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Deltawave is a wave energy converter (WEC) that is 

a variant of the well-known ‘Cockerell raft’ design.  

In a Cockerell raft, the passage of underlying waves 

causes two or more rafts joined to one another at 

their ends to rotate relative to each other (see 

Figure 1).  Resistance to this pitching captures the 

wave energy as useful power.  A rectangular 

Cockerell raft is steered normal to incoming 

unidirectional waves.  Because it resists the wave at 

the interface of its two media (water and air) and 

allows no corner in the interface for energy leakage, 

a Cockerell raft has a theoretical wave energy 

conversion higher than 80% (Ref 1).  The 

‘Pelamis’ WEC is an example of a Cockerell 

raft (Figure 2, Ref 2). 

Deltawave modifies the Cockerell raft design 

from a rectangle to a triangle and connects six 

neighboring rafts in a ‘hexraft’ configuration, 

at the center of which is the connection, called a ‘hexaxle’.  Thus, the raft assembly covers the ocean in a 

hexagonal pattern as shown in Figure 3.  Since each triangular raft can pitch in three directions, a 

Deltawave assembly can absorb wave power from multiple directions at once.  As with the original 

Cockerell design, Deltawave covers the ocean surface (>80% areal coverage), giving the wave little 

opportunity to evade the WEC and deform into the overlying air.  Hence, Deltawave is expected to 

retain the high energy conversion ratio of 

the classic Cockerell raft, but in the open 

ocean, where waves come from multiple 

directions simultaneously.  Also, unlike a 

standard Cockerell raft, Deltawave doesn’t 

need to be realigned when the wave 

direction shifts.  This makes Deltawave like 

a buoy-type of WEC, but with a higher 

energy conversion ratio. 

Deltawave’s rafts are equilateral triangles 

80 ft on a side (Figure 4).  Triangles are 

structurally optimized shapes regarding strength-to-weight, which is why they are found frequently in 

construction.  As the individual triangular rafts pitch, the connection of their apices to the hexaxle is 

rotatable and extensible except in the vertical direction.  This allows each of the three raft apices to 

pitch, roll, and yaw relative to its hexaxle as needed for swells up to 30 feet, without tugging on or 

torquing the hexaxle in any horizontal direction.  The torque of each raft apex on the hexaxle occurs 

exclusively in the vertical direction, and it is the resistance to this vertical motion that captures the 

Figure 1:  

Figure 2: Pelamis Wave Power System 

Figure 3: Deltawave’s Hexagonal pattern 
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wave’s energy.  Although the hexaxle is designed to accommodate 30-ft swells, for conservatism 

Deltawave’s power conversion chain only allows 20 feet of extension. 

Figure 5 shows an exploded view of the hexaxle linkage.  

There are six hex-hinges on each hexaxle.  The hinges 

swing horizontally only, and only through a limited arc so 

neighboring rafts avoid colliding.  Attached to each hex 

hinge is a hinge arm, which is connected at its other end 

to a ball joint located just inside the apex of the raft.  

Furthermore, the hinge arm is capable of extension by up 

to 5 feet, giving the connection sufficient leeway to allow 

the raft to pitch in swells up to 30 feet without pushing or 

pulling the hexaxle in the horizontal plane (Figure 6). 

Deltawave is also designed to withstand storm waves of 

60 feet or more, although not with 

the same high energy conversion 

efficiency.  Each Deltawave raft is 

composed of three ‘subrafts’, which 

are rigged to rotate +/- 90 degrees 

when confronted with enough 

pressure, as shown in Figure 7.  Once 

rotated, water can surge past the 

opened raft, which buries it and partially insulates it from the violence at the surface.  Deltawave’s rafts 

are designed to withstand being buried in water to a depth of 50 feet.  Once the violence has past, the 

subrafts are spring loaded to preferentially return to their working position and lock in place. 

 The hexaxle is connected via a connecting rod to an underwater power conversion chain (PCC) system 

as shown in Figure 8.  This could simply be an array of piston pumps whose product is pressurized 

seawater.  The pistons would have a maximum extensibility of 20 feet, above which the subrafts would 

be forced to deploy to protect the structure.   

Figure 5: Exploded view of hexaxle 
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Figure 6: Top view of a hinge arm (fully extended) 
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The piston pump array is connected at its 

bottom to a waterbrake assembly.  This is 

composed of two upside-down umbrella-

like plastic tarps with slanted spokes.  The 

tarps may be glued to fish-netting for 

greater strength.  The waterbrake is 

positioned at least 150 ft below the 

surface.  This helps it form a proper 

anchor against the motion of the surface 

rafts.  The arrow-like shape of the 

waterbrake resists upward motion to a 

greater degree than downward motion.  

This is designed to help the surface rafts 

align with the troughs of incoming waves 

rather than with the wave mean or with 

the wave crests.  The PCC must likewise be 

designed to resist extension more than 

compression, as during compression the 

force is limited to the weight of the raft 

assembly.  

Most WEC’s translate wave-power into electricity locally, absorbing it into a closed loop hydraulic 

system with a piston pump, accumulator, turbine, and generator.  Electricity is then cabled to shore.  

The economic analysis in Appendix B assumes such a PCC is present with Deltawave.  This allows direct 

use of PCC cost estimates used in comparing various Marine Energy Conversion (MEC) systems, as 

recommended by Sandia National Labs and the National Renewable Energy Lab (Refs 3 & 4).  In 

performing this economic analysis, Deltawave was assumed to be operating in the Pacific Northwest 

where the wave power resource is largest.  In Appendix B, a Deltawave assembly composed of 20 hex-

rafts is estimated to produce power at 36 cents/kW-hr for on-shore communities. 

Figure 7: Subrafts in undeployed vs deployed positions, and Interior of a subraft 
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The waterbrakes may be independent, or they may be linked structurally to their neighbors to improve 

anchorage.  These linkages would be remotely operable.  Although not currently designed, it is expected 

they would resemble motorized screw assemblies.  Once linked, the waterbrake assembly can rigidly 

resist the upward force of each connecting rod, since they won’t all be driving upward at the same time.  

Additionally, each waterbrake would be designed to fold in a manner like an umbrella.  Thus, with the 

linkages disconnected, waterbrakes folded, and rafts disconnected at the ball joint/hinge arm 

connection, a Deltawave assembly can be ‘unzipped’ from its neighboring rafts for maintenance.  Ideally, 

individual rafts can be easily isolated and towed to shore for repair together with their associated 

waterbrakes.  This kind of flexibility helps lower maintenance costs. 

A Deltawave assembly is seen from the side in Figure 9.  The low obstruction profile indicates that the 

assembly can push itself through the ocean using local wave energy from the site of its assembly to the 

site of its deployment.  The main resistance to movement would come from the waterbrake assembly.  

It is estimated that with a typical NE Pacific trade wind blowing at 20 knots (34 ft/sec), enough wave 

power is available to move a Deltawave assembly the 2500-mile distance from Long Beach, CA to Hawaii 

in 0.8 to 1.4 months.  If rigged for self-propulsion, and outfitted with satellite GPS positioning, 

Deltawave can potentially self-deploy, drastically reducing the cost of deployment. 

Once deployed, the Deltawave 

assembly would remain 

unanchored to the ocean floor 

and would use its self-

propulsion and steering 

capability to maintain its 

location.  The low wind profile, 

the cyclic nature of surface 

waves, and the drag imposed 

by the waterbrake assembly 

buried deep in unmoving water 

should make this a small parasitic load.  This would reduce the cost of anchorage and allow for easy 

relocation if needed, since only the power takeoff would need to be manually adjusted.  Each Deltawave 

assembly would transmit its location to satellites overhead, allowing for its location to be constantly 

monitored remotely at a centralized office. 

The outer layer of a Deltawave assembly may have drastically 

reduced subraft surfaces, so that each raft resembles a hollow 

triangle, as shown in Figure 10.  The purpose of this outer layer is 

to help the Deltawave assembly survive monster waves.  The 

outer layer, because it is hollow but still floats, can more easily 

slide between the swell and the foam above it that forms when 

open ocean swells are ‘topping’.  Having located this boundary, the outer layer pulls the rest of the 

assembly behind it in the proper position over the swell.  In this way monster waves are unable to toss 

the Deltawave assembly onto its back, since it is getting pulled through the ocean by its outer layer. 

Figure 9: Side view of Deltawave 
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A Deltawave assembly reduces the amplitude of passing waves, but 

not their wavelengths.  If the assembly is curved around a patch of 

ocean (Figure 11), that circular patch could maintain a level of 

ocean violence low enough for permanent floating structures to be 

positioned there.  Motions would be limited to heaving (up and 

down), with much reduced pitching and rolling due to the long 

wavelength of the passing wave relative to its amplitude.  Deep 

ocean wave energy conversion has been identified as an economic 

alternative for the remote processing of ores into finished 

materials: such as bauxite into aluminum, in part because wave power is 60% higher in the deep ocean 

than it is closer to shore (Ref 1).  As it requires no anchorage to function, Deltawave would be ideal for 

this purpose. 
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Appendix A: Structural Analysis 

To provide a construction cost estimate for the economic analysis, a structural analysis was undertaken 

to estimate the kinds and amounts of materials used in Deltawave. 

The Deltawave subrafts are impressed by both static and dynamic water pressures.  The subraft 

transmits these forces to the subraft cylinder as moment and shear loading.  In operation, the cylinder 

remains in the undeployed position.  When the moment becomes too extreme, it deploys, and opens 

the subraft to let water pass through the raft.  The cylinder transmits its forces to the two ball-joint 

housings at its two ends, whence vertical forces are transmitted through the ball-joint and the hinge arm 

to the hex-axle, then down through the connecting rod to the piston assembly, which extracts the wave 

energy as pressurized water.  If the piston assembly is replaced with a solenoid or hydraulic-electric 

power conversion system, the energy is extracted as electricity.  Each connecting rod is pulled by the 

water pressure coming from six subrafts (it is directly connected to twelve subrafts, but each subraft is 

connected to two connecting rods, so the effective force is from six subrafts).  These forces were used to 

calculate the structural requirements of the various parts of Deltawave. 

 

Dynamic Drag Forces, Operational Case (closed-subraft): 

In operation, the subrafts remain undeployed as they are pressed upward by an underlying wave.  A 

maximum wave height of 20 feet is currently baselined for this undeployed condition, since this also is 

the maximum stroke of the pistons powered by the wave motion, and thus determines their overall size.  

For wave heights of 5 to 20 feet, the upward forces on the various parts of the current raft design were 

calculated and added up and translated into an upward force per hexaxle.  This is done by assuming the 

raft travels some percentage of the wave height, called the stroke.  For example, in a 5 ft wave, a raft 

with an 80% stroke goes up 4 feet.  To hold down the wave beneath it, it must exert the same force as 

the 1 ft of water above it would have exerted, which is 1 ft times the density of water.  Note that 

Deltawave is designed to fall, in the trough of each wave, to align with the trough in elevation, and not 

the average sea level.  Thus, any departure from the trough level means Deltawave is being forced 

upward, and the maximum force coincides with the peak of the wave.  For each stroke and wave height, 

an estimate of the average force per hexaxle, over the wavelength  was generated, as well as the 

maximum force at the wave’s peak, which is about twice the average force.  These forces increase 

linearly with the factor, 1 - stroke, with a slope of 769.6 kN/ft of wave height (H) for the average force, 

and twice that slope for the maximum force, for the current Deltawave raft design.  For a 20 foot wave 

and a stroke of 70%, the maximum force on the raft is 2*769.6*20ft*(1-0.7) = 9,235.2 kN.  This 

maximum force is used to structurally size the WEC components, after being multiplied by a safety 

factor, which is currently 1.8.  Divided by the area of the raft, this dynamic pressure (PD) is 3.0 kN/ft2. 

Dynamic Drag Forces, Nonoperational Case (open-subraft): 

In monster waves, Deltawave’s subrafts are designed to open to allow large fractions of the water 

volume to pass through, lessening the force on the raft structure.  The strength of the subraft structure 

is, in this case, based on the dynamic drag force.  This force is proportional to the square of the velocity 

of the water moving past the subraft, and the exposed subraft area.  The maximum deployed-case wave 
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size is 60 feet.  Waves larger than this are extremely infrequent, especially closer to land surfaces, where 

a WEC would typically function. 

With deployed subrafts, there are two cases to consider, as shown in Figure A1.  The first case is with 

the wave surging upward past the structure at its maximum upward velocity.  For a 60ft wave, that is 

conservatively 17.4 ft/s. A drag coefficient (CD) of 0.8 is used 

and a safety factor of 1.8, leading to a dynamic drag pressure 

(PD) of 1.9 kN/ft2 on the affected areas of each deployed 

subraft, which is primarily the cylinder.  These values are with a 

conservative H/ =3*0.033.  The wave period () is proportional 

to the wavelength (), which means that for a given wave 

height (H), less time is available with higher H/, so the 

resulting water velocities are higher.  With a less conservative 

H/ =2*0.033 the velocity is 14.2 ft/s, and the dynamic pressure 

(PD) is 1.3 kN/ft2.   

The second case occurs at the wave crest, as water is surging 

horizontally over the deployed subrafts.  There is a possibility a 

deployed subraft will not be able to close itself against this 

surge, which occurs perpendicularly to the open subrafts 

surfaces.  Given a drag coefficient (CD) of 1.4 and a safety factor 

of 1.8, a dynamic drag pressure of 2.2 kN/ft2 is expected (under 

conservative H/ =3*0.033).  With a less conservative H/ 

=2*0.033, the horizontal velocity is 11.5 ft/s, and the dynamic 

drag pressure is 1.4 kN/ft2. 

Static Pressure, Nonoperational Case (open-subraft): 

In addition to the three dynamic pressure cases, Deltawave 

must be able to withstand a static pressure proportional to 

being buried by many feet of water when inundated by a wave of 60 ft wave, in the open-subraft case.  

Since Deltawave can move upward by up to 20 ft, the maximum depth is 40 ft.  Another 10 ft is added 

for conservatism, so Deltawave is designed to be inundated to a depth of 50 ft.  This is 22 psig, or 14 

kN/ft2, of static pressure (Ps), in addition to the dynamic loads calculated above.  For conservatism, this 

static pressure was employed in all three dynamic scenarios, including the operational cases. 

Subraft cladding calculations 

The water presses on the cladding that envelopes the subraft.  This cladding is tiled, and each square tile 

is designed to withstand the water pressure without support up to a certain size, b.  Two materials were 

considered for the cladding: ferrocement and steel.  Ferrocement is a form of reinforced concrete, in 

which the mortar is supported by an embedded steel mesh.  The following equation is used to predict 

the strength of ferrocement beams subject to pure bending (Ref A1): 

Mn/(F’c*b*h2*) = 0.005 + 0.422*(Vf*Fy/F’c) + 0.0772*(Vf*Fy/F’c)2 ;   

Where Mn = nominal moment strength of the ferrocement beam, F’c = compressive strength of mortar, 

Fy = yield strength of the steel in the reinforcing mesh, Vf = volume fraction of reinforcement, b = side 

Figure A1: Dynamic drags on 
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length of the beam, h = height of the beam (=t, beam thickness),  = the global efficiency factor of 

reinforcement in resisting tensile bending (usually,  = 0.5).  For a beam that is a square tile under 

pressure p, the load along the beam, w = p*b, and the Moment, Mn = w*b2/8 = p*b3/8.  Using the 

definition given above for the nondimensional constant [Mn/(F’c*b*h2*)], and rearranging,  

bbeam = sqrt{[Mn/(F’c*b*h2*)]* F’c*h2**8/p},   

which gives the size of the square tile b, as a function of the makeup of the ferrocement, Vf, Fy, F’c, the 

tile thickness h, the efficiency , and the water pressure p. 

However, the square tiles on Deltawave are not beams secured at two opposite edges, but plates 

secured at all four of their edges, and such plates can support larger pressures for a given size.  For a 

rectangular beam, max = Mn*c/Iz = (p*b3/8)*12*(h/2)/(b*h3), because, as given above, M = p*b3/8, and 

also because Iz = b*h3/12, and c = h/2 (=t/2).  Simplifying, max-beam = 0.75*p*(bbeam/h)2.  For a plate 

Reference A2 gives max-plate = 0.75*p*(bplate/h)2/2.61.  Letting max-beam = max-plate, then bplate/bbeam = 

sqrt(2.61) = 1.61.  In practice, we can use the equation above to calculate bbeam, and then multiply by 

1.61 to get bplate. 

The steel cladding option uses a steel skin, currently 0.2” thick, backed up by an array of beams.  Given 

the square tile size calculated for the ferrocement option, bplate above, the pressure offset by the skin 

itself is calculated as pskin = 2.61*Fy/(0.75*(bplate/t)2), where t=0.2”.  The beam sizing was then done 

assuming a certain number of beams per width b (#beams), and these beams are resisting the remaining 

pressure force: pbeams = p – pskin.  Assume the Fy of a plate is 2.61 times the Fy of a beam.  Then, using Fy-

plate = 2.61*Fy =>2.61 M*c/Iz, where c=h/2, M = p*b3/8, and Iz = 0.5*h4/12 (for a rectangular beam where 

the width of the beam is half the height h), the sizing equation for the beam is h3
rect = 1.5*(p–

pskin)*(b/#beams)*b2/(2.61*Fy).  For an I-beam it was found that h3
I-beam = h3

rect*{1/[1 -(1 -2*{t/h})4]}.  This 

again assumes the flange width is h/2, and the thickness (of both web and flange) is defined using {t/h}.  

I-beams use about half as much steel as rectangular beams sized for this application, so the I-beam 

design is preferred. 

Since these calculations assume the yield strength of the beams in a plate is 2.61 times the yield 

strength of the beams in a beam, it assumes that twice as many beams are found, per tile, then in #beams.  

That is, the array of beams underlying the cladding skin has #beams running in one direction under the tile, 

and the same number running at right angles to the first bunch.  Thus, the materials calculation doubles 

#beams to determine material requirements for the cladding. 

General I-beam structural considerations 

For most of the structural calculations below, parts are sized to keep the maximum shear stress in the 

part, max, below the shear limit, Sy, where Sy = 0.577*Fy, and Fy is the yield strength of steel = 36ksi.  The 

maximum shear stress is calculated from: 

max = sqrt {[(x - y)/2]2 + xy
2} 

For an I-beam, max occurs at the flange, although in some cases it may occur along the centerline.  Both 

locations are checked.   Choosing the x-direction along the I-beam length and the y-direction along its 

height (i.e. along the web of the I-beam), then 
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x = Mi*c/Iz,  y = - Ps*b/tw,  and xy = Vi*Q/(t*Iz) 

Where Mi = the bending moment (ft-lbf) at section i, Vi = the shear (lbf) at that section, c = ymax = 

(w+2tf)/2 (assuming y = 0 occurs at the I-beam centerline), Ps = maximum static pressure of the subraft 

(i.e. when buried under a monster wave), b = the spacing of the minor I-beams (generally), tw = thickness 

of the web, Iz = second moment of area of the I-beam about the centerline, i.e. where y=0 (in distance4), 

and Q = first moment of area of the I-beam flange about the centerline (in distance3).  Note that y is a 

negative quantity because it’s a compressive stress.  For an I-beam: 

Iz = tw*w3/12 + 2{f*tf
3/12 + f*tf*[(w+tf)/2] 2},  and Q = f*tf*[(w+tf)/2] 

where w = web height, tw = web thickness, f = flange width, tf = flange thickness 

The equations above are valid for calculating the maximum shear stress at the I-beam flange.  Along the 

centerline, the value of c is zero (i.e. y=0) so there is no bending stress, but shear stress is maximized 

because Q is increased by adding the first moment of half of the web area about the centerline, which is 

(w*tw/2)*(w/4).  Bending stresses at the flange generally predominate in I-beam sizing. 

Subraft minor I-beam calculations 

The minor I-beams frame the cladding tiles for support and are thus 

spaced according to the tile size b.  Half of them run parallel to the 

cylinder and the other half perpendicular to the cylinder, as 

indicated in Figure A2.  The first class of minor I-beams are called 

‘crossbeams’ (because they ‘cross’ the major I-beams).  They are 

spaced b feet apart and run parallel to the cylinder from major I-

beam to major I-beam.  In sizing the crossbeams, the maximum 

bending moment (lbf-ft) occurs at the crossbeam’s center, while the 

maximum shear (lbf) occurs at the ends of the beam.  These are 

calculated as M = PD*b*L2/8 and V = PD*b*L/2, where ‘L’ is the 

distance between the two major I-beams.  Only the dynamic 

pressure, PD, leads to bending and shear because it hits one side of 

the raft preferentially.  Since M and V occur in different places, their 

stresses can be evaluated separately.  The limiting condition is 

typically the bending moment.   

To calculate the I-beam web thickness (tw), the following equation 

was iterated on: 

Sy
2

 => max
2

 = {Mfac*M*0.5(w+2tf)/(2*Iz)  +  Ps*b/(2*tw)}2  +  {Vfac*V*Q/( tw*Iz)}2  

Where   Iz = tw*w3/12 + f*tf
3/6 + f*tf*0.5*(tw+tf)2  

and   Q = 0.5*f*tf*(w+tf) + CLfac*tw*0.125*w2 

In these equations, w = web thickness, which is the defined thickness of the subraft, f = flange thickness, 

defined as a set fraction of w for all I-beams, tf = flange thickness defined as a set fraction of tw, for all I-

beams.  Also: 

Figure A2: Subraft I-beams 
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Mfac = a switch:  =1 if you want to evaluate the bending moment at the beam center,  

=0 if you don’t. 

Vfac  = a similar switch for evaluating the shear stresses at the beam endpoints.  Note that if Mfac =1, then 

Vfac = 0, because the two forces are mutually exclusive in this situation. 

CLfac = a switch: =1 if the shear is being evaluated at the centerline.   

=0, the shear is being evaluated at the flange. 

The static pressure force (Ps) is as calculated before. 

The second class of minor I-beams are called ‘submains’ because, like the major I-beams (the ‘mains’), 

they run toward (not parallel to) the cylinder.   As with the crossbeams, the driving moment and shear 

are M = PD*b*L2/8 and V = PD*b*L/2.  Unlike the crossbeams, L = b, because b is the spacing between 

the crossbeams.  The other structural calculations are the same as for the crossbeams. 

It is likely that the subraft structure will feature trusses rather than I-beams.  To check the material 

requirements of such trusses, truss calculations were made.  Neville trusses were assumed, resulting in 

isosceles triangles (two sides of equal length) among the truss sections.  The upper horizontal struts 

connected to the upper cladding are called the ‘a’ struts, the lower horizontal struts connected to the 

lower cladding are the ‘b’ struts, and the struts that slant between upper and lower sides are the ‘s’ 

struts.  Assuming a minor truss has a distributed load w along its upper surface, then the dynamic 

loading is w*L, where L is the length of the minor truss (for a ‘submain’, L=b, the tile size calculated 

above), and w = b*PD.  Since the load is symmetrical, only half of the truss need be considered, and the 

load is calculated according to the fractional length, f, where f =0 at one of the pinned truss edges, and 

f=1 at L/2.  For this case, the force on the slanted struts is compressive, and is Fs = 0.5*w*L*(1-

f)/cos(/2) + Fs s.p. , where  is the internal angle of the slanted struts (the struts form isosceles 

triangles), and Fs s.p. is the compressive loading due to static pressure: Fs s.p. = Ps*b*h*tan(/2)/cos(/2), 

where h is the truss height (distance between upper and lower cladding surfaces).  The maximum 

slanted strut force occurs at the pinned edges of the truss, where f=0.  By summing moments about the 

nodes along the bottom strut ‘b’, the loading of the top struts (a), can be calculated: Fa = w*L2/(8h))*(2f 

– f2) -Fa s.p., where Fa s.p. = Fs s.p.*sin(/2).  The compressive dynamic loading is a maximum at the center of 

the truss, where f=1.  However, the static pressure places the horizontal struts (a and b) in tension, so 

the maximum tensile loading on the top struts occurs at the pinned edges where f=0, and Fa = Fa s.p.  = Fs 

s.p.*sin(/2).  The bottom horizontal struts are in tension, both due to the static pressure and the 

dynamic pressure.  For the bottom struts, Fb = Fa + Fs*sin(/2) = w*L2/(8h))*(2f – f2) +Fb s.p. +Fs*sin(/2), 

where Fb s.p. = -Fa s.p.(Fb s.p. is added to the first term, rather than subtracted, because the bottom strut is 

placed in tension by both loadings).  Since the first two terms are maximum at the center of the truss 

(f=1), and the last term is maximum at the edge of the truss (f=0), Fb is a maximum somewhere between 

the edge and the center, and calculations indicate that’s at about f=0.25.  Since the subraft is 

symmetrical, the top and bottom struts must be interchangeable, and so the larger size calculated for 

the bottom strut, Fb, mandates the size of both horizontal struts. 

With the strut forces calculated, their sizing is straightforward.  It was found that the truss requires 

about 20% more material than the I-beam, for the same loading.  This discrepancy can likely be reduced 

by further optimizing the truss structure. 
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Major I-beam calculations 

There are four major I-beams that travel from the free apex of the subraft to the cylinder, as shown in 

Figure A2.  These I-beams are loaded by a bending moment and a shear, which determines their sizing.  

To size these I-beams, they were cut into nine sections, eight equal sections along the triangular part of 

the subraft, and a ninth rectangular section which interfaces with the cylinder.  Each section has a part 

of the subraft lower cladding transmitting the dynamic water force to it, a force which is proportional to 

the lower cladding area (Ai) and the dynamic pressure of the passing wave (PD).  The shear force (Vi) and 

bending moment (Mi) on each I-beam section i is calculated from Vi = Vi-1 + PD*Ai;   and Mi = Mi-1 + Vi-1*Li 

+ PD*Ai*LMi; where Li = the length of I-beam section i, and LMi = the moment arm of that section.  This 

moment arm would be 0.5*Li if the cladding areas were rectangular.  Since they are trapezoidal due to 

the shape of the subraft, LMi is slightly smaller than 0.5*Li.  Note that for the first section, which begins at 

the free apex of the subraft, Vi-1 and M i-1 are both zero.   

There is also the ninth I-beam section, which corresponds to the rectangular subraft area that connects 

to the cylinder.  And there is the cylinder itself (i.e. section 10), for which the summed moments of the 

subraft become a torque, and the summed shear forces become an upward distributed force when 

added to the direct force of water pressure on the cylinder itself.  An example of the spreadsheet set up 

to size the major I-beams, minor I-beams, and cladding is shown in Figure A3. 

As before, the I-beams are sized to keep the maximum shear stress, max, below the shear limit, Sy, 

where Sy = 0.577*Fy (Fy is the yield strength of steel, 36ksi).  This maximum stress occurs at the I-beam 

flange, although in some cases it may occur along the I-beam centerline.  Both locations were checked.   

Recall  max = sqrt {[(x - y)/2]2 + xy
2}, where x = Mi*c/Iz, y = - Ps*b/tw, and xy = Vi*Q/(t*Iz), where Mi = 

Figure A3: Example of subraft cladding and I-beam sizing 
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the bending moment (ft-lbf) at I-beam section i, V = the shear (lbf) at that section, c = ymax = (w+2*tf)/2 

(assuming y = 0 occurs at the I-beam centerline), Ps = maximum static pressure of the subraft (i.e. when 

buried under a monster wave), b = the spacing of the minor I-beams, tw = thickness of the web, Iz = 

second moment of area of the I-beam about the centerline, i.e. where y=0 (in distance4), and Q = first 

moment of area of the I-beam flange about the centerline (in distance3).  For an I-beam: 

Iz = tw*w3/12 + 2*{f*tf
3/12 + f*tf*[(w+tf)/2] 2},  and Q = f*tf*[(w+tf)/2] 

where w = web height, tw = web thickness, f = flange width, tf = flange thickness 

The equations above are valid for calculating the maximum shear stress at the I-beam flange.  Along the 

centerline, the value of c is zero (i.e. y=0) so there is no bending stress, but shear stresses are at their 

maximum, because Q is increased by adding the first moment of half of the web area about the 

centerline, which is (w*tw/2)*(w/4).  Despite this, the bending stresses at the flange predominate in 

sizing the I-beams. 

Given the extreme static and dynamic forces calculated above, each I-beam section has its maximum M 

and V calculated, from which these equations are iterated to produce the web and flange thicknesses (tw 

and tf).   

As with the minor I-beams, the major beams can also be designed as trusses, so structural calculations 

were carried out to estimate their material requirements.  Neville trusses were assumed, with their 

repeating units of isosceles triangles, of internal angle .  Since the beams are broken up into sections, 

each section constitutes its own cantilevered beam: fixed at one end with an incoming shear (Vi-1) and 

moment (Mi-1) from the adjoining section closer to the subraft apex, and subject to distributed dynamic 

(w = b*PD) and static (Ps) pressure loadings along its length.  As with the minor trusses, the static 

pressure places the slanted struts in compression, where Fs s.p. = Ps*b*h*tan(/2)/cos(/2).  This places 

the horizontal struts (a and b) in tension, according to Fa s.p. = Fs s.p.*sin(/2).  The dynamic loads are 

added to these static loads.  By summing forces in the y-direction, the dynamic force on each slanted 

strut is calculated from FsD*cos(/2) = Vi-1+w*Li = Vi.  This dynamic force places the strut in compression 

for struts slanting downward and in tension for those slanting upward.  Since the static pressure places 

the slanted struts in compression, the maximum strut stress is felt when they are slanting downward 

and is Fs = FsD + Fs s.p. = Vi/cos(/2) + Ps*b*h*tan(/2)/cos(/2).  The slanted struts were sized according 

to this force.  As for the horizontal struts, for each truss section, a moment sum can be done around one 

of the nodes running along the upper strut (a), from which FbD = Mi/h = [Mi-1 +Vi-1*Li +w*Li*(Li/2)]/h.  This 

places the lower horizontal strut b in compression, but the static pressure places it in tension, so the two 

effects are subtracted.  The limiting stress for the horizontal struts will be the upper strut, strut a, which 

is in tension from both static and dynamic forces.  For strut a, an x-direction force balance shows the 

maximum dynamic force is FaD = FbD + FsD*sin(/2) = Mi/h + Vi*sin(/2)/cos(/2).  Adding the static 

pressure effect, Fa = Mi/h + Vi*sin(/2)/cos(/2) + Fs s.p.*sin(/2).  This is the maximum tensile force felt 

by the horizontal struts, and determines the strut size for both upper and lower horizontal struts, since 

the subraft is isotropic.  As with the minor trusses, the major trusses were found to require about 20% 

more material than the I-beam design.  The Neville truss design used here is primarily for calculation of 

the material requirements.  In actual practice, such a truss would be cut down its centerline, and half of 

it inverted, forming, in effect, a Lattice truss when the two halves are bolted back together. 
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Cylinder calculations 

The cylinder has two different kinds of forces transmitted to it from the rest of the subraft.  To optimize 

weight and cost, the cylinder incorporates two solutions for these forces.  The first force is the torque, , 

by the subraft under dynamic loading.  The cylinder itself is the optimum shape to resist this torque so 

was sized to resist it, using Sy => max =*ro/J, where J = (/2)*(ro
4 – ri

4).   The second force is the shear 

force of the subraft, transmitted to the cylinder.  A truss, inserted into the hollow cylinder, was designed 

to resist this shear loading.   

Deltawave is sized to meet three design conditions.  The first is normal operations, in which the subrafts 

are closed and pressed from underneath by the ocean swells.  The swell pressure is transmitted to the 

cylinder as both torque and distributed shear loading.   

The second is a storm wave condition, in which the subrafts have deployed to the open condition, and a 

monster wave is surging water past them from below.   

In this condition there is no torque on the cylinder, but there is significant drag loading on the cylinder 

by the water being deflected around it.  In this condition, the cylinders internal truss is useless, because 

it is improperly aligned to resist this loading.  However, because of the triangular shape of the subraft 

itself, and its construction, composed of beams radiating out from the free apex, the subraft itself acts 

as a truss in this condition.   

The third design condition is a storm wave condition, in which a subraft gets stuck in the open position 

while a storm wave surges horizontally past it.  In this condition, the water pushes on the lower side of 

the subraft, leading to both torque and shear loading on the cylinder, in a manner similar to the ‘normal 

operations’ condition.   

The internal truss is a Neville truss, with repeating isosceles triangles of internal angle .  The shear 

force is maximum at the edges of the cylinder, where the cylinder is supported by the ball joint 

housings.  In equation form, the slanted strut inline force is Fs = 0.5*w*L*(1-f)/cos(/2), where w*L is 

the shear force of the subraft on the cylinder, which has length L.  This is highest at the edges of the 

cylinder, where f=0 (f=1 at the center of the cylinder).   

The bending moment on the internal truss is the sum of the moment due to cylinder shear force, plus 

the additional moment transferred to the cylinder by the ball joint housing (to which it is attached) and 

minus the amount of this bending moment that can be resisted by the cylinder itself.  This moment sizes 

the horizontal struts.  There are two horizontal struts, top and bottom (Fa and Fb).  They are both sized 

according to max(Fa,Fb) = [(Mbj – Mcyl + w*L2/8)/h]*(2f – f2) +Fs*sin(/2).  In this equation, Mbj = the 

additional moment from the ball joint housing, which is calculated below.  Mcyl is the moment on the 

cylinder/truss assembly that can be resisted by the cylinder alone, where Mcyl = (/2)*(ro
4 – ri

4)* Sy/ro.  

This is derived from x = Mcyl*ro/Iz , where x =2*Sy  and, for a hollow cylinder, Iz = (/4)*(ro
4 – ri

4).   

 

Cylinder posts, ring-bearings and tracks 

The sub-raft connects to the cylinder via six ring-bearings, which allow the sub-raft to rotate around the 

cylinder under monster wave conditions.  The inner race of the bearing connects to the cylinder, and the 
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outer race to the sub-raft, and there are 19 roller bearings in-between the two races.  The outer race 

connects to a track upon which a spring-loaded pin runs, and this track is bound to the subraft.  This 

spring-loaded pin holds the subraft in place.  This pin is designed to only be compelled to compress 

inward, into the cylinder, by monster waves, thus allowing the subraft to rotate only in extreme 

conditions.  There is one pin per bearing, so six altogether.  These are sized to handle the extreme 

moment loading (/6) coming from the subraft.  Two pin cross-sections were considered: a solid 

cylinder, and an I-beam.  Because the loading is coming in a single plane, the I-beam shape was found to 

save considerable material, and was selected.  

 

Ball Joint Housing 

The ball joint housing has a complex shape.  For structural purposes it was modeled as three square 

tubes, each of the same length, but of varying widths.  The lengths and widths are selected so that the 

overall area of the housing is the same as its actual area, which influences the overall force and moment 

of the housing on the rest of the subraft.  The first square tube is the housing directly in contact with the 

ball joint.  Along with its two flanges (top and bottom), this first tube has two webs, on either side.  The 

second square tube has three webs, one center web and two side webs.  The third square tube, the one 

in direct contact with the two subraft cylinders welded to the ball joint housing, has four webs, two 

webs in the center, and two at the side.  The square tubes are sized to handle the moment and shear 

loading of the two subrafts in contact with the ball joint housing.  Each subraft is in contact with two ball 

joint housings, however.  Therefore, the net force on a ball joint housing is equivalent to the pressure on 

just one subraft, Fcyl = Asubraft*PD.  This subraft force, when added to the dynamic water pressure on the 

ball joint housing itself, Fbjh = Abjh *PD, is the force on the ball joint: Fbj = Fcyl + Fbjh.   

Structural calculations similar to those with the I-beams were performed to size the ball joint housing 

and estimate its material requirements.  In estimating the wall thickness of the cubes, the maximum 

normal stress was taken at the extreme upper and lower edges of the cube, at c = (w+2*tf)/2, and shear 

stress was taken at the top of the web, at w/2.  Shear stress can also be estimated at the web centerline 

if requested.  As before, the design requirement is to keep max < Sy  = 0.577*36000psi for A36 steel, 

where max = sqrt {[(x - y)/2]2 + xy
2}.  Choosing the x-direction along the cube length and the y-direction 

along its height (i.e. along the web of the square tubes), then  x = Mi*c/Izi, y = - Ps*fi/twi, and xy = 

Vi*Qi/( twi*Izi), where Izi = twi* w3/12 + 2*{fi*tf
3/12 + fi*tf*[(w+tf)/2] 2}, and Qi = fi*tf*[(w+tf)/2], where w = 

web height = height of the ball joint, c = (w+2*tf)/2,  fi = flange width, which varies with each of the 

square tubes i, and tf = flange thickness.  The web thickness, twi, is the total for all webs (remember there 

are two webs for the first tube, three for the second, and four for the third), i.e. twi = {# of websi}*tf, 

where, for simplicity, each individual webs thickness is assumed = tf.  The goal of the strength calculation 

is to determine tf for each of the square tubes i. 

Each of the three tubes has the same length, i.e. L1=L2=L3=Ltot/3, where Ltot is the total length of the ball 

joint housing.  Each tube has a dynamic water pressure force: Fwi = Ai*PD, where Ai = Li*fi.  The shear 

force, Vi, for each of the tubes is: V1 = Fbj (calculated above), V2 = V1 – Fw1, and V3 = V2 – Fw2.  The 

maximum moment for each square tube is Mi = Mi-1 +Vi*Li -Fwi*Li/2 (where M0 = 0).  These shear forces, 

Vi, and moments, Mi, are used above to estimate each of the square tubes thicknesses, tf, from which 

material and cost estimates are based. 
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Square tube 3, which is welded to two subraft cylinders, transmits its moment to each of them, in 

amount M3/2.  This is used in sizing the cylinder in the discussion above, i.e. Mbj = M3/2.  Tube 3 also 

experiences a torque from those cylinders when they are under load.  This torque is equal and opposite 

from the two subrafts and is resisted by two extra metal plates placed over the top and bottom flanges 

of square tube 3.  The plates are subject to normal stress loading, and the thickness of each is calculated 

by t = F/(2*Sy*L3), where F = /(w+2*tf), and  is the torque on the housing induced by each subraft. 

 

Ball joint sizing 

Between the ball joint and the ball joint housing is a layer of Teflon as the bearing interface material.  

Teflon has a yield strength of 3000 psi, and the ball joint is sized, in part, to accommodate this strength, 

given the force, Fbj, passing across the ball joint.  The ball joint is composed of 0.2” thick steel covering 

70% of the area of a sphere (the back of the ball joint is open).  Inside the ball joint are four plates, 

vertically oriented to pass the vertical force through the ball.  The joint is inside a casing, also of 0.2” 

thick steel and 70% of the spherical area.  In between the joint and the case is the 0.25” thick Teflon 

interface.  The casing is connected to the top and bottom flanges of the first ball joint housing tube via 

eight vertical plates, four below the ball joint and four above it.  The various vertical plates have 

thicknesses calculated based on the maximum loading, Fbj. 

 

Purpose of flexibility in the ball-joint, hinge-arm, and hexaxle design 

The rafts are tossed by waves such that their three apices have a variety of heights relative to each 

other.  For the pistons and water-brakes to remain in a constant horizontal location regardless of wave 

height, flexibility is built into the connectors from the ball joints at the raft apices to the hex-axle center.  

In this way, deltawave is designed to 

accommodate waves of up to 30 feet 

without various parts colliding.  Figure A4 

shows what an 80ft raft looks like with its 

apices located at different heights in a 30 

ft swell.  

Each raft has a 2 ft clearance to the edge 

of its 80 ft envelope.  This means the raft 

apex is 2/sin30 = 4 feet inside of the 

envelope apex, and the raft edges are 80-

4*cos30 = 73.1 ft long.  In a 30 ft swell, 

direct measurements from the CAD model suggest the maximum distance from the raft apex to the 

envelope apex is 8 feet (in a 20 ft swell, this maximum distance is 5.7 ft).  After accounting for the 

diameter of the ball joint and its minimum distance to the hinge, this means the hinge arm requires an 

extensibility of 3.9 ft, in a 30 ft swell.  This extensibility requirement was increased by 20%, to 4.7 ft, for 

conservatism.  The hinge arm is composed of three sections.  Each section is a pair of doors, and each 

pair slides within the pair external to it.  With each door being 3.4 ft long, and the required extension 

per door being 4.7 ft/2, the minimum overlap between doors is 1 foot.  The design challenge is to design 

Figure A4: Raft with 3 apices at different heights 

30 ft 

80 ft 
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roller bearings and railings that meet these geometrical restrictions while transmitting the vertical force 

involved across the hinge arm.  To prevent jamming, the ratio of minimum door overlap to door height 

was chosen to be 20%.  Hence, the hinge arms are 5 ft tall.  The door thicknesses were estimated using 

the maximum force calculated above.  The hinge arm doors closest to the hexaxle hinge have the largest 

moment arm from the ball joint, so have a combined thickness of 2 inches.  The second pair of doors 

have a combined thickness of 1.5 inches, and the third pair a combined thickness of 1 inch. 

The ball joint housing iris, through which the hinge arm attaches to the ball joint, must not be too large, 

or the ball joint housing cannot be strengthened sufficiently to prevent the ball joint from being pulled 

through the socket.  This also relates to swell size.  In a 30 ft swell, the maximum vertical angle of the 

ball joint is 27.8o = sin-1(30ft/64.4ft), where 64.4 ft is the distance between two ball joint centers.  The 

maximum horizontal angle depends on the maximum raft apex to envelope apex distance, which is 8 ft 

given above, and the radius of the ball joint (1.5 ft) and distance from the raft apex to the edge of the 

ball joint (3.5 ft).  The maximum horizontal angle is 25.4o = tan-1 {8*sin30/[(8*sin30-3.5)+(3.5+1.5)]}.  The 

maximum ball joint angle in its socket is therefore 37o = cos-1(cos27.8*cos25.4).  The hinge arm connects 

to the ball joint through a rod with a 0.56ft radius, which adds 20o to this, so the actual half-angle of the 

ball joint iris is 57o.  There is thus 33o = 90o-57o of socket overlapping the ball joint on all its edges, an 

area sufficient to ensure strengthening will prevent the socket from being damaged in large waves. 

 

Hinge arm sizing. 

Figure 5 shows the arrangement of the hex-axle.  The hex-axle is six sided and at each of its apices is a 

hex-hinge.  The hex hinge allows rotational flexibility in one dimension only, much like a door hinge. 

Each hex-hinge is connected to a hinge arm which in turn connects to a ball joint.  See Figure 6.  The 

hinge arm must expand from a minimum to a maximum length (currently 3.4ft to 8.2ft), while 

transmitting vertical loads from the ball joint to the hinge.  To perform this function, the hinge arm is 

composed of three pairs of sliding doors on runners.  The minimum overlap between the doors is 1ft, so 

the maximum length is 3.4ft + 2*(3.4ft-1ft) = 8.2ft.  To prevent jamming of the doors, the minimum 

overlap per unit height of the doors is kept above 20%, so the doors are 5ft high (h =1ft/0.20).  The 

thickness of each pair of doors is dependent on the maximum moment felt by that pair, which is the 

maximum force at the ball joint multiplied by the maximum lever arm of the extended pair, Mmax i = 

Fbj*Lpair i.  The door thickness was calculated from Sy > 0.5x = 0.5[Mmax i*(h/2)/Izi ], where Izi = ti*h3/12.  

Thus ti = 3Mmax i/(Sy*h2).  This is for each pair of doors, so each door is half this thickness.  There is also 

shear loading on the doors, that is maximum at the centerline.  It was found that this was not the 

limiting stress situation, so the thickness calculated here is conservative. 

To protect the hinge arm and ball joint from the ocean environment it is likely that a rubber boot will be 

needed to surround these parts and flex with them as they move.  This part has not yet been designed. 

 

Hex hinge sizing 

Each hexaxle has 6 hinges.  The hinge pin is sized to handle shear and normal loading transmitted to it 

from the hinge arm.  Assuming the pin is restrained at its two endpoints by the hexaxle structure, the 
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normal loading at each end is half the hinge arm shear load V.  The normal stress, x, is this loading 

divided by the pin area, D2/4.  The maximum shear stress is due to the Moment of the hinge arm and is 

xy = FMQ/(t*Iz), where FM = M/L, L is the length of the pin (6ft), Q/t = (D3/12)/D, and Iz = D4/64.  By 

keeping Sy > max, where max = sqrt {[(x - y)/2]2 + xy
2}, and y = 0, then D4 => [V/(Sy)]2 + [16FM/(3Sy)]2.   

The pin diameter is sufficient to withstand loading at the endpoints of the pin, 

however, the maximum moment on the pin occurs internal to the endpoints, 

and at that location the pin diameter must be jacketed by the hinge stud so 

that their combined diameter is sufficient to withstand the moment at that 

location.  The hinge pin loading has the profile shown in Figure A5.  At the 

endpoints, the hexaxle structure imposes two forces, Fa.  The distributed 

loading in the center (Fm) is from the hinge arm.  The vertical loading from the 

hinge arm is V.  From the top of the pin, the moment at location a-a’ is Maa’ = 

FA(x+x) – {Fm*x*(x/2) – 0.5(Fm* -Fm@aa’)*x*(x/3)}, where Fm@aa’ =  Fm*[1-

x/(Ls/2)], and Ls is the height of the hinge stud.  Thus Maa’ = FA(x+x) + 

[Fm/(6Ls/2)]*x3 – (Fm/2)*x2.  The maximum moment, Mmax, along the pin 

length is where dMaa’/dx = 0, and the pin+stud casing diameter, at this 

location, is calculated from Sy > 0.5x = 0.5[Mmax*r/Izi + (V/2)/(D2/4)] = 

16Mmax/D3 + V/D2.  The calculated diameter at this location is about 60% 

greater than the diameter at the pin endpoints.  With the extra jacketing of 

the hinge stud, the pin will withstand this maximum moment load. 

Hexaxle structure sizing 

The hexaxle is composed of a hexagonal structure holding at each of its apices a hex-hinge.  The hexaxle 

has a maximum diameter.  This is currently set to 7 feet.  This means each of its six spoke panels, and six 

side panels, has a length, Lspoke = 7/2 =3.5 ft.  The hexaxle has the same height as the hinge, L (=6 ft). To 

estimate the material in the hexaxle, the spoke panels were sized for their loading, and the total 

material doubled to account for extra material in the side panels and in the center rod, which is 

connected via a ball joint to the connecting rod.   

If the spoke panels are I-beams, their thickness (t) is calculated from Sy > 0.5x =0.5Mmax(L/2)/Iz = where 

Mmax = M + Lspoke*V, where M and V are the moment and shear at the hinge, as calculated above.  Since 

Iz = t*L3/12, thus t > 3Mmax/SyL2.  The calculation was repeated for maximum shear in the I-beam, but the 

thickness is 1/4th the thickness calculated for moment loading. 

The spoke panels can also be simple trusses, composed of a frame and one diagonal.  In that case the 

moment, M, impacts the top and bottom struts by the couple composed of two horizontal forces, Fa = 

M/L (also discussed above).  Including the vertical shear force, V, the three major struts (top, bottom, 

diagonal) can be sized according to their expected loading.  This was then doubled to account for the 

material in the side panels, and the center rod of the hexaxle. 

It was found that the structural material requirement of the hexaxle when composed of trusses was half 

the requirement when composed of I-beams, so this is the structural architecture selected. 

 

Connecting rod and pistons 
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The connecting rod is sized to handle the dynamic water loading on the hex-axle and the six rafts 

surrounding it (as transmitted to the hex-axle through the six ball-joints it is in contact with), that is: Fcr = 

6*Fbj +Fha (the hex-axle has an area of 32 ft2 which is also pressed up by the dynamic water loading).  

Currently, the connecting rod is designed to be cylindrical with a diameter (Do) of 3 ft, and to be 150 ft 

long. It connects to the hex-axle through a ball-joint, allowing the hex-axle to pitch in various directions 

with wave action. The rod thickness was calculated from 2*Sy > x  = Fcr/Acr, where Acr = (/4)*(Do
2 – Di

2).   

Between the connecting rod and the waterbrake is the power conversion chain (PCC), which converts 

the relative motion between them into energy, which is then transmitted to shore via a cable.  Two 

different systems were evaluated: a piston pump system that outputs pressurized seawater and a more 

traditional PCC that converts the relative motion into hydraulic power that turns a turbine driving an 

electric generator.  The second system was only evaluated for the economic analysis, allowing a 

comparison with competing marine energy technologies.   

Herein are the calculations used to size the seawater pressurization system:  In sizing the pistons, the 

average upward force of a wave on an object trying to constrain it is needed.  It was found earlier that 

the maximum force for a 20ft wave, constrained to 70% of its free height, is 9,235.2 kN, and the average 

force throughout the upward half of the wave is half of this, or Fy = 4,618 kN.  Assuming the seawater is 

pressurized to p = 459psi (which corresponds to a water column of 1000 ft), the total piston area 

required is A = Fy/p.  Assuming there are #pumps pumps capturing this upwardly directed energy, the 

diameter of each calculated from A = #pumps*D2/4.  Currently, #pumps =6, so D =1.8ft.  Once the diameter 

and number of pumps are assigned for the maximum wave height, the number of pumps engaged with 

lower wave heights will be brought down, to keep the pressure constant.  For example, a 4 ft swell 

would only engage 1 pump, a 6 ft swell 2 pumps, and a 13 ft swell 4 pumps, etc.  This can be done 

mechanically. 

Similarly, the downstroke of the connecting rod can also pressurize seawater.  Here the downward force 

is that of the weight of the raft assembly per hex-axle.  Currently, the single piston assigned to capture 

this energy has a diameter of 2.7 ft, to produce seawater at 459psi. 

The pump cylinder wall is sized to handle the hoop and long stresses that occur under pressure, i.e. such 

that Sy => p*D/(4*t) + (p/2), where p = internal gage pressure of 459psi multiplied by a safety factor, 

which is currently 1.8, and t is the cylinder wall thickness.  This was checked against the axial stress that 

occurs in the cylinder when the piston tops out under a monster wave.  In that case the pressure is zero, 

but the axial stress is large.  The design case is the one under pressure.  Similar calculations were made 

to size the pump pistons.   

The pump assembly would be surrounded by floatation tanks, such that its buoyancy would be neutral. 

 

Waterbrake sizing 

The rafts pull upward on one end of the connecting rod.  The other end is anchored to the waterbrake.  

The waterbrake has the shape of an upside-down umbrella.  Each umbrella has six spokes, as shown in 

Figure 8.  The slanted spokes are supported by six horizontal braces.  The spokes are overlain by a tarp 

material bonded to a fish-net-like support.  Each umbrella-like assembly also opens and closes like an 

umbrella, so that the waterbrake and connecting rod can be pulled out of the ocean without dismantling 
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neighboring rafts.  In the current design, each waterbrake has two layers of umbrellas, a top and bottom 

(NL=2). 

The brake is subject to both upward and downward forces within a single wavelength.  However, the 

arrow-head shape of the umbrella means it will move downward with greater ease.  When forced 

upward, the umbrella forms a ‘cup’ shape that encloses a certain volume of water that will have to be 

accelerated to allow the brake to move upward.  When forced downward, water easily deforms around 

the umbrella.  On average, the water is not moving vertically, since the waterbrake moves up and down 

repeatedly in one wave period.  This means that the upward motion of the raft, as a wave swells under 

it, is resisted by the weight of the water trapped in the ‘cup’ shape of the umbrella, water that has no 

initial vertical velocity.  In a 20 ft swell, the average force on the waterbrake is half the maximum force, 

i.e.  Favg = 1038 klbf.  The umbrella ‘cup’ has a volume, V = L3*tan(), where L = (80ft/2)*cos(30o) and  is 

the vertical angle of the spokes on the umbrella (currently  = 26o).  Thus V = 20.3 kft3.  With two layers 

of umbrellas per waterbrake, the mass of water that must be accelerated by Favg is M = 2*V*62.4 lbm/ft3 

= 2532 klbm.  The average acceleration experienced by this water is Favg/M/32.2 =  = 0.013 ft/s2.  For a 

20 ft wave, the period is 11 sec in deep water, so from trough to crest takes t = 5.5s, and in this time the 

waterbrake moves a vertical distance d = 0.5**t2 = 0.2 ft, or about 1/100th the vertical distance moved 

by the hex-axle, which is 20 ft.  This ensures that the waterbrake is properly anchoring the raft in the 

ocean. 

The pressure on the waterbrake tarp material is Fcr/NL, where Fcr is the upward force on the connecting 

rod, and NL is the number of umbrella layers in the waterbrake.  There are six spokes per umbrella, so 

the force G on each spoke is G = Fcr/NL/6.  The downward pressure pr on the tarp material is Fcr/NL/A, 

where A = 6*Lspoke*(Lspoke*cos30o).  Lspoke is the horizontal length of each spoke, which currently is 40 

feet.  Another way to calculate the force on each spoke is G = pr*(A/6).  Each spoke member is 

supported at its two ends, but the pressure force G is not split evenly between them.  The tarp over 

each spoke has the approximate shape of an equilateral triangle, meaning the pressure force per unit 

length, w, along the spoke increases as you travel from the inner end to the outer end.  For this triangle 

of inner angle 60o, w = F/x = prAx/x = prLxx/x = pr1.155x.  By summing the moment at the inner end, 

its determined that 2/3rds of the pressure force falls on the outward spoke end, and the remaining 1/3rd 

falls on the inner spoke end.  Since there are 6 spokes, all meeting at their inner ends, the pressure force 

at that inner joint is 6*⅓*G = 2G. 

By summing the forces on the central pin of the umbrella, the Force on the spoke, Fm, can be calculated 

using Fcr/NL = 2G + 6Fmsin().  The spoke is in compression on the upstroke of the connecting rod.  The 

horizontal brace (Tt) is in tension, calculated by Tt = Fm cos().  The brace cross-sectional area A = 

Tt/(2Sy). As before, Sy is the material shear limit.  This is likewise used to estimate the cross-sectional 

area of the spoke.  However, while the brace is only subject to axial loading, the spoke is also subject to 

bending loads, because the tarp presses down throughout its length.  If the spoke has length P, it is 

determined that the maximum moment from this bending load is at 0.58P, with value M = 0.1283GP.  

This bending load is added to the axial load to determine the required spoke size: 2*Sy = max = Mc/I + 

Fm/A (where c = h/2, h is the height of the beam).  If the beam is rectangular (height h, base b), then h as 

a function of b is h = {Fm + sqrt[Fm
2 + 4(2Syb)(6*0.1283*GP)]}/(4Syb).  For an I-beam an iterative solution 

is required.  This indicates an I-beam would use 80% less material than a rectangle, so is the shape of 
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choice for the spoke.  The brace should probably also be an I-beam, but since it theoretically only 

endures axial loads, a rectangle is currently baselined. 

The calculation above assumes each waterbrake is working alone to resist the movement of its 

associated connecting rod.  This design simplifies insertion and removal of waterbrakes, since they are 

not connected to each other, except vertically in pairs.  However, another option is to shift this load 

partially to neighboring waterbrakes, which reduces their structural requirement overall.  This requires 

that, after deployment, the brake spokes can make a structural connection.  Once made, the waterbrake 

assembly is like a single huge underwater truss structure and more capable of resisting localized loads 

along its surface.  However, to make and unmake that structural connection without diver support, 

which would be expensive, the brake spokes need to make it automatically, with self-guiding structures. 

For this second case, the tarp pressure is lower because it is being spread among surrounding 

waterbrakes.  Instead of one waterbrake per level resisting the connecting rod’s force, there are seven 

per level.  That’s an approximation, of course, but the waterbrakes most likely to be engaged when one 

connecting rod is pulling upward, are the central waterbrake, and the six surrounding waterbrakes, so 

for the purposes of designing the structure, this is the assumed engagement.  Therefore G7 = (1/7)*G1.  

As before, summing vertical forces about the central pin of the umbrella, Fcr/NL = 2G + 6Fmsin(). Since 

Fcr is the same as before, and G is much lower, Fm is higher than before.  The surrounding umbrellas are 

symmetrical in their responses, so analyzing one of them is appropriate for all six.  Figure A6 shows how 

one of these umbrellas is impacted by Fm, and Tt, as well as by the other forces on the umbrella.  Note 

that, because it is assumed only the surrounding 6 umbrellas are involved in the response, and due to 

symmetry between them, these are the only forces present.  Fcr7 is the force on the neighboring 

umbrella from its connecting rod, and Tb is the Tt force from the second row of waterbrake umbrellas.  

Taking the moment about point ‘a’, 0 = Fmsin()*40’ + Fmcos()*40’tan() – Tt*40’tan(), from which Tt 

= 2Fmcos(), which is twice the value for the single case.  Summing vertical forces about point ‘b’ yields 

Fm1 = Fm - (4/3)G/sin().  As mentioned previously, ⅔G is the water pressure force on the umbrellas 

concentrated at the outer end of the spoke.  Summing horizontal forces about point ‘b’ yields Tt1 = Tt -

Fmcos() -Fm1cos().  Then, considering 

the horizontal forces over the umbrella 

overall, Tb = Tt - Fmcos() = Fmcos(). 

 

For the lower layer, the primary umbrella 

has the same forces on its struts as the 

upper layer did.  However, for the 

surrounding 6 umbrella’s the forces are 

slightly different.  To evaluate the forces, 

use the same diagram from Figure A6.  All 

the forces are subscripted to indicate they 

are for the bottom layer, and there is one 

additional horizontal force, which is the 

reaction force to Tb: same magnitude but 

opposite direction, located at the center 

of the six horizontal braces.  Meanwhile, 
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Figure A6: Forces on the waterbrake 
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the force Tb shown in figure _ is now Tb②.  Note that Fm = Fm① = Fm② since the connecting rod’s force is 

split between the two waterbrake layers and the force of water-pressure, G, is equal everywhere.  

Taking moments about point ‘a’, 0 = Fmsin()*40’ + Fmcos()*40’tan() – Tt②*40’tan() – Tb*40’tan(, 

from which Tt② = 2Fmcos() - Tb = Fmcos().  As before, summing vertical forces about point ‘b’ yields 

Fm1② = Fm - (4/3)G/sin(), hence Fm1② = Fm1①.  Likewise, Tt1② = Tt1① since, as before, Tt1② = Fm1②cos().  

Summing horizontal forces about the lower umbrella, Tb② = Tb + Tt② - Fmcos() = Fmcos().   

Joining the waterbrake umbrella’s into one connected unit does not substantially change the axial forces 

felt by the structure, however due to the much lower water pressure (G), the bending force felt by the 

strut (upon which the tarp is lain) is much lower, and where material savings is realized.  Recall that, for 

a rectangular beam (height h, base b) as the spoke shape, h = {Fm + sqrt[Fm
2 + 4(2Syb)(6*0.1283*GP)]}/ 

(4Syb).  Thus h should be sqrt(1/7) as high as before, or roughly 40% the previous height (for the same 

base b).  This 40% material savings remains true for other shapes, such as an I-beam.  Due to the 

increased material required for the braces (Tt), however, the advantage of joining the waterbrakes falls 

to a 23% material savings, and therefore may not be worth it.   

The waterbrake umbrella is covered in a layer of tarp material underlain by a nylon fish-net.  Each 

umbrella is composed of six triangular tarp sections, each connected at its edges to the spokes (Fm).  

Each triangular tarp has the water pressure, G, on its surface.  The force on the tarp is highest at the 

edges, where they connect to the spokes,  and the tension per unit length along the edge of the tarp can 

be calculated from Ft/l = (G*d/2)/sin(), where d = the distance across the tarp from one spoke to the 

other, which increases along the spoke as you travel from the center of the umbrella to the edge, and  

= the angle the tarp makes with the horizontal at the spoke, which is currently considered to be 15o.  

From this, given the yield strengths of the tarp material and the netting, the number of netting layers 

could be calculated.  This number increases as the overall force increases from the umbrella center to 

the edge.  The calculation was repeated using simple nylon rope as the backing material, with a 

substantial cost savings.  The ideal solution may involve, for backing material, a combination of netting 

and rope. 

 

Pipeline sizing 

The power conversion chain (PCC) discussed in this Appendix involves capturing the wave energy as 

pressurized seawater, using an array of piston pumps.  The pressurized water is then piped to land, 

where further power conversion occurs, ending in electric current.  A 4 ft diameter seawater pipeline, 1 

mile long, about 100 ft below the surface of the ocean, was considered.  The large diameter helps keep 

internal frictional losses low.  As with the pistons, the pipeline wall is sized to meet hoop and long 

stresses, so that Sy => p*D/(4*t) + (p/2), where p = internal gage pressure of 459psi multiplied by a 

safety factor, which is currently 1.8, and t is the wall thickness.  As before, consider Sy = 0.577*Fy, where 

Fy = Yield strength.  A36 steel has a yield strength of 36,000psi, so the thickness of steel needed would 

be 0.5 in.  Polypropylene has a yield strength of 7,450psi, so the thickness needed would be 2.6 in.  

Currently, the polypropylene option is baselined due to lower cost, corrosion resistance, and neutral 

buoyancy.  In the case of polypropylene, or nylon, strength would be achieved through a series of 

windings of various sizes of tarp material, netting, and rope.  This pipeline would be suspended in the 

ocean by a series of floats.  The pipeline is close to neutral in buoyancy because both inside and outside 
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the pipe is water, which is incompressible, and if the pipe walls are made of plastics, they will be 

neutrally buoyant as well.  The advantage of a split PCC is that electric generator parts that require more 

maintenance are located on land, but this option becomes prohibitively expensive if the WEC is located 

more than a mile out to sea.  Although this mechanical analysis discusses the split PCC option’s 

mechanical parts, like the pipeline, the economic analysis assumes a more traditional PCC for 

Deltawave, in which the motive power is input to a hydraulic-fluid based loop driving an electric 

generator locally, next to the WEC.  The electricity is then cabled to shore.  A HVDC cable can carry 

electric power many miles.  For most locations, the deep water capable of transmitting unattenuated 

open-ocean waves to the WEC is located more than 5 miles offshore. 

 

 

 

References for Appendix A: 
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Appendix B: Economic Analysis 

The LCOE (levelized cost of electricity) is the amount a company would have to charge customers for the 

electricity from their device, and still make a modest profit.  ‘Methodology for Design and Economic 

Analysis of Marine Energy Conversion (MEC) Technologies’ (Ref 3) was used to develop an estimate of 

Deltawave’s LCOE.  Equation 2-1 in that paper is LCOE = (CapEx*FCR + OpEx)/AEP, where LCOE is the 

levelized cost of electricity, CapEx is capital expenses (first costs), OpEx is operating expenses (annual 

costs), FCR is the fixed charge rate (what capital expenses cost annually, as a fraction), and AEP is annual 

energy production, in kWhr.  FCR is a value provided by DOE for MEC-type technologies and includes the 

effect of rate-of-return, depreciation, inflation, tax rates, and other key financial variables.  An FCR of 

11.3% was used in Ref 3 on the four MEC’s studied there, RM1: tidal turbine, RM2: river turbine, RM3: 

buoy wave-energy-converter (WEC), and RM4: ocean current turbine.   

“Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter” (Ref 4) was also used.  It discusses 

specifically the economic analysis of a WEC designed to be operated under the same conditions as 

Deltawave.  Most MEC’s tap a steady or slowly varying hydrological flow, like a tide or ocean current, 

but WEC’s requires structures unlike other MEC’s, because the energy resource is the oscillations at the 

interface of two fluids of very different densities in a gravity field.  The resisting structures of WEC’s 

result in comparatively high structural costs.  Note that Ref 4 used a more current FCR of 10.8%, and this 

was also the FCR used in this Deltawave analysis. 

For the economic analysis, a Deltawave WEC composed of 20 linked hexrafts is considered.  A hexraft is 

six triangular rafts (i.e. eighteen subrafts) arranged in a hexagon.  The hexrafts in this WEC are linked 10 

across and 2 deep.  It’s assumed the entire WEC can be pivoted around one end to match the prevailing 

wavefront, if there is any, and thus maximize power production.   

The width of a WEC that is 10 hexrafts wide is W = 10*80ft*cos(30o) = 1386 ft.  The annual average wave 

resource is largest in the Pacific Northwest, so an incoming wave power per wave width of 9.1 kW/ft will 

be used, to match conditions there.  Note that the annual average resource in California is 6.5 kW/ft and 

is below 2 kW/ft in most other locations in the United States. 

The incoming wavefront is, for this WEC, subjected to a depth of 2 hexrafts, which is about four 

hexaxles.  Calculation indicates that for most waves the mechanical absorption efficiency of Deltawave 

will be over 70%.  The efficiency of turning this into electricity in the PCC is assumed to be 85%, so the 

overall efficiency of power conversion is 70%*85% = 60%.   

For MEC’s the ‘device availability’, that is its useful life outside maintenance, is usually assumed to be 

95%.  And the efficiency of electricity transmission is assumed to be 98%.  Therefore, the annual energy 

production of Deltawave is AEP (in kWhr/year) = 9.1kW/ft*1386ft*60%*98%*95%*8766hrs/yr = 6.2x107 

kWhr/yr.  Since this AEP is similar to that produced by a 100-unit array of the other two WEC’s being 

compared to, their 100-unit cost estimations can be used for Deltawave where other cost data was 

lacking (for example, in estimating cabling costs). 

Figure B1 can be referred to in the discussion that follows.  It highlights specifically the costs associated 

with RM3, RM4, and RM5.  That is the two WEC’s and the ocean current turbine MEC.  References 3 and 

4 examined these costs for a variety of power plant sizes.  Generally, costs fall dramatically with power 

plants composed of more devices.  Figure B1 summarizes power plants composed of 10-units and of 
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100-units.  The Deltawave WEC under study here produces 88% of the AEP of the 100-unit option of 

RM3, the buoy WEC, and 70% of the AEP of the 100-unit option of RM5, the flap WEC. 

 

Capital expenses (CapEx) for MEC’s includes all the costs associated with getting the item in the water.  

In Figure B1 this is broken down into six major subcategories: structure, power conversion chain (PCC), 

moorings, installation, environmental assessment, and other.  ‘Other’ is what is left after the other items 

are counted, but includes things like design cost, miscellaneous infrastructure, contingency, and profit.   

The structural design in Appendix A allows an estimate of Deltawave’s structural cost.  At the top of 

Figure B2, a weight estimate is made of Deltawave’s structural parts.  Both steel and ferrocement 

cladding options are considered separately.  Assuming ferrocement costs $35/ft2 and steel costs 

$1.4/lb, the cost breakdown is shown.  The steel-cladding option is lowest in cost.  60% of the structural 

cost is in the subraft, 23% is in the waterbrake, and the rest distributed among the hexaxle, connecting 

rod, piston pumps, and other items.  For this economic analysis, which considers a Deltawave WEC 

composed of 20 hexrafts, the structural cost is $47.5 million, of which $1.1 million is for the 1 mile long, 

4ft diameter pipeline carrying seawater under pressure to shore, where the PCC is located.  Regarding 

the steel cost per weight, an average of such costs for RM1, RM3, RM4, and RM5 is $1.2/lb, whereas for 

RM2 its $2.2/lb due to the use of more expensive alloys.  For RM5, the flap WEC which is most like 

Deltawave, a steel cost of $1.2/lb is used, and likewise for RM3, the buoy WEC. 

Figure B1: Costs for RM3, RM4, RM5, and Deltawave 
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Deltawave’s power conversion chain (PCC) cost was estimated from four of the five PM’s given in 

References 3 and 4.  Although widely differing in design (RM1 uses basically a wind turbine PCC sealed 

against water, while RM3 uses a hydraulic loop with accumulators to even out oscillating wave 

impulses), the various designs were found to have similar costs per unit average power produced per 

year (AEP, i.e., output power).  Typical capacity factors, like for the two WEC designs, are 30%, meaning 

the PCC is designed to handle about three times the expected average output power.  However, for the 

ocean current turbine (RM4), the capacity factor was 70%.  Except for RM2, the river turbine, the PCC 

cost per output power was between $4000/kW and $5000/kW for all designs, so a value of $4600/kW 

was used for Deltawave.  This corresponds to a value of $1390/kW of rated power (assuming a capacity 

factor of 30%).  For the other two WEC designs, the corresponding PCC costs are $1400/kW and 

$1090/kW.  Note that, as currently configured, Deltwave’s PCC will be located on shore, which should 

lead to lower maintenance costs.  If it is decided to retain a localized PCC, and port energy to shore as 

electricity, note that the MEC’s in References 3 and 4 are designed with redundant systems (turbine 

rotors, cooling systems, controls, sensors, etc) to reduce maintenance.  Therefore, the estimated PCC 

cost should not increase substantially if an ocean-positioned PCC is baselined. 

Deltawave is designed to be self-installing, positioning, and mooring.  This is made possible using GPS 

positioning, and by siphoning a fraction of the incoming wave energy for these purposes.  The WEC 

would also be remotely monitored for position, should station-keeping go awry.  Mooring is 12% and 

21% of the Capital cost of the two WEC’s studied in References 3 and 4 (RM3 and RM5), so attacking this 

cost is important.  The waterbrake stabilizes Deltawave against wave action, and the low profile of the 

rafts ensures stability against wind action.  This WEC is designed to operate in ‘deep water’ which for a 

20 ft wave is 300 feet of depth or more.  For ‘deep water’ waves, items positioned within the water 

column are mostly exposed to purely oscillatory action, especially when most of their profile is located 

40 ft or more below the surface.  To estimate the station-keeping power requirement, Reference B1 

reports that the strongest ocean currents are along western boundaries of the oceans, such as the Gulf 

Stream and the Kuroshio current.  However, the highest wave resource is on the eastern boundaries of 

the oceans, like the Pacific Northwest and the North Sea, so this is where Deltawave is most likely to be 

located.  The wave resource required by Deltawave to maintain its position against the expected current 

can be calculated by estimating the drag coefficient and the area exposed to drag.  These calculations 

are shown in the bottom half of Figure B2.  For the WEC under consideration, which is two hexrafts 

Figure B2: Deltawave structural cost breakdown 
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wide, the width is 280 ft and the area exposed to drag is 10,324 ft2.  For such an item, the CD (coefficient 

of drag) is approximately 1.3.  The station-keeping power required per unit WEC width is P/w = FDV/w, 

where V is the velocity of the current, and the drag force FD = ½CDV2 ( is the density of water).  This 

power should be increased by the conversion efficiency, , so that Preq’d = P/  (Deltawave’s efficiency is 

expected to be about 60%).  From the required power, the needed wave height to supply that power to 

Deltawave can be estimated.  From linear wave theory (Ref 1), P/w = [g2/(64)]*Hs
2*Te, where g is the 

acceleration of gravity and Hs and Te are the height and wavelength of the predominant waveform.  It 

can be approximated that, in deep water, Te (in seconds) = 0.89 Hs (in ft).  This was used to estimate the 

wave height, Hs, needed to keep Deltawave stationary in a variety of ocean currents.  Outside the 

currents in the western boundary waters, the required predominant wave height needed for station-

keeping is below half a foot.  It thus seems likely that, properly designed, Deltawave could be self-

mooring.  This has the added advantage of its not being restricted to operate in relatively shallow 

waters. 

A similar calculation was done to estimate how long it would take Deltawave to move itself from its 

construction site to its installation site.  As shown in Figure B2 (bottom-right), the NE Tradewind’s have 

an average wind speed of 33.8 ft/s (Ref 1), which in deep water provides approximately 4.9 kW/ft of 

power to the Deltawave WEC, corresponding to a minimum speed of 3.6 ft/s, and a speed about twice 

that if the long axis of Deltawave is aligned with the predominant wavefront during travel.  Thus, a 

journey of 2500 miles (for example, from Long Beach, CA to Hawaii) would take Deltawave about a 

month and a half, if self-propelled. 

The installation costs of Deltawave are assumed limited to the cost of installing cabling.  To estimate the 

cost of electrical cabling and cable installation, the costs per kW of rated power for the two WECs, RM3 

and RM5 (100-unit options) averages out to $242/kW for cable installation and $276/kW for the cable 

itself, so this was used for Deltawave.  The averaged corresponding costs for the five MEC designs 

studied in Ref 3 and 4 yields a similar cost estimate for these two items. 

Assuming Deltawave is self-mooring and self-installing without further cost, it has an LCOE of 36 

cents/kWhr.  This would rise to 46 cents/kWhr if mooring were required, including its increased 

installation costs.  The higher estimate is based on using the 100-unit option of RM3, the buoy WEC, 

values for moorings and installation, and assuming those of Deltawave would be the same.  The buoy 

WEC (RM3) was used for this estimate, rather than the flap WEC (RM5), because the flap WEC has a 

higher mooring cost needed to increase the efficiency of its wave energy conversion.  Deltawave’s 

mooring costs are assumed, if needed, to be more in line with those required by the buoy WEC. 

It’s difficult to estimate the environmental assessment, mitigation and monitoring costs of Deltawave, 

so the capital cost for this item reported for the 100-unit option of RM5, the flap WEC, was used as an 

estimate.  Underwater structures tend to provide fish with greater places to hide from predators, so fish 

populations near this WEC may increase, rather than decrease.  Also note that when Deltawave is 

aligned parallel to a coastline, there is the possibility of swinging the WEC 180o around whichever end 

the cable is attached to.  In this way, a stretch of coastline ‘shaded’ by Deltawave one year, can be 

exposed to wave action the next year to reduce detrimental impacts on nearby beaches. 

The capital expenses previously discussed are for Structure, Power Conversion Chain (PCC), Installation, 

and Environmental assessment.  Other capital expenses, in Figure B1, are placed in the ‘other’ category.  
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Despite being miscellaneous, these still add up to a large share of total capital expenses.  As an example 

of the types of costs in this category, for the 10-unit option of RM5, the flap WEC, ‘other’ constituted 

24% of total CapEx, of which 2% was for design, 0.4% for site assessment, 9.5% for miscellaneous 

infrastructure, 4% for subsystem integration and profit margin, and 8.5% for contingency. 

As was done in assessing the environmental capital costs, Deltawave’s ‘other’ capital cost will be 

assumed to equal those of the 100-unit option of RM5, the flap WEC.  It should be noted that this may 

overestimate this cost, since it makes ‘other’ 36% of the total CapEx for Deltawave, whereas a typical 

‘other’ cost is 21% of total CapEx, for the other MEC’s.  However, if Deltawave requires moorings, and 

their cost is taken from the 100-unit option of RM3, then this ‘other’ cost for Deltawave is only 26% of 

total CapEx, so the estimate remains. 

Operational expenses, OpEx, include the cost of annual maintenance, insurance, and post-installation 

monitoring (including for environmental impact).  Maintenance requires an assessment of part failure 

rates, replacement part costs, and operations costs, both marine and shoreline.  To reduce maintenance 

costs, Deltawave is designed to have its hexaxles easily separable from its rafts at the raft ball-joints, so 

that all parts can be towed to shore for shoreline maintenance.  Avoidance of marine maintenance 

operations is key to keeping costs down.  Also, the baseline Deltawave design is to place the critical 

electrical parts of the PCC onshore, to also reduce maintenance costs.  However, this requires a hi-

pressure pipeline from the WEC to the shore, which may have maintenance issues of its own. 

Deltawave’s rafts are designed to be able to be turned upside down, which means barnacle growth from 

one year could be discouraged the next year by turning the raft upside down.  Meanwhile, little barnacle 

growth occurs on surfaces lower than 40 ft below the surface, so the waterbrake surfaces will be spared.   

For decommissioning, Deltawave is designed to be made of materials that, abandoned at the bottom of 

the ocean, would be chemically benign.  Steel and concrete structures fit this description.  Exceptions 

are the plastics used in the waterbrake and the Teflon bearing used in the ball joints, which would be 

recovered before sinking.  The desire is to reduce decommissioning costs as much as practicable.  On 

some shorelines, concrete and steel structures are intentionally scuttled to form artificial reefs.  Such a 

fate for Deltawave would require further study. 

In Figure B1 the OpEx cost of Deltawave is assumed equal to that of the 100-unit option of RM5, the flap 

WEC.  At $207/kW of rated power, this is close to the average OpEx of all 100-unit options studied 

(RM1-RM5), which was $200/kW.  For RM5 (100-unit option), the OpEx breakout is 16% on marine 

operations, 11% on shoreside operations, 1% on replacement parts, 20% on consumables, 33% on 

insurance, and 19% on post-installation environmental monitoring. 

This economic evaluation leads to an expected LCOE for Deltawave of 36-46 cents/kWhr, depending on 

whether mooring and installation costs are included.  It doesn’t include an elevated land-based reservoir 

that would be used to store energy from the WEC to ameliorate the highly-variable nature of the wave 

resource.  By way of comparison, Lazard in Reference B2 reports the 2021 cost of unsubsidized wind 

power in America to be 26-50 cents/kWhr. 
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