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This paper presents a modified unscented Kalman filter for accurate estimation of fre-
quency and harmonic components of a time-varying signal embedded in noise with low
signal-to-noise ratio. Further, the model and measurement error covariances along with
the unscented Kalman filter parameters are selected using a modified particle swarm opti-
mization algorithm. To circumvent the problem of premature convergence and local min-
ima, a dynamically varying inertia weight based on the variance of the population fitness is
used. This results in a better local and global searching ability of the particles, which
improves the convergence of the velocity and better accuracy of the unscented Kalman fil-
ter parameters. Various simulation results for nonstationary sinusoidal signals with time
varying amplitude, phase and harmonic content corrupted with noise, reveal significant
improvement in noise rejection and speed of convergence and accuracy in comparison to
the well known extended Kalman filter.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of estimating frequency and other param-
eters of sinusoidal signal in white noise in radar, nuclear
magnetic resonance, power networks etc., have been
extensively studied. Amongst the several methods for fre-
quency, amplitude and phase estimation of nonstationary
signals, Discrete Fourier Transform (DFT), and Fast Fourier
Transform (FFT) are widely used [1–3]. However, both the
above methods suffer from aliasing, leakage, and picket
fence effects and hence need error compensation and
adaptive window width [4]. Some of the known signal pro-
cessing techniques like artificial neural networks [5,6],
adalines [7–9], linear prediction technique [10], adaptive
filters [11], supervised Gauss–Newton algorithm [12,13],
least-error squares and its variants [14–17], extended Kal-
man filters [18–20], have been used for time-varying signal
parameter estimation. Most of these algorithms require
. All rights reserved.
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heavy computational outlay and suffer from inaccuracies
in the presence of noise with low signal-to-noise ratio
(SNR).

Recently, a novel unscented Kalman filter (UKF) [21–25]
has been proposed to overcome the shortcoming of the ex-
tended Kalman filter (EKF) algorithm for its instability due
to linearization, erroneous parameters, costly calculations
of derivatives, and the biased nature of the estimates.
The main advantage of the unscented transformation used
in UKF is that it does not use linearization for computing
the state and error covariance matrices resulting in a more
accurate estimation of the parameters of a nonstationary
signal. However, its accuracy significantly reduces, if SNR
is low and the noise covariances and some of the parame-
ters used in unscented transformation are not chosen cor-
rectly. Thus for best signal tracking performance, it is
proposed in this paper to use adaptive particle swarm opti-
mization technique, which is found to be superior to the
conventional particle swarm optimization (PSO) [26–29]
for the optimal choice of UKF parameters and error
covariances.
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Nomenclature

Symbols
An state transition matrix
an amplitude of the nth harmonic sinusoidal signal
Fi fitness of the ith particle
Favg average fitness of the population
Fn normalizing factor
fs sampling frequency
ĝbest global best position
Hk measurement transition vector
Kk Kalman gain
K constriction factor
k time instant
L dimension of the state vector
N order of the harmonic
P0 covariance of the state vector
pbesti local best value of the ith particle
Q model error covariance
R measurement error covariance
Ts sampling time
VðtÞ mean velocity of the particle
VðkÞ velocity of the particle
Vi(k + 1) velocity of the ith particle at time instant k + 1
vk model noise
WðmÞ

i mean weight factor
WðcÞ

i covariance weight factor
w inertia weight factor
Xk state vector
xi(k + 1) position of the ith particle at time instant k + 1
x̂�k weighted mean of the sigma points
x̂0 mean of the state vector

Yi,k|k�1 transformed sigma point output
ŷ�k weighted mean of the sigma point outputs
yk measurement at time instant k
a constant
b prior knowledge of the distribution of the state

vector
gk measurement noise
j scaling parameter
k scaling parameter
l forgetting factor
lB(x) membership function of set big
lS(x) membership function of set small
q forgetting factor
r2 variance of the fitness of the particles
Dr change in standard deviation
/1 acceleration coefficient
/2 acceleration coefficient
un phase of the nth sinusoidal signal
v sigma point matrix
x angular frequency of the fundamental sinusoi-

dal signal

Acronyms
APSO adaptive particle swarm optimization
EKF extended Kalman filter
MPSO modified particle swarm optimization
MSE mean square error
PSO particle swarm optimization
UKF unscented Kalman filter
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The particle swarm optimization technique is a stochas-
tic optimization technique developed by Eberhert and Ken-
nedy that stimulates the social behaviors of birds or fish.
Although PSO is easy to implement and has few parame-
ters to adjust, it suffers from premature convergence,
velocity explosion, and finding good solutions as quickly
as it could. To circumvent this problem, an alternative ap-
proach of dynamically varying the inertia weight randomly
based on the variance of the population fitness is chosen.
This results in a better local and global searching ability
of the particles, which improves the convergence of the
velocity and better accuracy of the UKF parameters. Two
different approaches for inertia weight variation are pre-
sented in this paper known as modified particle swarm
optimization (MPSO) and adaptive particle swarm optimi-
zation (APSO). A method of dynamically varying the inertia
weight based on fuzzy logic using just two rules is pre-
sented in this paper for tuning the UKF parameters, and
this algorithm is termed simply as APSO. Several simula-
tion results for nonstationary power signals corrupted with
noise having low SNR reveal significant estimation accu-
racy with optimized UKF parameters.

2. Unscented Kalman filter (UKF)

Although EKF is straightforward and simple it suffers
from instability due to linearization and erroneous param-
eters, costly calculation of Jacobean matrices, and the
biased nature of its estimates [17–21]. The UKF is consid-
ered in this paper to overcome the disadvantages of EKF.
The UKF belongs to the family of sigma-point filters and
uses an unscented transformation that computes the
statistics of a random variable undergoing nonlinear trans-
formation. The main advantage of UKF is that it does not
use linearization for calculating the state predictions,
covariance matrices and thus it provides accurate Kalman
gain estimates. Instead of linearizing the Jacobean matri-
ces, the UKF uses a deterministic sampling approach to
capture mean and covariance estimates with a minimal
set of 2 � L + 1, sigma points (L is the state dimension)
based on a square-root decomposition of the prior covari-
ance [22]. These sigma points are propagated through the
nonlinearity, without approximation, and a weighted
mean and covariance is found. Like the EKF, the UKF uses
a recursive algorithm that uses the system model, mea-
surements, and known statistics of the noise mixed with
the signal. The UKF was originally designed to estimate
the states of a dynamic system and for nonlinear control
applications [21–25]. In this paper the UKF is used to track
the fundamental and harmonic components of a non-
stationary signal that is found in power networks.

The signal for estimation of time-varying frequency and
harmonics is represented by the following discretized
equation:



P.K. Dash et al. / Measurement 43 (2010) 1447–1457 1449
yk ¼
XN

n¼1

an sin 2pn
f0

fs
kþ /n

� �
þ gk ð1Þ

where yk is the measured signal, an is the time-varying
peak amplitude of the nth harmonic component of the sig-
nal, N is the order of the harmonic, f0 is frequency of the
fundamental component, and fs is the sampling frequency.
In Eq. (1), gk represents measurement noise with associ-
ated variance. The signal and observation models are de-
rived in state space form as follows:

xk ¼ f ðxk�1Þ þ vk ð2Þ

where the state vector x is given by xk ¼ ½a1 sin /1

a1 cos/1 ...an sin/nan cos/nx�
T , angular frequency x = 2pf0,

and

f ðxkÞ ¼ AnkxT
k ð3Þ

The state transition matrix

Ank ¼

A1 0 0 0

0 . .
.

0
0 An 0
0 0 1

2
66664

3
77775; ð4Þ

where

An ¼
cosðnxkTsÞ sinðnxkTsÞ
� sinðnxkTsÞ cosðnxkTsÞ

� �
ð5Þ

The model error covariance matrix for this signal is

Q ¼ E v vT
� �

¼ qI; I is a unit matrix of order N þ 1

ð6Þ

The measurement model for the signal represented by
Eq. (1) is obtained as

yk ¼ Hkxk þ gk ð7Þ

where

Hk ¼ ½1010 . . . 100�; ð8Þ

and the measurement error covariance R = E[ggT].
Given a state vector at step k � 1, sigma points are com-

puted and stored in the columns of L � (2L + 1) sigma point
matrix vk�1 where L = dimension of the state vector. For
the estimation of fundamental signal frequency, amplitude
and phase without modeling the harmonics, L = 3 and thus
vk�1 is a 3 � 7 matrix. However, for the estimation of N
number of harmonics and the fundamental frequency
L = 2N + 1, thus vk�1 is a (2N + 1)(4N + 3) matrix.

The UKF algorithm is summarized in the following
steps:

1. Initialization

For the system state x, initialized with

x̂0 ¼ E½x0�; P0 ¼ E½ðx0 � x̂0Þðx0 � x̂0ÞT �; ð9Þ

2. Time update
Given a state vector at time step k � 1, sigma points are

computed and stored in the columns of L � (2L + 1) sigma
point matrix v. For the present problem, L = 3 so vk�1is a
3 � 7 matrix. The sigma points are computed as

v0;k�1 ¼ x̂k�1; i ¼ 0; vi;k�1 ¼ x̂k�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ kÞPk�1

p	 

i
;

i ¼ 1;2; . . . ; LviþL;k�1 ¼ x̂k�1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ kÞPk�1

p	 

i
;

i ¼ Lþ 1; . . . ;2L ð10Þ

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ kÞPk�1

p� �
i is the ith column of the matrix square

root [22,23] of ðLþ kÞPk�1Þ. The parameter k is used to con-
trol the covariance matrix, and is given by

k ¼ a2ðLþ jÞ � L ð11Þ

Both k and j are scaling parameters that determine the
spread of the sigma points. The constant a determines
the spread of the sigma points around x̂ and is usually
set to e�4

6 a 6 1.
After computing the sigma points the time update of

state estimates are given by

vk=k�1 ¼ f ðvk�1Þ; and x̂�k ¼
X2L

i¼0

Wm
i vi;kjk�1 ð12Þ

where the weights W ðmÞ
i are defined by

W ðmÞ
0 ¼ k

Lþ k
; W ðmÞ

i ¼ k
2ðLþ kÞ ;

W ðmÞ
iþL ¼

1
2ðLþ kÞ ; i ¼ 1; . . . ; L ð13Þ

The a priori error covariance is given by

Pk ¼
X2L

i¼0

WðcÞ
i ½vi;kjk�1 � x̂�k �½vi;kjk�1 � x̂�k �

T þ Q k ð14Þ

W ðcÞ
0 ¼

k
ðLþ kÞ þ ð1� a2 þ bÞ; W ðcÞ

i ¼
1

2ðLþ kÞ þ ð1� a2 þ bÞ;

W ðcÞ
iþL ¼

1
2ðLþ kÞ ; i ¼ 1; . . . ; L ð15Þ

The estimated output

Yi;kjk�1 ¼ Hkvi;kjk�1; and ŷ�k ¼
X2L

i�0

W ðmÞ
i Yi;kjk�1 ð16Þ

The a posterior state estimate x̂k, and the Kalman gain
Kk are computed as

x̂k ¼ x̂�k þ Kkðyk � ŷ�k Þ; and Kk ¼ GkS�1
k ð17Þ

where

Gk ¼
X2L

i¼0

W ðcÞ
i ½vi;kjk�1 � x̂�k �½Yi;kjk�1 � ŷ�k �

T
; ð18Þ

and

Sk ¼
X2L

i¼0

W ðcÞ
i ½Yi;kjk�1 � ŷ�k �½Yi;kjk�1 � ŷ�k �

T þ Rk ð19Þ

Rk is the measurement error covariance. The a posterior
estimate of the error covariance matrix is given by

Pk ¼ ½Pk��1 � KkSkKT
k ð20Þ
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2.1. Tuning of the unscented Kalman filter error covariances

Current implementations of the UKF for signal parame-
ter estimation have considered the model error and mea-
surement error covariances as constant and determined
apriori [22–24]. Usually a small value for Q = qI (q =
0.0001, I = unit matrix of appropriate dimension) is
adopted for most of the filter computations. In this paper
a self-tuning procedure for adapting the covariances is pre-
sented for improving the performance of the filter during
sudden changes in the amplitude, phase, or the frequency
of the signal. The model error is estimated as

vk ¼ f ðx̂kÞ � f ðx̂�k Þ ¼ Kkðyk � ŷ�k Þ ð21Þ

Using Eqs. (18) and (19), the value of process covariance
matrix is updated as the average of the variance square
during the successive iterations. Thus the incremental ma-
trix Qk is obtained as

Q k ¼ ð1=2Þ Kk yk �
X2L

i�0

W ðmÞ
i Yi;kjk�1

 ! !2
8<
:

þ Kk yk �
X2L

i�0

W ðmÞ
i Yi;k�1jk�2

 ! !2
9=
; ð22Þ

However, if the value of Qk obtained from Eq. (25) is suffi-
ciently large, the modified UKF can tolerate high order er-
ror in the unscented transformation by enlarging the noise
covariance matrix, and thereby improving the stability, but
resulting in a large estimation error. Therefore, a threshold
value of Qk is required to provide both, the accuracy and
stability in tracking harmonic signals. Further the initial
value of Qk can be chosen using PSO algorithm as outlined
in the next section. In a similar way the measurement error
covariance is updated as

Rk ¼ qRk�1 þ ð1� qÞ yk �
X2L

i�0

W ðmÞ
i Yi;kjk�1

 !2

ð23Þ

q is a forgetting factor and is taken as =0.9. The values of sys-
tem state x̂k and covariance matrix Pk become the input of
the successive prediction-correction loop. Through a proper
choice of the sigma points, that is the parameters a, k, b and
the initial values of the covariances Q and R, the UKF assures
a better performance than the EKF in estimating fundamen-
tal frequency, and amplitude and phase of the fundamental
and harmonic components of a signal buried in noise. Thus
to improve the performance of UKF, a stochastic optimiza-
tion technique like the PSO [26–29] and its variants are used
to obtain the parameters a, k, b, Q, and R instead of trial and
error approach. Here the objective function is chosen as

Obji ¼ ð1=MÞ
XM

k¼1

ðyk � ŷ�k Þ
2 ð24Þ

and the fitness of the ith particle is

Fi ¼
1

1þ Obji
ð25Þ

where M is the number of samples chosen for determining
the mean square error (MSE). The optimization is aimed at
minimizing the MSE or maximizing the fitness value.
3. Adaptive particle swarm optimization of UKF
algorithm

A solution to obtain an optimal performance with low
SNR can be possible using particle swarm optimization
technique. PSO is a novel stochastic origin in the motion
of a flock of birds searching for food. The basic PSO algo-
rithm is started by scattering a number of particles called
swarms in the function search space. Each particle moves
in the search space looking for the global minimum or
maximum. During its flight each particle adjusts its trajec-
tory by dynamically altering its velocity according to its
own flying experience and the flying experience of the
other particles in the search space. The PSO approach is
becoming very popular due to its simplicity of implemen-
tation and its ability to quickly converge to a reasonably
good solution. For a particle moving in a multidimensional
search space let xij and Vij denotes the position of ith parti-
cle in the jth dimension and velocity at time k. The local
best value in PSO is computed as

pbestiðkþ 1Þ ¼
pbestiðkÞ; if Fðxiðkþ 1ÞÞ > FðpbestiðkÞÞ
xiðkþ 1Þ; if Fðxiðkþ 1ÞÞ < FðpbestiðkÞÞ


ð26Þ

where F stands for the fitness function of the moving par-
ticles and the global best position is obtained as

gbestðkÞ ¼ minfFðpbest0ðkÞÞ; Fðpbest1ðkÞÞ; Fðpbest2ðkÞÞ;
. . . ; FðpbestsðkÞÞg ð27Þ

The modified velocity and position of each particle at
time (k + 1) can be calculated as

Viðkþ 1Þ ¼ Kfwv iðkÞ þu1r1ðpbestiðkÞ � xiðkÞÞ
þu2r2ðgbestðkÞ � xiðkÞÞg ð28Þ

xiðkþ 1Þ ¼ xiðkÞ þ Viðkþ 1Þ ð29Þ
where Vi is the velocity of ith particle at time k + 1, xi is the
current position, w is the inertia weight factor /1 and /2

are acceleration constant, r1 and r2 are two random numbers
in the range [0, 1], K is a constriction factor and is obtained as

K ¼ 2
j2�u�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 4u

p
j
; and u ¼ u1 þu2; u > 4

ð30Þ

A suitable selection of inertial weight w and accelera-
tion coefficients /1 and /2 is crucial in providing a balance
between the global and local search in the flying space. The
particle velocity at any instant is limited to a chosen Vmax,
which if too high will result in allowing the particles to fly
past good solutions. On the other hand if Vmax is too small,
particles end up in local solutions only. The acceleration
factors /1 and /2 used in Eq. (28) are varied according to
the following equations:

u1 ¼ ðu1 max �u1iÞ �
iter

itermax
þu1i;

u2 ¼ ðu2 max �u2iÞ �
iter

itermax
þu2i ð31Þ

The acceleration factors /1 and /2 are varied from 2.5 to
0.5, respectively to find out the best ranges for optimum
solution. Although the conventional PSO can produce
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optimal solutions of UKF parameters, it still suffers from
premature convergence and gets stuck in local minima. Be-
sides it suffers from an ineffective exploration strategy
around local minima and therefore a change in particle
motion methodology may speed up the search by improv-
ing exploration. Although there are several possible ap-
proaches for modifying the inertia weight iteratively, two
approaches namely the modified PSO (MPSO) and the
adaptive PSO (APSO) are presented below:

3.1. Modified PSO algorithm (MPSO)

The inertia weight is updated by finding the variation of
the population fitness as

r2 ¼
XM

i¼1

Fi � Favg
Fn

� �2

; ð32Þ

and

Fn ¼ fmaxðjFi � FavgjÞg; i ¼ 1;2;3 . . . . . . M ð33Þ

where Favg is the average fitness of the population of par-
ticles in a given generation; Fi is the fitness of the ith par-
ticle in the population; M is the total number of particles.

In Eq. (34), Fn is a normalizing factor, which is used to
limit the value of the standard deviation r. If r is large,
the population will be in a random searching mode, while
for small r or r = 0, the solution tends towards a prema-
ture convergence and will give the local best position of
the particles. To circumvent this phenomenon and to ob-
tain gbest solution, the inertia weight factor is updated as

wðkÞ ¼ lwðk� 1Þ þ ð1� lÞr2 ð34Þ

The forgetting factor l is chosen as 0.9 for faster conver-
gence. Another alternative form will be

wðkÞ ¼ l1wðk� 1Þ þ r3=2; and 0 6 l1 6 0:5 ð35Þ

where r3 is a random number in the range [0, 1]. Besides
the influence of the past velocity of a particle on the cur-
rent velocity is chosen to be random and the inertia weight
is adapted randomly depending on the variance of the fit-
ness value of a population. This result is an optimal coordi-
nation of local and global searching abilities of the
particles.

3.2. Adaptive PSO algorithm (APSO)

In this algorithm the inertia weight factor is updated
using fuzzy rule base and fuzzy membership values of
the change in standard deviation Dr in the following
way: The fuzzy sets chosen for |Dr| are B (Big) and S
(Small) and are shown in Fig. 1a. The fuzzy rule base is
formed in the following way:

Change in standard deviation

Dr ¼ rðkÞ � rðk� 1Þ ð36Þ

The fuzzy rule base for arriving at a weight change is ex-
pressed as

R1:If jDrj is B Then Dw ¼ r4 � Dr ð37Þ
R2 : If jDrj is S Then Dw ¼ r5Dr
where the membership functions for fuzzy sets B and S are
given by

lBðxÞ ¼ jDrj; and lSðxÞ ¼ 1� jDrj ð38Þ

where r4 and r5 are random numbers between 0 and 1, and
0 6 |Dr| 6 1

Using centroid defuzzification principle the value of Dw
is obtained as

Dw ¼ jDrjr4Drþ r5Drð1� jDrjÞ ð39Þ

Thus the value of the new weight w is

wðkÞ ¼ wðk� 1Þ þ Dw; and 0:4 6 wðkÞ 6 0:9 ð40Þ

In the above formulation the influence of the past
velocity of a particle on the current velocity is chosen to
be random and the inertia weight is adapted randomly
depending on the variance of the fitness value of a popula-
tion. This results in an optional coordination of local and
global searching abilities of the particles. To run the PSO
algorithm for optimizing the parameters a, q, and R, 20
particles for each of these parameters are chosen. For a gi-
ven signal superimposed with 20 dB noise, the error be-
tween the measured signal and the estimated one is
computed for each of these particles over a period of 2.5
cycles, i.e. 100 samples. From the individual error at each
sampling instant, the total error for all the 100 samples is
computed and is used to find the fitness function of a given
particle, which is used for updating the position and veloc-
ity of the particle iteratively. The pseudo code for the PSO
algorithm is given below:

Pseudo code for the proposed algorithm

Randomly initialize the velocities and positions of all
the particles, and initialize w, k and b

WHILE (the termination condition is not met)
Obtain the fitness function of individual particle using

equation (25)
Obtain standard deviation r using equations (32) and

(33)
Compute pbest and gbest using equations (26) and (27)
Obtain |Dr| and Dw using equations (36) and (39)
Update inertia weight using (40)
Update the velocities and positions of all the particles
END WHILE
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4. Computer simulation and experimental results
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To evaluate the performance of the proposed estimation
technique, several simulation examples are given below
along with the tables showing the absolute error (AE) in
estimation for the harmonic components.

4.1. Static signal parameters

The test power signal is assumed to comprise a funda-
mental and several harmonics and is shown in Eq. (43) as

yðkÞ ¼ 1:2 � sinðxkTs þ /1Þ þ 0:25 � sinð3xkTs þ /3Þ
þ 0:15 � sinð5xkTs þ /5Þ þ 0:1 � sinð11xkTs þ /11Þ
þ gðkÞ ð41Þ

The amplitude, phase, and the frequency of the signal
are considered to be time-invariant and the sampling fre-
quency is chosen as 2 kHz (40 samples per cycle on a
50 Hz base). Since it is required to estimate nine parame-
ters of the signal, the value of L is set equal to 9, and thus
the number of sigma points for this estimation are 2L + 1,
i.e. 19 and the augmented state vector vk�1 is a 9 � 19
matrix.

For optimizing the UKF performance, the PSO parame-
ters are initialized with a population of 20 particles and
the dimension chosen is 3. Out of the five UKF parameters
b and j are chosen as b = 2, j = 0, and the other three
namely a, Q, and R are to be optimized. Here Q = qI9�9, I
is a 9th order unit matrix, and hence the variable q is to
be optimized. For the conventional PSO algorithm, the ini-
tial values of the parameters /1, /2, wmax, wmin are chosen
as /1 = 2.1, /2 = 2.1, wmax = 0.9, wmin = 0.4. For the UKF,
the lower and upper bound of a, q and R are chosen as
alower = 0.01, qlower = 0.001, Rlower = 0.001, aupper = 0.5,
qupper = 0.5, Rupper = 0.5. The chosen fitness function is given
in Eq. (25). A white Gaussian noise of SNR 20 dB is added to
the test signal. Table 1 shows the absolute error (AE) of
fundamental frequency, amplitude and phase of different
harmonic components. From this table it is quite evident
that the performance of the EKF algorithm is the worst in
comparison to UKF and optimized UKF algorithms. Figs.
1b and 1c describe the convergence analysis of different
variants of PSO for 20 dB and 30 dB noise, respectively.
Also from Figs. 1b and 1c it is observed that out of the
Table 1
Absolute error of the signal with no change in signal parameter with 20 dB
noise.

Order of harmonic EKF UKF MPSO APSO

Fundamental freq. error (Hz) 0.2505 0.2092 0.0972 0.005
Fundamental amp. error (pu) 0.066 0.052 0.032 0.010
3rd Harmonic amp. z error

(pu)
0.15 0.098 0.087 0.012

5th Harmonic amp. error
(pu)

0.115 0.025 0.0157 0.0021

11th Harmonic amp. error
(pu)

0.053 0.039 0.0175 0.0170

Fundamental phase error 0.054 0.021 0.0171 0.0153
3rd Harmonic phase error 0.061 0.027 0.0191 0.0179
5th Harmonic phase error 0.066 0.035 0.022 0.0213
11th Harmonic phase error 0.069 0.037 0.0231 0.0221
two variants of the PSO algorithm, the adaptive PSO (APSO)
converges faster and gives lesser estimation error. The Test
signal with 20 dB noise is shown in Fig. 2a, and the tracking
performance of UKF, and its optimized variants MPSO, and
APSO is shown in Figs. 2b and 2c, respectively. From these
figures it is found that the APSO produces significantly bet-
ter estimation accuracy in amplitude and phase for the 3rd
and 5th harmonic components in comparison to UKF alone.
Similar estimation error is observed for other harmonic
components.

The succeeding sections describe the amplitude, and
frequency variations in the fundamental and harmonic
components of the signal described in Eq. (41) and their ef-
fects on the estimation accuracy.

4.2. Linear frequency variation

The fundamental frequency of the signal is varied line-
arly from the initial value of 50–65 Hz within a span of two
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Fig. 1c. Convergence analysis of different variants of PSO with 30 dB
noise. —, APSO; – – –, MPSO.
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Fig. 2a. Test signal with constant parameters and 20 dB noise.

0 20 40 60 80 100 120
-0.4

-0.2

0

0.2
3rd harmonic 

Ab
so

lu
te

 a
m

pl
itu

de
 e

rro
r

0 20 40 60 80 100 120
-0.4

-0.2

0

0.2

5th harmonic 

sample number

Ab
so

lu
te

 a
m

pl
itu

de
 e

rro
r 

Fig. 2b. Comparison of 3rd and 5th harmonic amplitude error with 20 dB
noise. - - - -, UKF; – – –, MPSO; —, APSO.
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Fig. 2c. Comparison of 3rd harmonic phase error with 20 dB noise. - - - -,
UKF; – – –, MPSO; —, APSO.
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cycles and a similar frequency variation is generated in the
harmonic components with a white Gaussian noise of
SNR = 20 dB added to the signal given in Eq. (42). Further
its angular frequency is varied in the following way:

For 0 6 k 6 100; x ¼ x0; for 100 6 k 6 200;

x ¼ x0 þ
x1 �x0

100
ðk� 100Þ; for k P 200 x ¼ x1 ð42Þ
Table 2
Absolute error of linear frequency variation with 20 dB noise.

Order of harmonic EKF UKF MPSO APSO

Fundamental freq. error (Hz) 0.3031 0.2953 0.2412 0.0063
Fundamental amp. error (pu) 0.089 0.073 0.069 0.0131
3rd Harmonic amp. error

(pu)
0.22 0.179 0.098 0.0119

5th Harmonic amp. error
(pu)

0.133 0.0304 0.0272 0.0031

11th Harmonic amp. error
(pu)

0.0675 0.0479 0.0285 0.0179
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Fig. 3a. Ramp frequency change.
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Fig. 3b. Comparison of 3rd and 11th harmonic amplitude error with
20 dB noise. - - - -, UKF; – – –, MPSO; —, APSO.



Table 3
Absolute error of frequency-modulated signal with 20 dB noise.

Order of harmonic UKF MPSO APSO

Fundamental freq. error (Hz) 0.0538 0.0501 0.0046
Fundamental amp. error (pu) 0.055 0.0452 0.0028
3rd Harmonic amp. error (pu) 0.081 0.071 0.0086
5th Harmonic amp. error (pu) 0.0818 0.0575 0.0039
11th Harmonic amp. error (pu) 0.046 0.0258 0.0105
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Fig. 4a. Modulated frequency change.
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Fig. 4b. Comparison of 3rd and 11th harmonic amplitude error with
20 dB noise. - - - -, UKF; – – –, MPSO; —, APSO.
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Fig. 5. Comparison of fundamental frequency and amplitude error with
20 dB noise. - - - -, UKF; – – –, MPSO; —, APSO.
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Fig. 6. Comparison of UKF and AUKF with 20 dB noise. - - - -, UKF; —,
TUKF.
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The absolute estimation error for the fundamental fre-
quency and amplitude of different harmonic components
is presented in Table 2. From this table it is quite evident that
the UKF and its optimized variants exhibit less estimation
error in comparison to the EKF filter. In a similar way Figs.
3a and 3b depict the ramp frequency change and absolute
error in amplitude tracking of 3rd and 11th harmonic com-
ponents using UKF, MPSO and APSO, respectively.

4.3. Frequency-modulated signal

In this case the nominal frequency of the signal is mod-
ulated with 1 Hz and 6 Hz signals represented in the
following way:
frðkÞ ¼ ffr0þ sinð2pkTsÞ þ 0:5 sinð12pkTsÞg ð43Þ

where fr, fr0, and k represent the modulated frequency,
mean frequency, and sample count, respectively. The test
signal in this case is the same as given in Eq. (43), and
absolute error in frequency and amplitude for the funda-
mental, 3rd, 5th, and 11th harmonics are shown in Table
3, respectively. From the table it is observed that the fre-
quency and harmonic amplitude errors are very small in
the case of APSO algorithm in comparison to all other
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filtering algorithms presented in this paper. Figs. 4a and 4b
depict the modulated frequency change and absolute error
in amplitude tracking of 3rd and 11th harmonic compo-
nents using UKF, MPSO and APSO, respectively.

4.4. Step change in system frequency

A sudden change of fundamental frequency by 5 Hz is
initiated at the 50th sampling instant on the test signal
which is mixed with 20 dB of white Gaussian noise and
the performance of the unscented filter is evaluated for
APSO algorithm. Fig. 5 depicts the tracking performance
of both the algorithms, from which it can be seen that
the APSO algorithm tracks the signal accurately in compar-
ison to the UKF filter alone. Further the speed of response is
faster in the former than the later.
Table 4
Absolute error of the signal with fundamental amplitude change and 20 dB
noise.

Order of harmonic UKF MPSO APSO

Fundamental amp. error (pu) 0.0149 0.0114 0.0013
3rd Harmonic amp. error (pu) 0.0241 0.0205 0.0078
5th Harmonic amp. error (pu) 0.0145 0.012 0.0037
11th Harmonic amp. error (pu) 0.015 0.009 0.0047

Table 5
Absolute error of the signal with 5th harmonic Amplitude change with
20 dB noise.

Order of harmonic UKF MPSO APSO

Fundamental amp. error (pu) 0.019 0.0104 0.0001
3rd Harmonic amp. error (pu) 0.0404 0.0164 0.005
5th Harmonic amp. error (pu) 0.0277 0.0032 0.0007
11th Harmonic amp. error (pu) 0.0171 0.0112 0.0072
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4.5. Performance improvement with adaptive UKF

The ramping frequency from 50 Hz to 75 Hz within a
span of 400 samples is used for comparing the perfor-
mance of the untuned UKF and adaptive UKF. Fig. 6 pre-
sents the performance of both these filters in the
presence of noise of 20 dB and from the figure it is clearly
seen that there is a significant improvement in tracking
performance of the proposed filter, which is adaptively
tuned and optimized. The UKF algorithm is also optimized
in the same manner as the tuned UKF (TUKF).

4.6. Change in the amplitude of the fundamental component

In a similar way, the amplitude of the fundamental
component is increased by 20% and the absolute error in
per unit (pu) are shown in Table 4. From this table it is
clearly observed that both MPSO and APSO algorithms per-
form the best in producing the least estimation error.

4.7. Change in the amplitude in the fifth harmonic component

The amplitude of the 5th harmonic component is then
doubled from 0.15 pu to 0.3 pu, and the absolute estima-
tion error (AE) in the 5th harmonic amplitude component
is shown in Table 5 clearly revealing better performance
of APSO algorithm.

4.8. Real time signal parameter estimation

Experimental test data is generated using the laboratory
set up, as shown in Fig. 7. The load is fed from a 3 kV A,
230 V:230 V single-phase transformer, and the data acqui-
sition subsystem (DAS) is activated and using another
230 V:12 V transformer. The DAS comprises a PCL-208 data
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tion of time-varying signals.



0 200 400 600 800 1000 1200 1400 1600 1800

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Sample number

M
AG

N
IT

U
D

E

Fig. 8. Real time test signal.

200 400 600 800 1000 1200 1400 1600 1800
8

10

12

14

16

18

20

22

Sample number

Es
tim

at
ed

 F
re

qu
en

cy

Fig. 9. Comparison of variants of PSO based UKF. – – –, MPSO; —, APSO.
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acquisition card which has an inbuilt sample and hold de-
vice, and an A/D converter. The voltage across the load
after transformation to 12v is sampled at a rate of
2.3 kHz and is digitized by the A/D system and the digital
data is sent to PC using a program written in ‘C’ language.
Signals with time varying amplitude and frequency are ob-
tained using the waveform simulator by switching on and
switching off the load, respectively.
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Fig. 10. Comparison of variants of PSO based UKF. – – –, MPSO; —, APSO.
For frequency estimation, the signal frequency is chan-
ged from 10 Hz to 18 Hz and then back to the initial value
of 10 Hz. Fig. 8 presents the real time signal obtained from
the DAS subsystem and Figs. 9 and 10 show the estimated
value of the frequency and amplitude of the signal using
APSO and MPSO filters, which clearly revealing the supe-
rior performance in accurately tracking the real –time test
signal parameters.
5. Conclusion

In this paper, we have presented an unscented Kalman
filter technique for estimation of frequency, magnitude,
and phase of fundamental and harmonic components of a
time-varying signal. The model and measurement error
covariances of the unscented Kalman filter (UKF) are fur-
ther tuned adaptively so that the filter can accurately track
small or large variations in the amplitude, frequency, or
phase of the signals in the presence of significant noise. In-
stead of trial and error method of choice of UKF parameters
along with the model and measurement error covariances,
an adaptive Particle Swarm Optimization techniques
(APSO and MPSO) is used for the choice of optimal param-
eters of the filter. The effects of both the large and small
variations in the amplitude and frequency of the signal
are considered for computing the estimation accuracy of
the proposed filter in the presence of noise. From the com-
puter simulation results it is observed that the frequency
and amplitude errors are found to be much smaller with
an adaptively tuned unscented Kalman filter in comparison
to the untuned one. Further the performance of the filter
with optimization algorithm like APSO is found to be supe-
rior in comparison to the modified PSO (MPSO) algorithm
in the estimation of frequency and harmonic magnitudes.
Several simulation results confirm the efficiency of the
tracking performance of this new adaptively tuned opti-
mized unscented Kalman filter. Also experimental results
for frequency and amplitude estimation of time-varying
signals are presented showing the estimation accuracy of
the proposed filters.
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