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A Fast Recursive Algorithm for the Estimation of
Frequency, Amplitude, and Phase of Noisy Sinusoid

P. K. Dash, Life Senior Member, IEEE, and Shazia Hasan, Member, IEEE

Abstract—This paper presents an adaptive method for track-
ing the amplitude, phase, and frequency of a time-varying sinu-
soid in white noise. Although the conventional techniques like
adaptive linear elements and discrete or fast Fourier transforms
are still widely used in many applications, their accuracy and
convergence speed pose serious limitations under sudden supply
frequency drift, fundamental amplitude, or phase variations. This
paper, therefore, proposes a fast and low-complexity multiob-
jective Gauss–Newton algorithm for estimating the fundamental
phasor and frequency of the power signal instantly and accu-
rately. Further, the learning parameters in the proposed algo-
rithm are tuned iteratively to provide faster convergence and
better accuracy. The proposed method can also be extended to
include time-varying harmonics and interharmonics mixed with
noise of low signal-to-noise ratio with a great degree of accuracy.
Numerical and experimental results are presented in support of
the effectiveness of the new approach.

Index Terms—Amplitude and phase estimation, Gauss–Newton
method, linear prediction, Newton method, sinusoid.

I. INTRODUCTION

S INUSOIDAL parameter estimation from noisy measure-
ments has many applications in sonar, radar, and digital

communications, biomedical engineering, and power systems.
In the case of power networks, simultaneous estimation of
the power signal parameters like the amplitude, phase, and
frequency is required not only for the control and protection
but also for the efficient operation of distribution generation
systems in a microgrid environment using microcontrollers [1].
Further, the recent introduction of phasor measurement units for
wide area control and protection of power networks will require
efficient and accurate estimation of fundamental signal parame-
ters. The electrical parameter measurement of a power signal
is relatively a straightforward matter, as long as the frequency
of the signal is not time varying. However, if the frequency
varies, the parameters of the power system network cannot be
estimated accurately, and this is further complicated due to the
presence of harmonics, interharmonics, and noise in the signal.
A similar scenario also prevails in the case of low-frequency
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signals that occur in sonar and radar communications and
mechanical systems [2]. Thus, there is a need for an algorithm
that should perform consistently for a signal with time-varying
amplitude, phase, and frequency harmonics in the presence of
noise. Until today, there are few algorithms that can achieve
accurate results in all these aspects. Among the three signal
parameters, frequency is one of the most important one, and
once it is measured accurately, estimation of other parameters
like amplitude and phase is relatively easy. The most widely
used methods for frequency estimation include the following:
zero crossing technique [3], discrete Fourier transform (DFT)
and fast Fourier transform (FFT) [4], adaptive linear elements
(ADALINEs) using least mean squares technique (LMS) [5]
and recursive least square (RLS) [6], adaptive notch filter
[7], Newton’s type algorithms [8], supervised Gauss–Newton
algorithms [9], Kalman filters [10], [11], neural methods [12],
[13], wavelet transform [14], linear prediction (LP) methods
[15], [16], and maximum likelihood estimates [17].

As is well known, both DFT and FFT methods suffer from
leakage and picket fence effects and give erroneous results for
time-varying signals and, particularly, when the sampling fre-
quency is not an integer multiple of the fundamental frequency.
All the algorithms listed earlier are computationally intensive
and do not produce accurate results under time-varying situ-
ations. The LMS and RLS algorithms are widely used as the
former one is simple and can be used to accurately estimate
the amplitude and phase of a sinusoid and also the harmonics,
if they are present in the signal, provided that the fundamental
frequency is known a priori. In this case, change of frequency
can be estimated separately taking three consecutive samples of
the signal. The recursive RLS produces accurate estimate of the
parameters of the signal but is computationally more rigorous,
and for harmonic estimation, it needs matrix inversion at each
time step. LP algorithms produce accurate estimate of signal
frequency of stationary signal or multiple sinusoids and need
matrix inversion at every iteration leading to complexity.

In the recently proposed modified Newton method [18], the
frequency of single or multiple sinusoids is computed using a
linear predictor formulation and subsequent optimization. This
method, however, is only applicable to frequency estimation but
not for amplitude and phase estimation simultaneously. On the
other hand, the recursive Gauss–Newton (RGN) algorithm [19]
assumes the frequency of the sinusoidal signal a priori and
computes the amplitude and phase of the signal only. Other
methods include differentiation filter, iterative-loop approach-
ing method, simple recursive methods, etc. [20]–[25]. Thus,
keeping the objective as stated in the beginning, there is a need
for an overall approach for the estimation of the frequency,
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amplitude, and phase of a sinusoid simultaneously; this paper
presents a multiobjective Gauss–Newton (MGN) algorithm to
simultaneously estimate the amplitude, phase, and frequency of
a sinusoid.

The major contribution of this paper is to simplify the RGN
method to reduce the computational complexity and produce
a better accuracy in estimation under nonstationary condition
using two objective functions for error minimization. Here, the
term multiobjective means that, for amplitude and phase, one
objective function is chosen for error minimization, while for
frequency estimation, another objective function comprising of
three consecutive samples and a weighted error cost function
is used unlike the Newton method [18]. Further, the forget-
ting factors of the algorithm are tuned iteratively for better
estimation. Section III-A and B develop the new integrated
MGN method which is applied to estimate the power signal pa-
rameters as well as low- and high-frequency signal parameters
accurately, which occur in other dynamic and communication
systems. Section III-C presents the performance analysis, while
in Section IV, simulation and experimental results are presented
for evaluating its accuracy and efficiency in the presence of
signal distortion. Finally, conclusion is drawn in Section V.

II. PROBLEM FORMULATION

The problem of sinusoidal parameter estimation is formu-
lated for discrete-time noisy measurements as

y(k) = s(k) + v(k), k = 0, 1, 2, . . . , N − 1 (1)

s(k) = A(k) sin (w(k)k + φ(k)) (2)

where A, w, and φ are unknown values that denote the ampli-
tude, frequency, and phase of a real valued sinusoid, respec-
tively, while v(k) is an additive white noise with unknown
variance σ2

v . The proposed algorithm for the estimation of
frequency, amplitude, and phase of the sinusoid is presented
hereinafter.

III. MGN

A. Frequency Estimation

An error objective function is formulated using consecutive
2R samples (R is the number of sinusoids in the signal) for
estimating the time-varying frequency of the signal in (2). In
this method, the frequency of the signal is estimated using the
properties of a linear predictor, and then, the amplitude and
phase of the signal are estimated using the RGN approach. It

has been shown in [18] that s(k) can be uniquely expressed as
a linear combination of its previous 2R samples as

s(k) = −
2R∑
i=1

ais(k − i) (3)

where ai is referred to as linear prediction coefficients. The
relationship between w and ai is given in [13] as

2R∑
i=0

ai exp(−jwi)=0, ai =a2R−i; i=0, 1, 2, . . . , R.

(4)

In the aforementioned equation, a0 is chosen as one, and the
signal estimation error is defined as

ew(k) =
R−1∑
i=0

ãi (y(k − i) + y(k − 2R + i)) + ãRy(k − R)

(5)

where ãi denotes the optimized value of ai; here, ã0 may
not be fixed to unity. For error minimization, an exponentially
weighted cost function is used as follows:

ε1(k) =
k∑

i=0

λk−i
1 e2

w(i) (6)

where 0 < λ1 ≤ 1 is the forgetting factor. For the estimation
of frequency of a single sinusoid (R = 1) according to (4), the
linear predictor coefficients required are a0, a1, and a2(a2 =
a0). In this case, (5) is rewritten with R = 1 as

eW (k) = ã0 (y(k) + y(k − 2)) + ã1y(k − 1). (7)

Hence, the parameter vector to be estimated is given by
θ̃(k) = [ã0 ã1]T. Since, for time-varying frequency, ew is not
linear in ã0 and ã1 due to the time-varying nature of the signal,
conventional RLS [6] algorithm cannot be applied to minimize
(6). Thus, an RGN method [19] is used to minimize (6), and
the updating equation for sinusoidal parameter estimation under
noisy condition is as follows:

θ̃(k) = θ̃(k − 1) − H−1(k)ψ(k)ew(k) (8)

H(k) =
k∑

i=0

λk−i
1 ψ(i)ψT (i) (9)

where the gradient vector ψ and the Hessian matrix H(k) [19]
are obtained after some simple manipulation as (10) and (11),
shown at the bottom of the page.

To compute the inverse Hessian matrix, one can directly use
the matrix inverse lemma at the cost of high computational

ψ(k) =
∂ew(k)

∂θ̃
=

[
y(k) + y(k − 2)
y(k − 1)

]
(10)

H(k) =
k∑

i=0

λk−i
1

[
(y(k) + y(k − 2))2 (y(k) + y(k − 2)) (y(k − 1))

(y(k) + y(k − 2)) (y(k − 1)) (y(k − 1))2

]
(11)
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complexity, and thus, an approximation is performed for fast
computation of the frequency iteratively. Assuming that w is
not near to zero or π, H(k) can be approximated as (12), shown
at the bottom of the page.

The inverse of the Hessian matrix can be easily calculated as
(13), shown at the bottom of the page, where

c(k) =
1 − λk+1

1

2(1 − λ1)
. (14)

We can observe that c(k) can be computed recursively as

c(k) = λ1c(k − 1) + 1/2. (15)

Further, by putting (13) and (14) into (8), the following
equations are obtained:

ã0(k) = ã0(k − 1) − ew(k)/4c(k)A cos(w)

× sin (w(k − 1) + φ(k − 1)) (16)

ã1(k) = ã1(k − 1) − ew(k)/2c(k)A

× sin (w(k − 1) + φ(k − 1)) . (17)

After estimating ã0 and ã1, the frequency of the sinusoid is
computed as cos−1(−ã1/2).

B. Amplitude and Phase Estimation

Once the frequency is estimated, the amplitude and phase
of the signal are calculated using the RGN method in the
same iteration. For calculating the amplitude and phase of a
sinusoid, let the parameter vector be θ(k) = [A(k) φ(k)]T

and its estimate be θ̂(k) = [Â(k) φ̂(k)]T. Using θ̂(k − 1), the
estimate of y(k) at time k is computed as

ŷ(k) = Â(k − 1) sin
(
wk + φ̂(k − 1)

)
. (18)

The a priori estimation error at time k is given as

eθ(k) = y(k) − Â(k − 1) sin
(
wk + φ̂(k − 1)

)
(19)

and a similar kind of cost function is taken as in (6)

ε2(k) =
k∑

i=0

λk−i
2 e2

θ(i) (20)

where 0 < λ2 ≤ 1 is the forgetting factor. In this case, RGN
method is also used to minimize (20) in a similar way as
mentioned earlier. The gradient vector is given by

ψ(k) =
∂eθ(k)

∂θ̂
=

⎡⎣− sin
(
wk + φ̂(k − 1)

)
−Â(k − 1) cos

(
wk + φ̂(k − 1)

)
⎤⎦
(21)

and the Hessian matrix is obtained as (22), shown at the bottom
of the page.

In a similar manner, for the frequency case, the Hessian
matrix in (22) is approximated as

H(k) =
k∑

i=0

λk−i
2

[
1/2 0
0 Â2(k − 1)/2

]

=
1 − λk+1

2

2(1 − λ2)

[
1 0
0 Â2(k − 1)

]
(23)

and the inverse Hessian matrix can be easily computed as

H−1(k) =
[

1/c(k) 0
0 1/Â2(k − 1)c(k)

]
(24)

where c(k) is the same as in (14) with forgetting factor λ2.
Further, by putting (24) and (14) into (8), the amplitude and

phase are calculated as

Â(k) = Â(k − 1) + sin
(
ŵ(k − 1)k + φ̂(k − 1)

)
× eθ(k)/c(k) (25)

φ̂(k) = φ̂(k − 1) + cos
(
ŵ(k − 1)k + φ̂(k − 1)

)
× eθ(k)/

(
Â(k − 1)c(k)

)
. (26)

H(k) =
1 − λk+1

1

1 − λ1

[
4A2 cos2(w) sin2 (w(k − 1) + φ(k − 1)) 0

0 A2 sin2 (w(k − 1) + φ(k − 1))

]
(12)

H−1(k) =
[

1/8c(k)A2 cos2(w) sin2 (w(k − 1) + φ(k − 1)) 0
0 1/2c(k)A2 sin2 (w(k − 1) + φ(k − 1))

]
(13)

H(k) =
k∑

i=0

λk−i
2

⎡⎣ sin2
(
w + φ̂(k − 1)

)
Â(k − 1) sin

(
2
(
wi + φ̂(k − 1)

))
/2

Â(k − 1) sin
(
2
(
wi + φ̂(k − 1)

))
/2 Â2(k − 1) cos2

(
wi + φ̂(k − 1)

)
⎤⎦ (22)
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From the above-mentioned equations, we can observe that
the forgetting factors λ1 and λ2 influence the estimation
process. The initial values can be any arbitrary value within
the range 0 < λ < 1. When the signal is contaminated with
high random noise, forgetting factor close to 0.5 results in
faster convergence but increased sensitivity to noise. However,
using forgetting factor close to one (e.g., λ = 0.99) results in
slow convergence but better noise rejection property. Motivated
by these aspects, a number of variable forgetting factor RLS
algorithms have been developed [26]. The a priori estimation
error is given by (19), and the a posteriori estimation function
is given as

ς(k) = y(k) − Â(k) sin
(
wk + φ̂(k)

)
. (27)

To make the update equation stable, assume that

E
(
ς2(k)

)
= σ2

v (28)

where σ2
v is the power of the system noise.

Solving for the aforementioned condition, a time-dependent
variable forgetting factor can be generated as

λk =
σb(k)σv

σe(k) − σv
(29)

where E(b2(k)) = σ2
b (k), E(eθ(k)) = σ2

e(k) which is the
power of error signal, and b(k) = ψ(k)T H(k)ψ(k). The power
estimates are computed iteratively as

σ̂2
e(k) = τ σ̂2

e(k − 1) + (1 − τ)e2
θ(k) (30)

σ̂2
b (k) = τ σ̂2

b (k − 1) + (1 − τ)b2(k) (31)

where τ = 1 − (1/KτD) is a weight factor, with Kτ ≥ 2 and
D is the number of elements in gradient vector, and the power
of the system noise is estimated using longer data as

σ̂2
v(k) = βσ̂2

v(k − 1) + (1 − β)e2
θ(k) (32)

with β = 1 − (1/KβD)Kβ � Kτ . Now, with λk
∼= 1, it leads

to σ̂e(k) ∼= σ̂v(k). Generally, better estimates are expected with
this tuning particularly in signal tracking with step changes of
parameters and sudden changes of the network topology and
the states. To implement the MGN algorithm, the variables are
chosen as follows: λ1 = 0.55, λ2 = 0.55, and ã(0) = [1, 0]T

for frequency, amplitude, and phase estimation, respectively.
The initial amplitude and phase are chosen from some prior
knowledge about the signal parameters.

Further, the proposed algorithm can be generalized for
multiple harmonic and interharmonic component estimation.
For multiple sinusoidal parameter estimation, the discrete-time
noisy measurement is given as

s(k)=
R∑

r=1

Ar(k) sin (wr(k)k + φr(k)) , r = 1, 2, . . . R

(33)

where Ar, wr, and φr are unknown values that denote the
amplitude, frequency, and phase of the rth real valued sinusoid,
respectively. In a similar way, multifrequency components can

be estimated using the procedure outlined in Section III-A. For
R sinusoids according to (4), the linear predictor coefficients
required are a0, a1, a2, . . . , a2R, with estimation error given
in (5). Hence, the parameter vector to be estimated is given
by θ̃(k) = [ã0 ã1 . . . ãR]T, and the updating equation for
sinusoidal parameter estimation under noisy condition is as
given in (8) and (9), where the gradient vector ψ and the
Hessian matrix H(k) [19] are obtained as in (34) and (35),
shown at the bottom of the next page

ψ(k) =
∂ew(k)

∂θ̃
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y(k) + y(k − 2R)
y(k − 1) + y(k − 2R + 1)
y(k − 2) + y(k − 2R + 2)

· · ·
· · ·
· · ·

y(k − R + 1) + y(k − R − 1)
y(k − R)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (34)

To compute the inverse Hessian matrix, a similar approx-
imation is made to reduce the computational complexity;
assuming that w is not near to zero or π, H(k) can be approx-
imated as in (36) and (37), shown at the bottom of the next
page. Then, the inverse Hessian matrix is easily calculated as
done in Section III-A. Then, the parameters are obtained as in
(38), shown at the bottom of the next page, where, the terms
(1, 1), (2, 2), (3, 3), . . . (R + 1, R + 1) of (37) are denoted as
X1,X2, . . . X(R + 1), respectively. Once the frequencies are
estimated using (4), amplitude and phase can be estimated as
shown in Section III-B, and the amplitude and phase of the
harmonics and interharmonics are estimated as

Âr(k) = Âr(k − 1) + sin
(
ŵr(k − 1)k + φ̂r(k − 1)

)
× eθ(k)/c(k)

φ̂r(k) = φ̂r(k − 1) + cos
(
ŵr(k − 1)k + φ̂r(k − 1)

)
× eθ(k)/

(
Âr(k − 1)c(k)

)
. (39)

The detail derivation for harmonics, subharmonics, and in-
terharmonics using the proposed algorithm is included in a
future paper. One example of harmonic estimation is included
in Section IV to show its generalization.

C. Performance Analysis of MGN Algorithm

Here, we will analyze the mean-square estimation errors of
the parameters under stationary condition. Thus, let us consider
θ = [a0, a1, A, φ]T, and the covariance matrix in MGN method
denoted as cov(θ̂(k)) is calculated for two different objective
functions as

cov
(
θ̂(k)

)
=E

{[
∂ε2

1(k)

∂θ̂2

]−1 [
∂ε1(k)

∂θ̂

]

×
[
∂ε1(k)

∂θ̂

]T [
∂ε2

1(k)

∂θ̂2

]−1
}

θ̂(k)=θ
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=σ2

[
k∑

i=0

λk−i
1 ψ(i)ψT(i)

]−1 k∑
i=0

λ
2(k−i)
1 ψ(i)ψT(i)

×
[

k∑
i=0

λk−i
1 ψ(i)ψT(i)

]−1

(40)

where E denotes the expectation operation. Further, when k is
sufficiently large, the covariance reduces to

cov
(
θ̂(k)

)
≈ σ2

[
1/2c(k)A2 0

0 1/c(k)A2

]
. (41)

Hence, the variance of the linear predictor coefficients is

var (ã0(k)) =
σ2(1 − λ1)

A2
(
1 − λk+1

1

) (42)

var (ã1(k)) =
2σ2(1 − λ1)

A2
(
1 − λk+1

1

) . (43)

Similarly, analyzing the covariance matrix for the second
cost function, the variance of the amplitude and phase are found
to be

var
(
Â(k)

)
=

2σ2(1 − λ2)(
1 − λk+1

2

)
var

(
φ̂(k)

)
=

2σ2(1 − λ2)
A2

(
1 − λk+1

2

) . (44)

If all the forgetting factors are made equal to unity, then the
variances will attain Cramer–Rao lower bound for sufficiently
large value of k assuming that the noise v(k) is Gaussian
distributed. Hence, it is proven that the MGN algorithm at-
tains optimal performance for stationary amplitude, phase, and
frequency in an asymptotic sense. The next section presents
computational results for power sinusoids and low-frequency
signals.

H(k) =
k∑

i=0

λk−i
1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(y(k)+y(k−2R))2 (y(k)+y(k−2R))(y(k−1)+y(k−2R+1)) . . . (y(k)+y(k−2R)) (y(k−R))
(y(k)+y(k−2R))(y(k−1)+y(k−2R+1)) (y(k−1)+y(k−2R))2 . . . (y(k−1)+y(k−2R))(y(k−R))

. . .

. . .

. . .

. . .
(y(k) + y(k − 2R)) (y(k − R)) (y(k − 1) + y(k − 2R)) (y(k − R)) . . . (y(k − R))2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(35)

H(k) =
k∑

i=0

λk−i
1

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(y(k) + y(k − 2R))2 0 . . . 0
0 (y(k − 1) + y(k − 2R + 1))2 0 . . . 0
0 0 (y(k − 2) + y(k − 2R + 2))2 0 0

. . .

. . .

. . .
0 0 . . . (y(k − R))2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(36)

H(k) =
1 − λk+1

1

2(1 − λ1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2RA2
1 cos2(Rw1) sin2 (w1(k − R) + φ1(k − R)) + 8A2

2 cos2(Rw2) sin2(w2(k − R)
+φ2(k − R) + . . . + 8A2

R cos2(RwR) sin2 (wR(k − R) + φR(k − R)) 0 . . . 0

. . .

. . .

. . .

0 . . . 0 2A2
1 sin2 (w1(k − R) + φ1(k − R)) + A2

2 sin2(w2(k − R)
+φ2(k − R) + . . . + A2

R sin2 (wR(k − R) + φR(k − R))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(37)

ã0(k) = ã0(k − 1) − ew(k) (A1 cos(Rw1) sin (w1(k − R) + φ1(k − R)) + A2 cos(Rw2) sin (w2(k − R) + φ2(k − R))

+ . . . + AR cos(RwR) sin (wR(k − R) + φR(k − R))) /2Rc(k)X1

ã1(k) = ã1(k−1)−ew(k) (A1 cos ((R−1)w1) sin (w1(k−R)+φ1(k−R))+A2 cos ((R−1)w2) sin (w2(k−R)+φ2(k−R))

+ . . . + AR cos ((R − 1)wR) sin (wR(k − R) + φR(k − R))) /2Rc(k)X2

ãR(k) = ãR(k − 1) − ew(k) (A1 sin (w1(k − R) + φ1(k − R)) + A2 sin (w2(k − R) + φ2(k − R))

+ . . . + AR sin (wR(k − R) + φR(k − R))) /2c(k)X(R + 1) (38)
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Fig. 1. Estimated frequency, amplitude, and phase at 30-dB noise. (Dotted)
EKF. (Dashed) RGN. (Solid) MGN.

IV. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the
performance of the proposed algorithm. The sampling fre-
quency fs is chosen as 1.6 kHz based on 50-Hz fundamental
frequency for cases 1–4 as described hereinafter.

A. Power Signal Analysis

Case 1: This experiment is done for a power signal with a
change in signal parameters. The signal is represented as

y(k) = A(k) sin (w(k)k + φ(k)) + vk. (45)

For the first 70 samples, freq = 50 Hz, A = 1 pu, and Φ =
τ/4; for 70–150 samples, the parameter changes to freq =
47 Hz, A = 1.2 pu, and Φ = τ/6; and then, it come back to
initial values. The angular frequency of the signal is varied
as w(k) = w0 + (w1 − w0)/80(k − 70), where w0 = 2 ∗ pi ∗
50/fs and w1 = 2 ∗ pi ∗ 47/fs, where fs is the sampling fre-
quency. The signal parameters are estimated using ADALINE
[5], extended Kalman filter (EKF) [10], artificial neural network
(ANN) [12], LP [15], RGN [18], Hessian matrix approximation
[19], and generalized constant modulus algorithm [27], and the
proposed method is used for comparison. Out of these, some of
the algorithms are used to compute frequency only and some for
amplitude and phase. The signal is corrupted with 30-dB noise.
The estimated signal parameters using different algorithms are
given in Fig. 1. The signal is then tested under different noise
levels, and the estimated frequency, amplitude, and phase mean
square error in decibels obtained in different algorithms are
shown in Fig. 2.

Absolute frequency error, amplitude error, and phase error at
different noise levels of different algorithms and their execution
times are listed in Table I. Although the ANN algorithm is
capable of estimating the harmonics present in the signal, its
performance in estimating frequency component deteriorates
under high noise condition.

Fig. 2. (a) Mean square frequency error in decibels at different SNR. (b) Mean
square amplitude error in decibels at different SNR. (c) Mean square phase error
in decibels at different SNR level. (Dashed) EKF. (Dotted) RGN. (Solid) MGN.

Case 2: The second experiment is done for the estimation of
a power signal with change in parameters. The signal is repre-
sented as in (45). The signal frequency is changed in modulated
form as given hereinafter. w(k) = 2π[50 + sin(2π.1.Ts) +
.5 sin(2π.6.Ts)], where Ts is the sampling interval. For the first
70 samples, A = 1 pu; for 70–150 samples A = 0.8 pu; and
then, it comes back to its initial value. Similarly, for the first
50 samples, Φ = π/4; for 50–130 samples, Φ = τ/3; and then,
it comes back to its initial value. The signal is corrupted with
30-dB noise. From Fig. 3, it is clear that the proposed algorithm
can easily estimate the abruptly changing parameters.

Case 3: The third experiment is done for the estimation
of a power signal with change in parameters. The signal is
represented as in (45). For the first 250 samples, freq = 50 Hz;
for 250–400 samples, freq = 48.5 Hz; for 400–600 samples,
freq = 51.3 Hz; and thereafter, freq = 50 Hz. Similarly, for
the first 150 samples, A = 1 pu; for 150–250 samples, A =
1.2 pu; and then, it comes back to its initial value.
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TABLE I
PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

Fig. 3. Estimation of all the signal parameters of case 2. (Dotted) Desired.
(Solid) Estimated.

Similarly, for the first 90 samples, Φ = π/4; for 90–200
samples, Φ = π/5; and then, it comes back to its initial value.
The signal is corrupted with 30-dB noise. From Fig. 4, it is
clear that the MGN algorithm with adaptive forgetting factor
can easily estimate the abrupt change in parameters.

Case 4: The fourth experiment is done for the analysis of
the effect of harmonics, interharmonics, and subharmonics as
noise on the proposed adaptively tuned MGN algorithm. The
test signal is taken as given in (45), and then, the signal is
corrupted with 15% third harmonic and 7% fifth harmonic, an
interharmonic of 256 Hz, and a subharmonic of 42 Hz. The
comparison in error observed for each of the parameter is shown
in Fig. 5. From the figure, it is clear that the effect of harmonics,
interharmonics, and subharmonics as noise is negligible on the
estimation of signal parameters (even with harmonics as noise,
the algorithm can easily predict the signal).

The algorithm gives accurate results even for high percentage
of harmonics.

Case 5—Damped Sine Wave With Harmonic: The fifth ex-
periment is done for the analysis of the proposed algorithm on
a highly distorted sinusoid signal with harmonics and corrupted
with 30-dB noise. In case 5 and case 6, the sampling frequency

Fig. 4. Estimation of all the signal parameters of case 3. (Dotted) Desired.
(Solid) Estimated.

Fig. 5. Estimation error comparison of (solid) signal without harmonics and
(dashed) signal with harmonics.
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is chosen as 7.2 kHz with a view to compute the highest
harmonic component (50th harmonic) if any. The damped sine
wave with harmonics is modeled as

y(k) =
9∑

n=1

Ane−(kTsα) sin (nω0kTs + φn(k)) (46)

and the parameters are set as the fundamental frequency is
60 Hz, A1 = 1 pu, A3 = 0.7, A5 = 0.3, A7 = 0.15, A9 =
0.05, α = 1.5, α3 = α5 = α7 = α9 = 1.5, φ1 = 0.8, φ3 =
0.4, φ5 = 0.7, φ7 = 0.6, and φ9 = 0.5. Fig. 6(a) shows the
damped sine wave with harmonics. Fig. 6(b)–(d) shows the
fundamental, seventh, and ninth harmonic amplitude and phase
components of the estimated signal, respectively. From the
figure, it is clear that the proposed algorithm outperforms even
for the estimation of such complex signal.

Case-6: The sixth experiment is done for the estimation of
the harmonic and interharmonic components. The signal given
in (47) is mixed with a noise of SNR = 30 dB

y(k) = 3 sin(ωkTs + π/4) + 0.75 sin(7 ∗ ωkTs + π/6)

+ 0.05 sin(30 ∗ ωkTs + π/5)

+ 0.5 sin(150 ∗ kTs + π/7)

+ 0.85 sin(498 ∗ kTs + π/4.5) + nk. (47)

The fundamental frequency of the signal is 60 Hz.
Fig. 7(a)–(c) shows the first interharmonic, second interhar-
monic, and 30th harmonic components of the estimated signal,
respectively. From Fig. 7, it is clear that the proposed algorithm
can easily and accurately estimate the harmonic and interhar-
monic components present in the signal.

B. Low-Frequency Signal Analysis

This section presents the estimation of time-varying sinusoid
prevalent in communication systems, mechanical systems, vi-
bration strings, biomedical signals, etc. The sampling frequency
for low-frequency analysis is chosen as 0.16 kHz.

Case 7: The seventh experiment is done for low-frequency
signal analysis. The signal is given as in (45). For the first
70 samples, freq = 5 Hz, A = 1 pu, and Φ = π/4; for
70–150 samples, parameters change to freq = 5.5 Hz, A =
1.2 pu, and Φ = π/6; and then, the parameters come back to
initial values. The signal is corrupted with 30-dB noise. From
the figure, it is clear that the proposed algorithm can estimate
low-frequency signal parameters accurately. The comparison of
the MGN algorithm and adaptively tuned MGN is shown in
Fig. 8.

C. Experimental Validation

Experimental test data are generated using the laboratory
setup, where the load is fed from a 3-kVA 230-V:230-V
single-phase transformer, and the data acquisition subsystem is
activated using another 230-V:12-V transformer. The voltage
across the load after transformation to 12 V is sampled at a
rate of 2.0 kHz and is digitized by the A/D system, and the Fig. 6. Estimation of harmonic components in damped sine wave of case 5.
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Fig. 7. Estimation of all the parameters of case 6. (Dashed) Desired. (Solid)
Tuned MGN algorithm.

digital data are sent to PC using a program written in “C”
language. Signals with time-varying amplitude and frequency
are obtained using the waveform simulator by switching on and
switching off the load, respectively. For frequency estimation,
the signal frequency is changed from 10 to 6 Hz and then back
to the initial value. Fig. 9 presents the real-time signal estimated
using the proposed MGN method.

Fig. 8. Estimation of all the parameters of case 7. (Solid) Tuned MGN
algorithm and (dashed) MGN algorithm.

Fig. 9. Real-time test signal with estimated frequency and amplitude.

V. CONCLUSION

For a time-varying sinusoidal signal, where all the parame-
ters like amplitude, phase, and frequency vary, the proposed
algorithm produces the best convergence and least tracking
error even in the presence of strong Gaussian white noise
with low SNR. To highlight the robust tracking property of
the proposed approach, several computational experiments have
been presented that include low and power frequencies of a
single sinusoid with step changes in amplitude, frequency, and
phase. Also, the tracking of damped sinusoids with relatively
much less computational burden has been presented with high
accuracy. The time required for convergence of the signal
parameters to their true values with different SNR is less than a
cycle. The analysis presented in this paper for the estimation
of time varying amplitude, phase, and frequency of a single
sinusoid can be easily used for the calculation of phase and
frequency of multiple harmonics, interharmonics, and decaying
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dc components in the signal. A harmonic estimation example
has also been provided to mark its generalization.
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