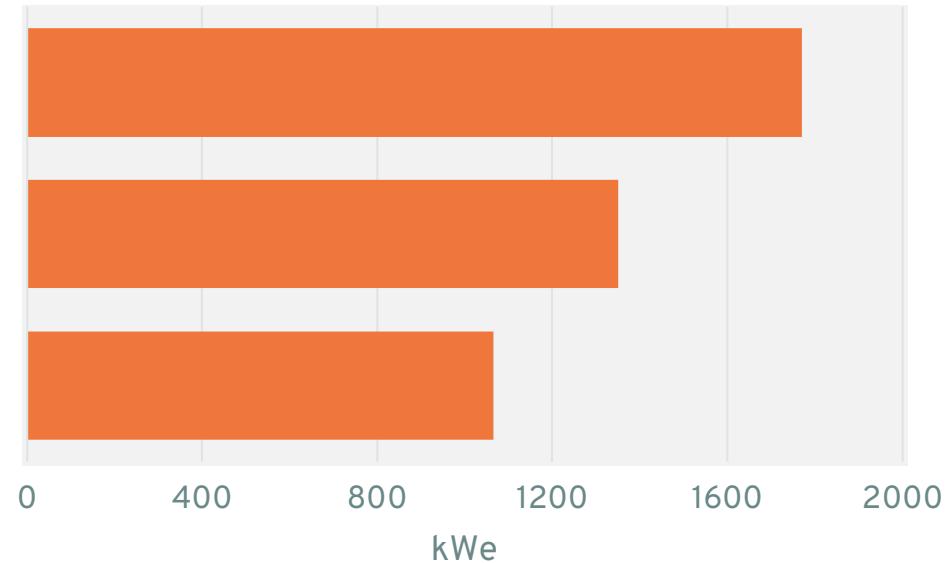
Fuel Flexibility

VHP Series Five Overview

ENHANCED FAMILY OF VHP ENGINES AND ENGINATORS®

	L7042GSI S5	L7044GSI S5	P9394GSI S5
Cylinders	12	12	16
Power Ratings @ 1200 rpm (engine only)	1,119 kWb / 1,068 kWe	1,417 kWb / 1,357 kWe	1,864 kWb / 1,788 kWe

- Miller cycle combustion
- Higher HP & reduced temps
 - Enhanced rich-burn combustion for reduced exhaust temps
 - Cylinder head updated to reduce temps in valve guide/stem region
 - Optimized piston/ring design reduces piston temps
- More fuel flexibility & increased efficiency
- 4k oil & spark plug intervals at higher power

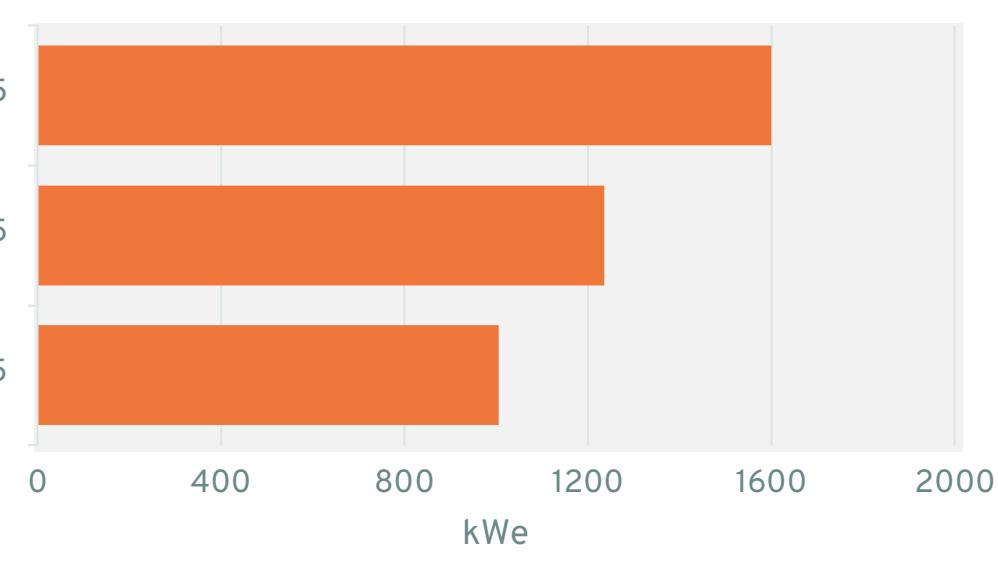

VHP Series Five Continuous Power Ratings

60Hz

P9394GSI S5

L7044GSI S5

L7042GSI S5


60Hz at 1200 rpm

50Hz

P9394GSI S5

L7044GSI S5

L7042GSI S5

50Hz at 1000 rpm

Performance Reliability in the Harshest Environments

High fuel flexibility

- VHP 7042GSI S5 – 1 mwe; no de-rate until 2350 BTU
- VHP 7042GSID S5 – 1 mwe; no de-rate until 2350 BTU
- VHP 7044GSI S5 – 1.3 mwe; no de-rate until 1200 BTU
- VHP 7044GSID S5 – 1.2 mwe; no de-rate until 1200 BTU
- VHP 9394GSI S5 – 1.8 mwe; no de-rate until 1250 BTU

Wide fuel tolerance

- VHP SERIES FIVE: 700+ to 2350 BTU

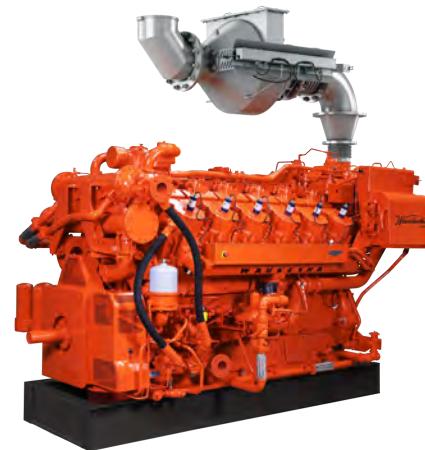
Hot ambient, high elevation performance (before de-rate)

- VHP 7100GSI S5 – 120°F/6400 ft., 130°F/5100 ft., 100°F/7000 ft.
- VHP 7100GSID S5 – 120°F/7000 ft., 130°F/6700 ft., 100°F/7000 ft.
- VHP 7104GSI S5 – 120°F/4300 ft., 130°F/3000 ft., 100°F/5000 ft.
- VHP 7104GSID S5 – 120°F/1200 ft., 130°F/600 ft., 100°F/2500 ft.
- VHP 9504GSI S5 – 120°F/4200 ft., 130°F/3000 ft., 100°F/5000 ft.

VHP Series Five

H2S AND FUEL FLOW

	L7042GSI S5 (1 MWe)	L7044GSI S5 (1.3 MWe)	P9394GSI S5 (1.8 MWe)
Fuel Flow (SCFM)	161	201	257
Fuel Flow (SCFD)	231,840	289,440	370,080
H2S Limit with emPact Catalyst	9 µg/BTU or 257 ppmv		
H2S Limit without emPact Catalyst	50 µg/BTU or 1437 ppmv		


Assumptions: Field gas with the following composition: 70% C-1, 15% C-2, 10% C-3, 2% C-4, 1% N2, 2% CO2. The BTU for this fuel is 1175 LHV.

VHP Series Five for Power Generation

POWER GENERATION SCOPE OF SUPPLY

Standard Engine Configuration:

- xCooled cylinder heads
- Series Five pistons
- ESM2/AFR2 integrated control system
- Touchscreen HMI
- emPact emissions control system (optional)
- Advanced closed crankcase breather
- Ignition Power Module Diagnostics (IPMD)
- Heavy duty air filters
- Spin-on oil filters and engine-mounted oil cooler
- Single fuel inlet
- Main bearing & exhaust thermocouples
- Front stub shaft
- Air/gas starter (electric optional)
- Flywheel machined for generator coupling
- Side inlet jacket water pump header
- Jacket water outlet; Dresser coupling
- Auxiliary water thermostatic valve
- Pony skid (Enginator only)
- Load performance testing and documentation

Generator

Included with Enginator® models

Switchgear

Low voltage and medium voltage options available

Control Panel

Included with ESM 2 Enginators (except mobileFLEX)
Available separately for ESM & non-ESM models

Radiator

Available with select models

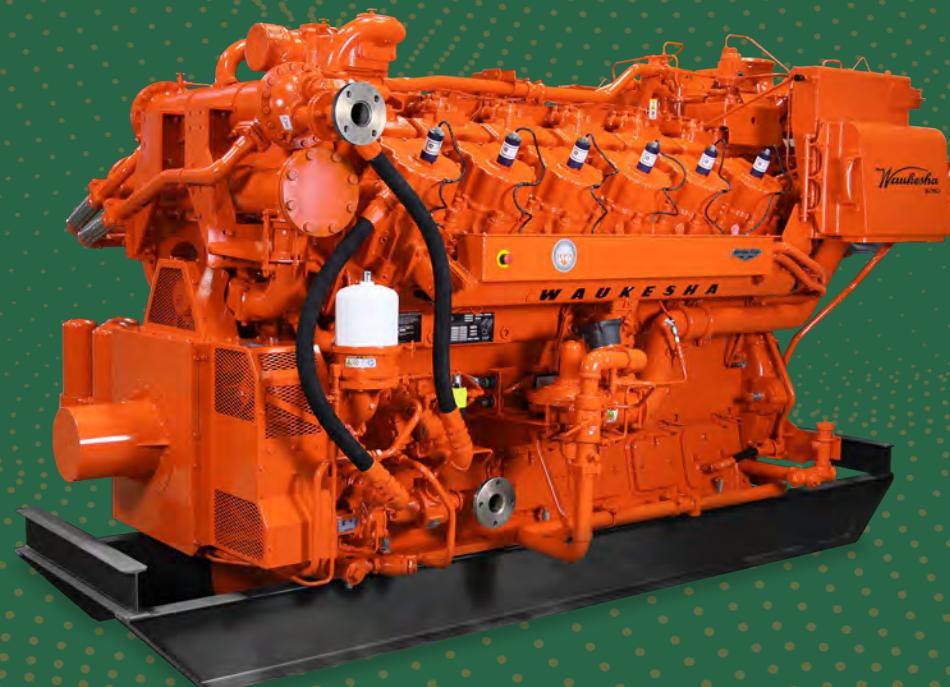
Rich Burn vs Lean Burn Engines

NOT ALL GAS ENGINES ARE CREATED EQUAL...

Feature	WK Series Five Engines	Lean Burn Engines
Air to Fuel Ratio	<ul style="list-style-type: none"> Higher concentration of fuel “Rich” to air mixture Typically operate with λ equal to 0.995 	<ul style="list-style-type: none"> Higher concentration of air to fuel “lean” mixture Typically operate with λ anywhere between 1.5 and 2.2
Emissions	<ul style="list-style-type: none"> Ultra low NOx emissions with three-way catalyst Low methane slip in exhaust 	<ul style="list-style-type: none"> May require SCR and DOC to meet ultra low NOx emissions requirements High methane slip in exhaust
Transient Performance	<ul style="list-style-type: none"> Accept block load and operate at a wide load range 	<ul style="list-style-type: none"> Typically, do not accept block load well and perform poorly under varying loads
Start Performance	<ul style="list-style-type: none"> Fast start performance. Crank to full load in <30sec 	<ul style="list-style-type: none"> Slow start performance. Crank to full load anywhere between 30 sec and 2 min.
Fuel Flexibility	<ul style="list-style-type: none"> Accepts wide range of fuel composition without hardware change. Capable of running on most wellhead gas fuels 	<ul style="list-style-type: none"> Narrow range of fuel composition Typically requires hardware changes to switch from pipeline quality gas to propane.

ESM 2/AFR2 Controls

INTEGRATED ENGINE CONTROLS, DATA ANALYSIS, AND EMISSIONS MONITORING


Parameter	L7042GSI S5	L7044GSI S5	P9394GSI S5
Combustion	Miller Cycle - Rich Burn	Miller Cycle - Rich Burn	Miller Cycle Rich Burn
Configuration	Vee 12	Vee 12	Vee 16
B x S (in)	9.375 x 8.5	9.375 x 8.5	9.375 x 8.5
Disp (L)	115	115	154
Height x Width x Length (in)	98 x 85 x 147	98 x 85 x 147	101 x 78 x 168
Weight (lbs)	24,250	24,250	34,000
Power (kWb)	1,119	1,417	1,864
Speed Range (RPM)	1,200-900	1,200-900	1200-900
BMEP (psi)	141	178	176
Fuel Consumption (Btu/bhp-hr) -0/+5%	7,209	7,099	6,974
Fuel flex. (WKI # to derate)	34	55	58
Fuel Range w/o Adj	+/- 150 Btu	+/- 150 Btu	+/- 150 Btu
NOx emissions (g/hp-hr)	0.15	0.15	0.15
Ambient Temp before Derate, CQNG (F)	130F @ 4,000 ft	130F @ 3,000 ft	120F @ 2000 ft
Max altitude before derate @ 100F (ft)	7,000 ft @ 100F	5,000 ft @ 100F	4000 @ 100F
Maintenance TBO (K' hr)	36/60	24/48	24/48
Oil Change (hr)	4,000	4,000	4000
Spark Plug (hr)	4,000	4,000	4000

Waukesha

05 Featured
Systems:
VHP Series
Five

xCooled Cylinder Head

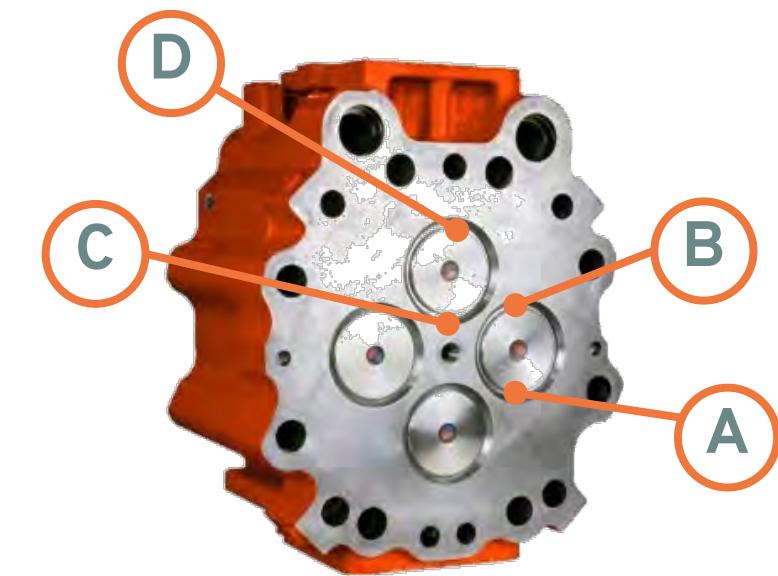
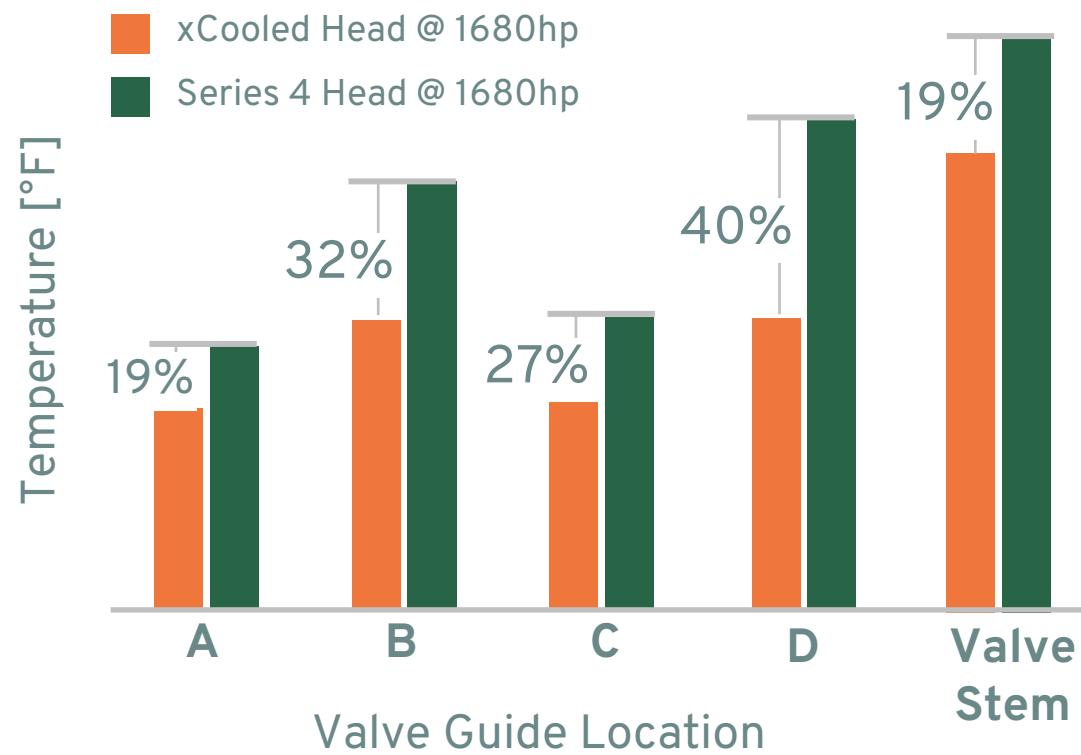
MAXIMUM RELIABILITY AND UPTIM

Redesigned cylinder head casting

- Improved cooling flow to exhaust valves
- Exhaust flow port redesigned to reduce hot spots
- Proprietary casting

New exhaust valve guide

- Provides direct cooling to exhaust valve guide
- Valve guides are reamed to ensure precision tolerances



Improved reliability

- Water cooled guides and seats (S4 only had water cooled seats)
- Valve rotators
- Up to 40% lower exhaust valve temp. Reduces risk of cylinder head failure

xCooled Cylinder Head

LOWER TEMPERATURES → LONGER LIFE, HIGHER RELIABILITY, MORE POWER

Up to 40% cooler guide temps with less variation increases reliability

ESM 2/AFR2 Controls

INTEGRATED ENGINE CONTROLS, DATA ANALYSIS, AND EMISSIONS MONITORING

Features

- Single, centralized ECU
- Integrated AFR2
- New “smart” power distribution box
- Integrated bearing/exhaust thermocouples and crankcase pressure
- HMI industrial PC touch-screen display (12” standard; 15&19” option)

Benefits

- Improved engine protection (incl. Knock and misfire detection)
- Timing control – for marketing leading fuel flexibility
- Touch screen display - no laptop required for field work
- Integrated e-help with latest service manuals on screen
- Multiple user access levels with custom configurations
- Plant level views when multiple engines on site
- Continuous data log (10 yrs) with trending, reports, storage

Waukesha in-house ESM2
engine control system

HMI Touchscreen
display

ESM 2/AFR2 Controls

USER INTERFACE

OFFLINE - ECU to HMI Communication
04/04/2019 15:48:07 9999 CAN Communication Offline

Visualization **Parameters** **Graph** **System**

Engine Alarm		User Run/Stop		Starter Flag		Start Signal
Yes	No	Run	Stop	On	Off	Yes
Engine ESD		User ESD		Ignition Enable		Lube Pump
Yes	No	Yes	No	Enabled	Disabled	On
Engine Running		Engine Lockout		Main Fuel		Customer Lub
Yes	No	Yes	No	On	Off	Yes
Calibration				Misc		
Pre-Lube Pressure Target	0.0 psig	Pre-Lube Countdown	0 s	Derived Values		
Pre-Lube Time	0 s	Cool Down Counter	0 s	Starter Off RPM		
Purge Time	0 s	Post-Lube Counter	0 s	Start RPM Offset		
Cool Down Time	0 s	Engine Oil Pressure	0.0 psig	Fuel On RPM		
Post-Lube Time	0 s	Throttle Position Feedback	0 %	Fuel RPM Offset		

View		Visualization	Graph	System
Pressures		Temperatures		
Intake Manifold LB	200.4 kPa	Intake Manifold	43.3 °C	
Intake Manifold RB	204.4 kPa	Coolant	77.1 °C	
Boost LB	246.2 kPa	Oil	79.6 °C	
Boost RB	246.3 kPa	Ambient		
Reserve LB	45.4 kPa	Temperature	17.4 °C	
Reserve RB	41.7 kPa	Pressure	93.0 kPa	
Pre-Filter Oil	486.7 kPa	Relative Humidity	29 %	
Engine Oil	386.2 kPa	Misc		
Oil Delta	100.4 kPa	Engine RPM Setpoint	1200 rpm	
Crankcase	-0.5 kPa	Power	1146 kW	
Air/Fuel		Percent Engine Load	91 %	
Throttle Position Feedback	32 %	Percent Engine De-Rate	0 %	
FCV Position LB	44.9 %	WKI In Use	63.9 WKI	
FCV Position RB	44.9 %	Operating Hours		
AFR Mode In Use	Pre Catalyst	ECU Engine Runtime	1866 h	
		ECU On Time	1873 h	
		Engine Runtime	9976 h	
		Engine Runtime Trip Meter	1865 h	

ESM 2/AFR2 Controls

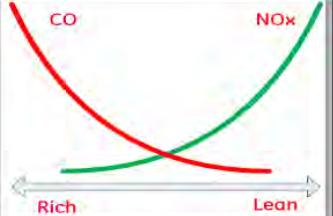
USER INTERFACE

Simple Fuel system setup

Step 1
Set the AFR control mode to "Pre Catalyst"

Step 2
Turn the carburetor screw(s) in fully and back out 5 full turns

Step 3
Set fuel pressure regulator screw to 1.25 in (32mm) out from the cap. See figure 1


Step 4
Run the engine unloaded at approximately 800 RPM. Set the fuel valve(s) to $\pm 3\%$ of the FCV Position Target. Manually adjust the fuel pressure regulator(s) to achieve the target position.

Step 5
Run the engine at the highest expected speed and load. Set the fuel valve(s) to $\pm 3\%$ of the FCV Position Target. Manually adjust the carburetor load screw(s) to achieve the target position.

Step 6
Use an emissions analyzer to verify emissions. Fine tune the post catalyst setpoint to achieve the desired emissions level
If CO is high, the engine is running too rich. Adjust the post catalyst setpoint leaner by reducing the post catalyst O₂ setpoint to a lower value
If NO_x is high the engine is running too lean. Adjust the post catalyst setpoint richer by increasing the post catalyst O₂ setpoint to a higher value

FCV Position Target	49 %
FCV Position LB	51.5 %
FCV Position RB	48.1 %

Voltage/Ohm Readings and Data Logging

RUN - Engine Running

Temperatures

Coolant	77.2 °C	381 Ω
Oil	79.7 °C	351 Ω
Intake Manifold	43.4 °C	1297 Ω
Post Turbine LB	591 °C	628 Ω
Post Turbine RB	589 °C	628 Ω
Pre Catalyst	0 °C	889 Ω
Post Catalyst	0 °C	890 Ω

Pressures

Boost LB	246.1 kPa	3.35 V
Boost RB	245.8 kPa	3.35 V
Crankcase	-0.5 kPa	2.05 V

Graphs showing various engine parameters over time (29:00 to 33:00). The graphs include Coolant, Oil, Intake Manifold, Post Turbine, Pre Catalyst, Post Catalyst, Boost, and Crankcase data.

Legend for Data Item checkboxes:

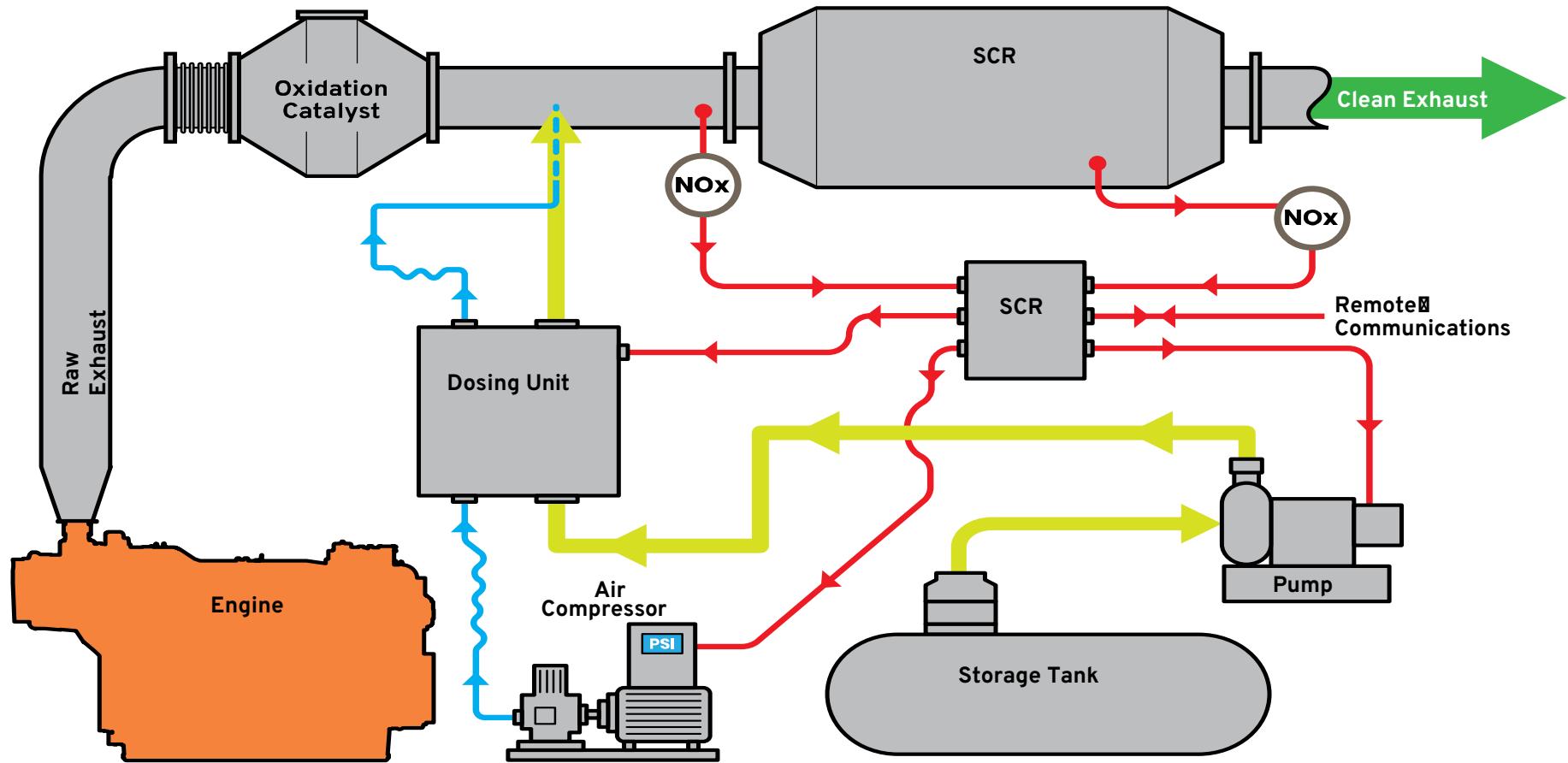
- Coolant
- Oil
- Intake Manifold
- Relative Humidity
- Throttle Position
- Power [kW]
- Pressure [kPa]
- Ambient
- Boost LB
- Boost RB
- Intake Manifold LB
- Intake Manifold RB
- Throttle Reserve Average
- Pressure [kPa]

Bottom navigation: IGN, AFR, More, Export, MV, Add, ALARM, NOTES, USER.

emPact Emissions Control System

FULLY INTEGRATED WITHIN ESM 2

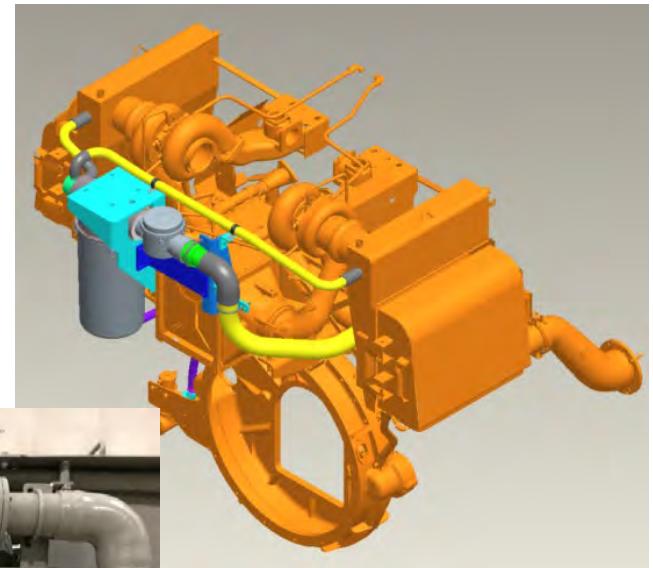
Benefits


- Reliable, effective, and low maintenance
- Easy installation and catalyst replacement
- Wash element once per year; replace every 3 years
- Catalyst health monitoring sensors
- 3-way catalyst + AFR controller
(optimized interaction within ESM 2)

Three-way catalyst eliminates complex SCR systems

emPact Emissions Control System

SCR AFTERTREATMENT SYSTEMS ARE COMPLEX AND HAVE MULTIPLE POINTS OF FAILURE


Advanced Crankcase Breather

CLOSED BREATHERS PREVENT FUGITIVE METHANE EMISSIONS

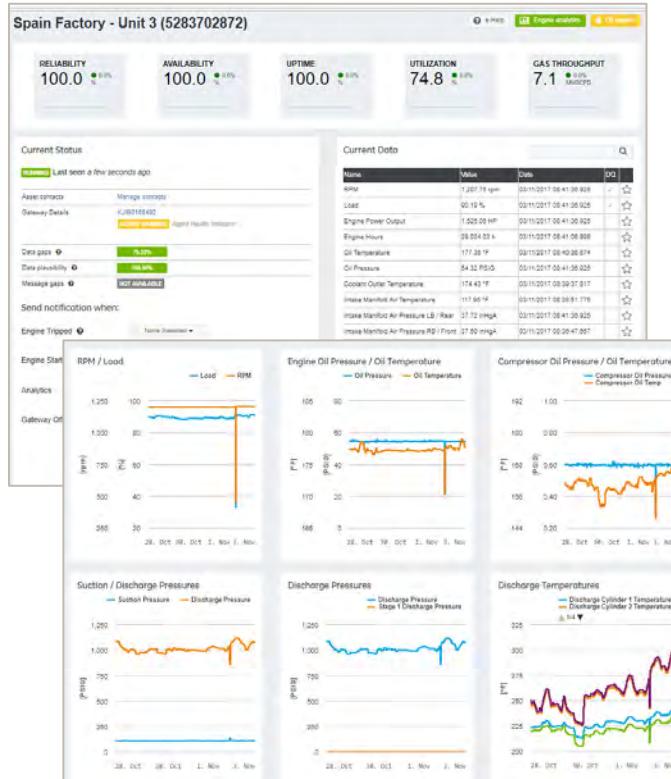
Fewer oil leaks due to more consistent crankcase vacuum

- Uses turbocharger for venturi, vice exhaust stream, compared to previous version
- High efficiency coalescing filter reduces oil fouling of catalyst
- Engine safety improvement with efficient removal of exhaust gases
- Prevents coking of intake valve seats, turbocharger and fouling of catalyst

Mounted on flywheel end of engine

myPlant

ASSET HEALTH MONITORING MODULE


ASSET OPERATING STATUS

Region	Model	Status	Customer	Site	Engine ID	JKNumber	Serial Number	Commission Date	Filter
West Spain	WEngine	READY	Kinney House Investments	Spain South	Unit 10	6283704958			Filter
West Belgium	WEngine	READY	Gross Diagnostic Master	Deurne Station	Unit 1	6283704204			Filter
West Spain	WEngine	READY	Kinney House Investments	Spain South	Unit 1	6283704472			Filter
West Spain	WEngine	READY	Kinney House Investments	Spain South	Unit 3	6283704918			Filter
South Marie	WEngine	READY	Kinney House Investments	Was Memory	Development	Unit 11	6283702854		Filter
Part England	WEngine	READY	Manufacturing Genetics	England Factory	Unit 2	6283702872			Filter
South Marie	WEngine	READY	Kinney House Investments	Was Memory	Development	Unit 10	6283702853		Filter
West Spain	WEngine	READY	Kinney House Investments	Spain South	Unit 4	6283704917			Filter
West Spain	WEngine	READY	Kinney House Investments	Spain South	Unit 5	6283704914			Filter
South Hungary	WEngine	READY	Manufacturing Genetics	Oregon Station	O-000	6283702846			Filter
South Hungary	WEngine	READY	Manufacturing Genetics	Oregon Station	O-000	6283702481			Filter
West West Russia	WEngine	READY	Was	Processing	Unit 2	6283705000			Filter
Part England	WEngine	READY	Manufacturing Genetics	England Factory	Unit 4	6283702873			Filter
West Spain	WEngine	READY	Kinney House Investments	Spain South	Unit 11	6283704952			Filter
South Hungary	WEngine	READY	Manufacturing Genetics	Oregon Station	O-1000	6283705004			Filter
South Marie	WEngine	READY	Kinney House Investments	Spain South	Unit 6	6283705005			Filter

New Protections/Readings

- Crankcase pressure
- Exhaust port & main bearing temperatures
- Oil Filter differential pressure
- Boost Pressure & throttle reserve monitoring
- Oil pressure permissive at start

OPERATIONAL DATA TRENDS

CONTROLLER ALARMS SUMMARY

Recent Alarms			
Severity	Code (e-Help)	Description	Timestamp
WARNING	ALM-415	Rich Limit - Primary Left	11/09/2017 04:31:18.910
WARNING	ALM-425	Rich Limit - Primary Right	11/09/2017 04:30:46.878
TRIP	ESD-222	Customer Emergency Shutdown	11/09/2017 03:08:28.300
WARNING	ALM-425	Rich Limit - Primary Right	02/09/2017 08:35:43.758
TRIP	ESD-222	Customer Emergency Shutdown	02/09/2017 05:14:29.858
WARNING	ALM-425	Rich Limit - Primary Right	01/09/2017 02:17:32.747
WARNING	ALM-415	Rich Limit - Primary Left	01/09/2017 02:16:59.715

ESD214 Camshaft Magnetic Pickup

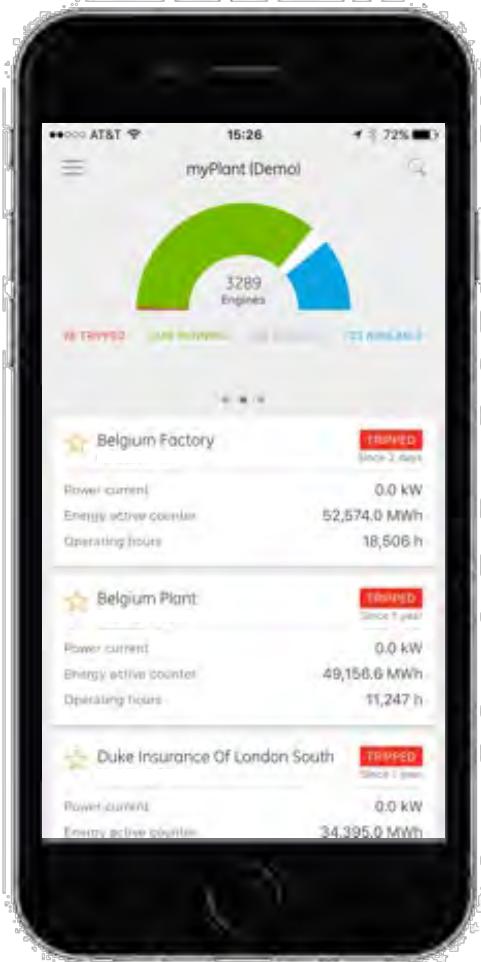
Description ...

ESD214 occurs when too many camshaft pulses are identified between magnetic pickup (or no magnetic pickup pulses are detected). ESD214 will cause the engine to shut down.

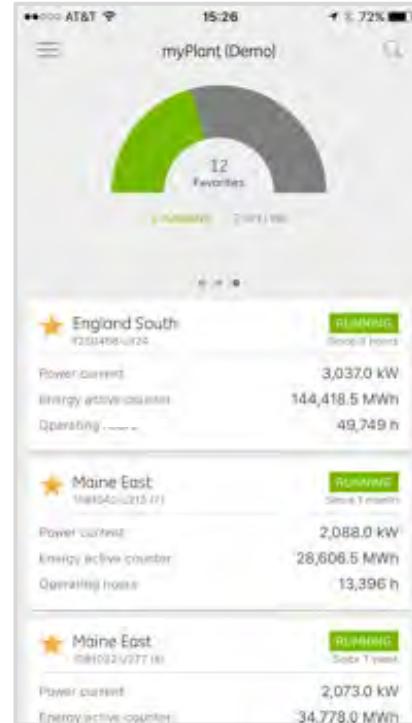
Probable Cause ...

ESD214 may be the result of debris on camshaft magnetic pickup, a misadjusted pickup, or a faulty pickup or wiring.

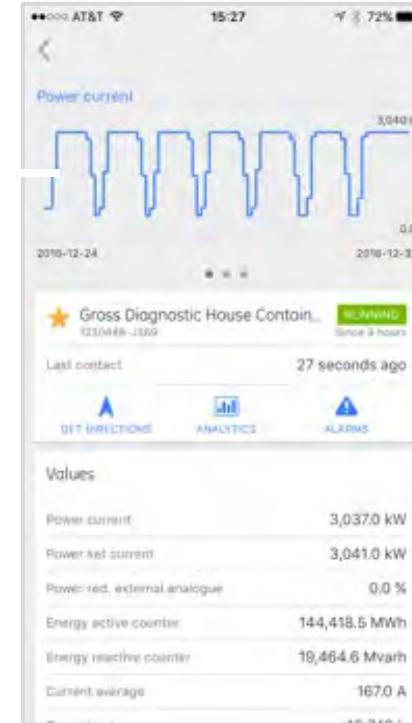
Troubleshooting:

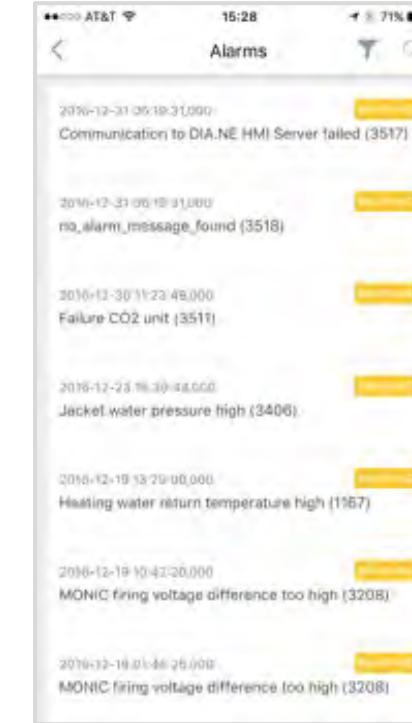

NOTE: ESD214 can be caused by the engine rotating backward on a shutdown, a bad start, or a stall. If this is the case, no action needs to be taken. Remedy any other faults, restart the engine, and continue to [clear fault code](#).

VHP
VHP Extender
VHP- P0394
VHP- P0394_AFR2
1AV150AT0
1AV220SL
1AV220UL
275SL
VGP-E16-H24-AFR2

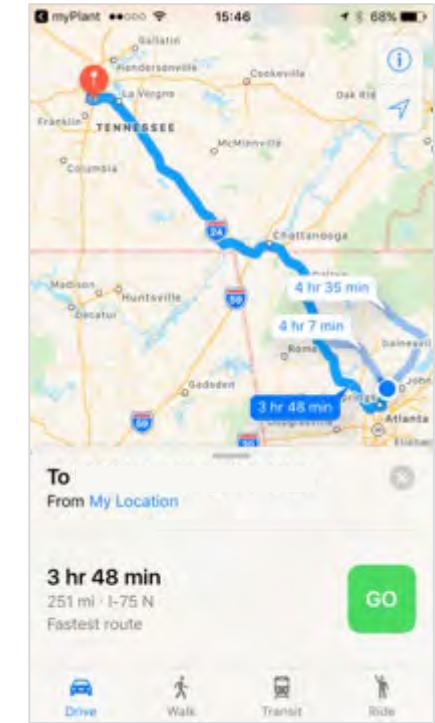

[Click Here for Information on Using E-Help](#)

myPlant


MOBILE APPLICATION

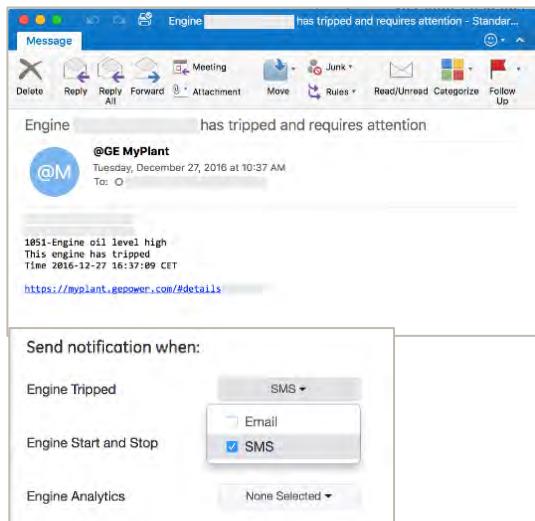

Asset/Fleet summary

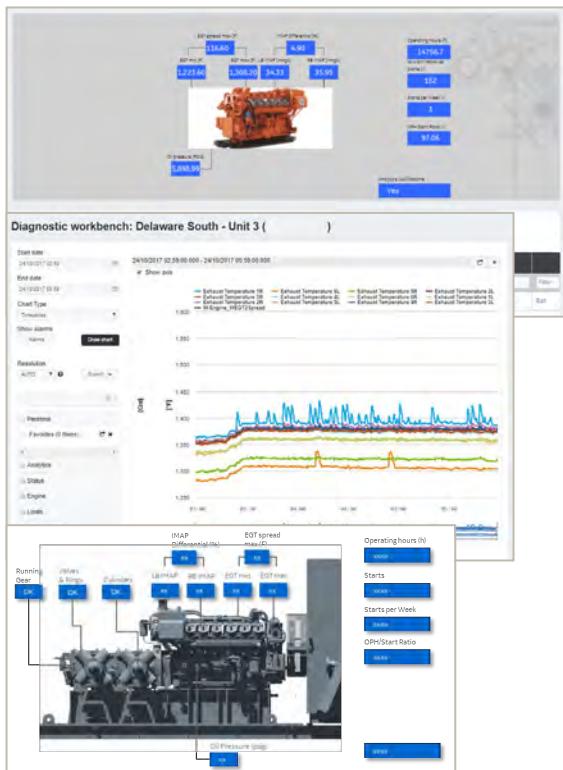
Asset data trends


Asset alarms summary

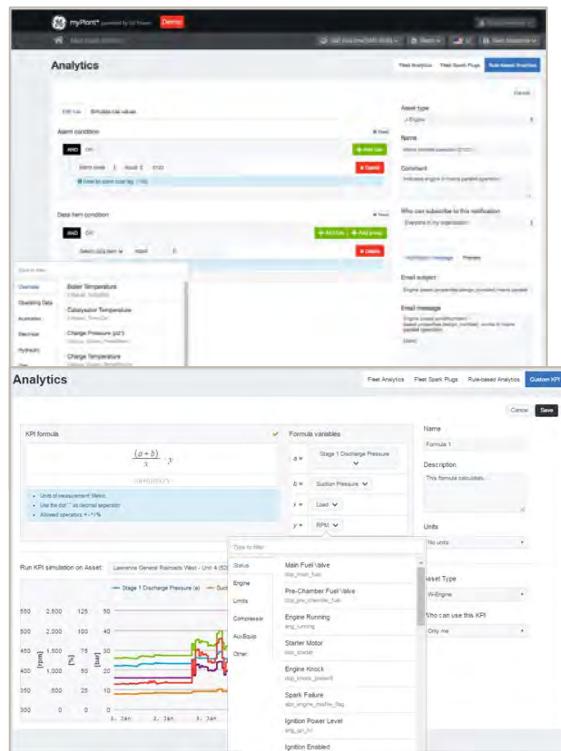
Alarms 15:28 71%

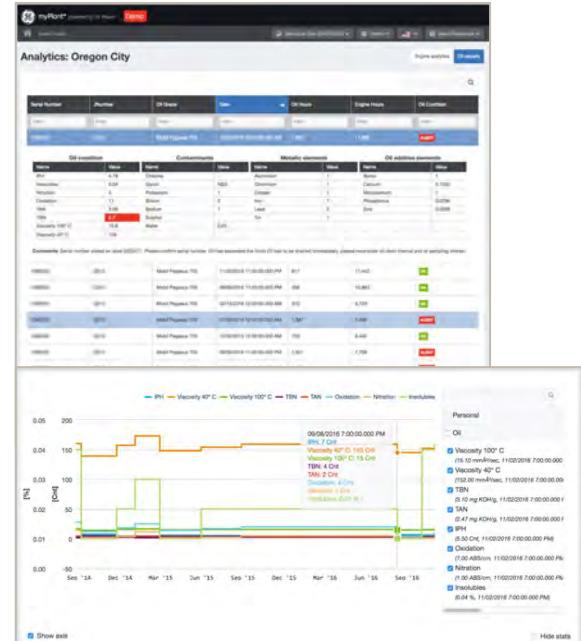
2016-12-31 05:18:31,000	Communication to DIA.NE HMI Server failed (3517)
2016-12-31 06:19:31,000	no_alarm_message_found (3518)
2016-12-30 11:23:48,000	Failure CO2 unit (3511)
2016-12-23 10:30:18,000	Jacket water pressure high (3406)
2016-12-19 13:29:00,000	Heating water return temperature high (1167)
2016-12-19 10:42:20,000	MONIC firing voltage difference too high (3208)
2016-12-19 01:46:25,000	MONIC firing voltage difference too high (3208)


Navigation


myPlant

ASSET CONDITION MANAGEMENT


INSTANT EVENT PUSH NOTIFICATIONS


RELIABILITY ANALYTICS PACKAGE

BUILD YOUR OWN ANALYTICS

LUBE OIL ANALYSIS REPORTS INTEGRATION

Waukesha

Contact us **THANK YOU!**

Headquarters:
13155 Noel Road, Suite 900 Dallas, Texas
75240 USA

Website address: Pan-AmericanSupply.com

Phone number: 424-239-8171

The logo features the word 'Waukesha' in a large, orange, cursive script font. A thin orange line arches over the top of the letters.