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a b s t r a c t

Accurate estimation of amplitude, phase and frequency of a sinusoid in the presence of har-
monics/inter harmonics and noise plays an important role in a wide variety of power sys-
tem applications, like protection, control and state monitoring. With this objective, the
paper presents a novel hybrid approach for the accurate estimation of dynamic power sys-
tem frequency, phasor and in addition to suppressing the effect of harmonics/interharmon-
ics and noise in the voltage and current signals. The algorithm assumes that the current
during a fault occurring on a power system consists of a decaying dc component, and time
variant fundamental and harmonic phasors. For accurate estimation of fundamental fre-
quency, phasor, decaying dc and ac components in the fault current or voltage signal,
the algorithm uses a quadratic polynomial signal model and a fuzzy adaptive ADALINE fil-
ter with a modified Gauss–Newton algorithm. Extensive study has been carried out to
demonstrate the performance analysis and fast convergence characteristic of the proposed
algorithm. The proposed method can also be implemented for accurate estimation of
dynamic variations in the amplitude and phase angles of the harmonics and inter harmon-
ics mixed with high noise conditions.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Real-time dynamic state monitoring, state estimation
and islanding detection. are essential for wide area moni-
toring, protection and control applications in power net-
works. Nonstationary sinusoids occur in electrical power
networks due to the proliferation of power electronic
equipments, computers and microcontrollers. Further the
integration of renewable energy sources in the utility grid
results in the generation of harmonics, interharmonics, and
severe waveform distortions [1,2]. It is well known that the
harmonics/interharmonics interfere with sensitive elec-
tronic equipments and cause undesired power loss, over-
heating, and frequent fuse blowing. Also the speed and
accuracy of the estimation algorithms are adversely
affected by the presence of harmonics/interharmonics
and noise in the signal [3]. Thus, there is an utmost need
of an algorithm which can be efficient for accurate real-
time dynamic phasor estimation that plays an important
role in the area of protection and control application in
power networks.

In recent years a large number of techniques have been
proposed for the estimation of the power network phasor
and frequency accurately. The simplest way to estimate
the frequency of a signal is to measure the time of its zero
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crossing [4]. However, the voltage and current waveforms
are usually distorted and noisy. Most of the digital relays
adopt discrete Fourier Transform (DFT) like Full cycle DFT
[5,6], and its modifications [7–9] for phasor estimation of
the voltage and current signals. Although Fourier based
algorithms are efficient in estimating phasors accurately
for time invariant signals, their performance deteriorates
for time varying signals contaminated with noise and har-
monic distortions. Another widely used algorithm for sig-
nal parameter estimation is the least squares algorithm
[10], which, however, suffers from higher computational
overhead since it requires matrix inversion at every itera-
tion. Other methods like, Prony analysis technique [11],
Kalman filters [12,13] and weighted least squares method
[14] are based on the nonlinear curve fitting techniques
and therefore suffer from inaccuracies when the signal fre-
quency deviates widely from its nominal value. Parametric
approaches [15], ESPRIT method [16], Improved Prony
method [17], Fourier analysis [18], window based methods
[19], are able to compute damping coefficients, but they
are highly sensitive to noise and computationally expen-
sive due to the finding of roots of higher order polynomials.
Methods like orthogonal filtering [20], Taylor series expan-
sion [21], wavelet transform [22,23], adaptive notch filter
[24], Filter bank approach [25] require dedicated filters
for removal of harmonic components before applying the
algorithms for signal parameter estimation. Comparison
of different adaptive algorithms for frequency and phasor
estimation are provided in [26].

In recent years, artificial neural network based tech-
niques [27,28] have been used for fundamental and har-
monic phasor estimation due to their simplicity in
structure and ease of computation in comparison to other
well known techniques. Further the adaptive linear neuron
known as ADALINE [29–31] has been used widely as a
powerful tool for signal parameter estimation. But the con-
ventional ADALINE was used for single output systems
with tracking error, introduced due to non-stationary nat-
ure of the signal. Further, the arbitrary choice of the
weights connecting the inputs to the computing neurons
of the ADALINE gives rise to different tracking perfor-
mance. A two-stage ADALINE discussed in [32] is capable
of estimating fundamental frequency and phasor of a time
varying signal under frequency deviation conditions but its
computational cost is very high. In addition to this Fuzzy
Logic and Neural network approaches have been employed
for nonlinear systems including the power system applica-
tions, MIMO [33–35], SISO [36,37] and aerospace applica-
tions [38] where the state variables are difficult to be
measured. Also to achieve wider operating conditions
under uncertainties and to adopt to the nonlinear uncer-
tainties Fuzzy Control has been used in [39,40] which
emphasize the applicability of Fuzzy control to power sys-
tem applications

Hence this paper proposes a hybrid approach for esti-
mating the time varying amplitude, phase, and frequency
of a sinusoid during fault condition to deal with time vary-
ing signal waveforms subjected to amplitude modulation,
phase modulation, step change, and fundamental fre-
quency deviations. Generally in case of a power network
faults, the voltage and current signals comprise decaying
dc and fundamental components and hence in the pro-
posed approach they have been expressed as a time series
using Taylor series expansion. The parameters of the
expanded Taylor series are computed using the fuzzy vari-
able step size ADALINE (FVSS ADALINE) where the learning
parameters are made adaptive to compel the resultant
error of the desired and estimated output to satisfy a stable
difference error equation. As a result this approach, allows
one to achieve better accuracy on the rate of convergence
and stability by suitable selection of parameters of the
error difference equation. The FVSS ADALINE approach is
proposed for frequency estimation of time varying power
signals and the modified recursive Gauss–Newton
approach is used for phasor estimation [41,42] This hybrid
approach using the quadratic polynomial signal model per-
forms very well in terms of accuracy for signals with
dynamic variations. In case of fast changes in signal
dynamics, a new adaptive fuzzy logic based approach is
proposed in this paper to update the step size of the ADA-
LINE and cope up with the abrupt large and small devia-
tions thereby providing significant noise rejection and
faster convergence. The modified recursive Gauss–Newton
ADALINE used for phasor estimation has been simplified by
Hessian matrix approximation and also the need for matrix
inversion at every iteration. This procedure results in
reducing the computational complexity of the algorithm
and in addition it also exhibits accurate tracking results
in non-stationary environment using the objective func-
tion for error minimization. Moreover as per the demand
in some real power signal application scenarios both the
frequency estimation using FVSS and phasor estimation
using modified recursive Gauss–Newton algorithm
(MRGNA) approach can proceed simultaneously in the
same iteration to detect any change either in the ampli-
tude, phase or frequency of the time varying signal. Further
for a three phase power system application, a multi-output
ADALINE structure is discussed for the simultaneous esti-
mation of amplitude and phase angle of three-phase cur-
rent and voltage signals. A detailed study of the global
convergence of the proposed FVSS ADALINE approach is
presented in this paper. Extensive simulations are carried
out to test the accuracy and speed of the proposed algo-
rithm in various scenarios as observed in real power sys-
tem applications. Simulation and experimental results
show superiority of the proposed algorithm in estimating
the dynamic behavior of the signal in presence of har-
monic/interharmonic and noise over many conventional
algorithms like DFT and ADALINE based methods.

The rest of the paper is organized as follows: Section 2 is
divided into two parts, describing the proposed frequency
and phasor estimation of the power signal, respectively.
The performance analysis and global convergence charac-
teristics of the proposed method are studied in Section 3
Numerous simulation and experimental results are pre-
sented in Section 4, while Section 5 outlines the conclusion.
2. Proposed algorithm

ADALINE based methods show inaccuracy in estimating
fundamental frequency deviations in the presence of
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harmonics or interharmonics. The proposed algorithm is
based on the Taylor series expansion to handle the
dynamic behavior of the signal and its parameters are esti-
mated using the modified ADALINE and Fuzzy variable step
size ADALINE to yield the frequency and other signal
parameters. The weight vector of the modified ADALINE
is updated using a fast decoupled Gauss–Newton
approach. The basic advantage of using ADALINE is its sim-
ple structure and ease of implementation. The authors [32]
have proposed a two stage approach to ADALINE and have
used RLS algorithm that requires the matrix inversion
Lemma, increasing the computational cost of the algo-
rithm. The computation time of the 2-stage ADALINE is sig-
nificantly higher because of the use of Prony’s method for
frequency estimation, requiring 2M data samples to fit into
M frequencies. In comparison to the two-stage ADALINE
approach, this paper develops a frequency estimation
method based on Taylor series expansion to model the
dynamic signal using a quadratic polynomial where the
Taylor coefficients are computed using the fuzzy variable
step size ADALINE and the modified Gauss–Newton
method is used for phasor estimation, which is based on
the computation of a decoupled Hessian matrix. The hybrid
approach results in a significant reduction of computa-
tional overhead in comparison to other available methods.

2.1. Frequency estimation

Let the discrete time dynamic signal, with changing
amplitude, phase, anddecayingdc component ismodeled as

yðkÞ ¼ Adce�kdt=a þ
XM
m¼1

AmðkÞ sinð2pmf 0 kdt þumðkÞÞ ð1Þ

where AmðkÞ and umðkÞ are the time varying amplitude and
phase angle of mth harmonic component, and f 0 is the
nominal frequency of the signal, Adc and a are the ampli-
tude and time constant of decaying dc component, dt is
the sampling time, M is the maximum order of the har-
monic present in the signal. The total angle of the signal
is hmðkÞ ¼ 2p f m kdt þumðkÞ. The frequency is taken as
the rate of change of total angle hm [43].

The signal yðkÞ in (1) is modeled as

yðkÞ ¼ Adce�kdt=a þ
XM
m¼1

AmðkÞ cosðumðkÞÞ

� sinð2pmf 0 kdtÞ þ AmðkÞ sinðumðkÞÞ
� cosð2pmf 0 kdtÞ ð2Þ

and further it can be represented as

yðkÞ ¼ Adce�kdt=a þ
XM
m¼1

f CmðkÞ sinð2pmf 0 kdtÞ þ f SmðkÞ

� cosð2pmf 0 kdtÞ ð3Þ
where f CmðkÞ ¼ AmðkÞ cosðumðkÞÞ, and f SmðkÞ ¼ AmðkÞ sin
ðumðkÞÞ. The time varying parameters f CmðkÞ and f SmðkÞ
are expanded with second order Taylor series model, and
we get

f CmðkÞ ¼ am0 þ am1kþ am2k
2
; f SmðkÞ ¼ bm0 þ bm1kþ bm2k

2

ð4Þ
Neglecting the higher order terms, coefficients of the Tay-
lor series expansion can be computed by taking the zero
order, first order and second order derivatives respectively.
The zero order derivative is given by

f Cmð0Þ ¼ am0 ¼ Amð0Þ cosðumð0ÞÞ and f Smð0Þ ¼ bm0

¼ Amð0Þ sinðumð0ÞÞ ð5Þ
and for frequency estimation, the first order derivative is
computed as

f 0Cmð0Þ ¼ am1 ¼ A0
mð0Þ cosðuð0ÞÞ � Amð0Þu0ð0Þ sinðuð0ÞÞ;

and f 0Smð0Þ ¼ bm1 ¼ A0
mð0Þ sinðuð0ÞÞ

þ Amð0Þu0ð0Þ cosðuð0ÞÞ ð6Þ
Using (5) and (6) and neglecting A0

mð0Þ, u0
m is computed as

u0
mð0Þ ¼

am0bm1 � am1bm0

a2m0 þ b2
m0

ð7Þ

and from (7), the frequency of mth harmonic component is
obtained as

f̂ m ¼ ef m þu0
mðkÞ=2pdt ¼ ef m þ 1

2pdt
� am0bm1 � am1bm0

a2m0 þ b2
m0

ð8Þ

ef m is the initial estimate of the frequency. In the proposed
method the coefficients of the Taylor series expansion for
frequency estimation are obtained first by applying a mod-
ified ADALINE method to the voltage or current signal sam-
ples. For fundamental parameter estimation, the
nonstationary voltage signal with a dc offset is modeled as

yðkÞ ¼ Adce�kdt=a þ AðkÞ sinð2pf 0kdt þuðkÞÞ ð9Þ
and the Taylor series expansion of the above signal is
obtained as

yðkÞ ¼ Adce�kdt=a þ a0 þ a1kþ a2k
2

� �
sinð2pf 0kdtÞ

þ b0 þ b1kþ b2k
2

� �
cosð2pf 0kdtÞ ð10Þ

which can be represented in modified ADALINE as

yðkÞ ¼ zðkÞ � XTðkÞ ð11Þ
where the coefficient vector is given as

zðkÞ ¼ a0 a1 a2 b0 b1 b2½ � ð12Þ
and the sampled input vector is shown in (13)

XðkÞ¼ sinð2pf 0kdtÞ kdtsinð2pf 0kdtÞ ðkdtÞ2 sinð2pf 0kdtÞ
cosð2pf 0kdtÞ kdtcosð2pf 0kdtÞ ðkdtÞ2 cosð2pf 0kdtÞ

" #
ð13Þ

The error signal used in weight vector update rule for
the ADALINE is expressed as

eðkÞ ¼ yðkÞ � zðkÞ � XTðkÞ ð14Þ
and the weight vector is updated using (15) as

zðkþ 1Þ ¼ zðkÞ þ k tanh ð0:5�eðkÞÞ�XðkÞ=XðkÞ�XTðkÞ ð15Þ
where k is the learning rate. Conventional ADALINE is sim-
ple, stable and fewer computations are required, but learn-
ing parameter needs to be tuned.
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Another approach is discussed here for updating the
weight vector of the ADALINE with variable step size
[44]. When the estimation error is large, learning parame-
ter is made large for faster tracking purposes, while for low
estimation error, a small learning parameter is used for
accurate estimation. Hence the learning parameter is made
adaptive as follows:

The weight vector of the variable step size ADALINE is
updated as

zðkþ 1Þ ¼ bðkÞzðkÞ þ kðkÞeðkÞXðkÞ=XðkÞ�XTðkÞ ð16Þ
where bðkÞ ¼ ek

rðkÞ, and the learning rate is varied as

kðkÞ ¼ aa tanðcjeðkÞeðk� 1ÞjÞ þ ckðk� 1Þ ð17Þ
The above algorithm provides better convergence rate

in adaptive systems. It has been tested with sigmoid func-
tion and hyperbolic tangent function as in [45]. In this
method error covariance is used to adjust the step size.
This method eliminates sensitivity to noise and is suitable
only for slow changes in signal parameters. Thus for fast
changes in signal parameters, a new fuzzy logic based
approach is proposed in this paper to update the step size
of the ADALINE. The proposed fuzzy model is described
below:

The variable step size learning rate is expressed as

kðkÞ ¼ kðk� 1Þ þ Dk ð18Þ
where change in step size Dk is updated using a simple
Fuzzy rule base and Fuzzy membership values. The proper
selection of membership function is a core issue in fuzzy
control. In the proposed model, the Fuzzy membership val-
ues are chosen as functions of the standard deviation d.
When the deviation is large in the initial period or there
is any change in the system parameters, the step size
should be large for better convergence and tractability.
On the other hand when the deviation is small after the
algorithm has converged, the step size should also be
adapted accordingly. Hence the change in standard devia-
tion is computed as

Dd ¼ e2ðkÞ � e2ðk� 1Þ ð19Þ
and the Fuzzy rule base for arriving at a change in step size
is represented as follows:

R1: If jDdj is Large Then Dk ¼ lL K1Dd ð20Þ

R2: If jDdj is Small Then Dk ¼ lS K2Dd ð21Þ
where the membership functions for Large and Small are
given by

lLðDdÞ ¼ 1� exp�jDdj; and lSðDdÞ ¼ exp�jDdj ð22Þ
where K1 and K2 are small positive numbers between 0 and
1, and 0 6 jDdj 6 1.

Using centroid defuzzification principle, the value of Dk
is obtained as

Dk ¼ lL K1Ddþ lS K2Dd
lS þ lL

ð23Þ

and the weight vector of the ADALINE is updated using
(16) as
a0ðkþ1Þ¼bðkÞa0ðkÞþkðkÞeðkÞsinð2pf 0kdtÞ=sin2ð2pf 0kdtÞ
a1ðkþ1Þ¼bðkÞa1ðkÞþkðkÞeðkÞsinð2pf 0kdtÞ=ðkdtÞsin2ð2pf 0kdtÞ
a2ðkþ1Þ¼bðkÞa2ðkÞþkðkÞeðkÞsinð2pf 0kdtÞ=ðkdtÞ2 sin2ð2pf 0kdtÞ

ð24Þ
Similarly

b0ðkþ1Þ¼bðkÞb0ðkÞþkðkÞeðkÞcosð2pf 0kdtÞ=cos2ð2pf 0kdtÞ
b1ðkþ1Þ¼bðkÞb1ðkÞþkðkÞeðkÞcosð2pf 0kdtÞ=ðkdtÞcos2ð2pf 0kdtÞ
b2ðkþ1Þ¼bðkÞb2ðkÞþkðkÞeðkÞcosð2pf 0kdtÞ=ðkdtÞ2 cos2ð2pf 0kdtÞ

ð25Þ
The frequency of the signal is estimated as

f̂ 0 ¼ ef 0 þu0ðkÞ=2pdt ¼ ef 0 þ 1
2pdt

� a0b1 � a1b0

a20 þ b2
0

ð26Þ

To verify the performance of the proposed fuzzy vari-
able step size ADALINE, a function between error signal e
(k) and step size k(k) is formulated. In the initial iterations,
the weight deviates from the optimal value, and e(k) is
large, so k(k) should also be large for faster convergence.
Hence a plot between e(k) and k(k) is taken for different
algorithms with a view for comparison. From Fig. 1 we
can observe that the hyperbolic tangent function produces
singularity when error is near to 0 and thus a small change
in error produces large change in weight vector. Although
the arc-tangent function shows some improvement, the
proposed algorithm is found to be superior as it exhibits
a very smooth transition between the change in error
and step size providing a better convergence speed to the
algorithm. Moreover the function plot for the proposed
method between the error signal e(k) and step size k(k)
reveals that in the initial phase when the error is high, k
(k) is high for faster rate of convergence but subsequently
when the algorithm achieves a steady state and the error
reduces to the lowest value, k(k) also attains its minimal
value thereby achieving the optimal wiener value.

2.2. Phasor estimation

In this section the amplitude and phase of the nonsta-
tionary signal along with decaying dc component are esti-
mated using the ADALINE approach with the weights
updated through a modified Gauss–Newton algorithm.
The modified Gauss–Newton algorithm has the basic
advantage of eliminating the need for matrix inverse at
every iteration, which results in reducing the computa-
tional overhead of the algorithm. The estimated frequency
in section A is used to estimate the amplitude and phase of
the signal in the same iteration. Let the discrete time signal
is represented as:

ŷðkÞ ¼ Âdc e�kdt=â þ
XM
m¼1

ÂmðkÞ sinð2p f̂ m kdt þ ûmðkÞÞ ð27Þ

where f̂ m is the frequency estimated using Eq. (8). The fun-
damental signal with decaying dc component is decom-
posed as

ŷðkÞ ¼ Âdc e�kdt=â þ ÂðkÞ cosðûðkÞÞ sinð2pf̂ kdtÞ þ ÂðkÞ
� sinðûðkÞÞ cosð2pf̂ kdtÞ ð28Þ
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where e�kdt=a is expanded using Taylor series expansion as

e�kdt=a ¼ 1� kdt
a

þ 1
2!

kdt
a

� �2

� . . . . . .

Neglecting the higher order terms of Taylor series
expansion the signal is represented as

ŷðkÞ¼w1þw2kdtþw3 sinð2pf̂ kdtÞþw4 cosð2pf̂ kdtÞ ð29Þ
where w1 ¼ Adc , w2 ¼ �Adcð1=aÞ, w3 ¼ ÂðkÞ cosðûðkÞÞ

and w4 ¼ ÂðkÞ sinðûðkÞÞ and the signal is represented in
vector form as

ŷðkÞ ¼ WðkÞ � XTðkÞ ð30Þ
where the coefficient vector and the state vector are given
as

WðkÞ ¼ w1 w2 w3 w4½ �;
XðkÞ ¼ 1 kdt sinð2pf̂ kdtÞ cosð2pf̂ kdtÞ

h i
ð31Þ

and the coefficient vector of the ADALINE is updated using
modified Gauss–Newton algorithm for better accuracy in
estimation and less computation in comparison to the
RLS approach [46].

An exponential weighted error cost function is used for
updating the coefficients as follows:
HðkÞ ¼
Xk

i¼0

gk�i

1 kdt sinð2pf̂ kdtÞ cosð2pf̂ kdtÞ
kdt ðkdtÞ2 kdt sinð2pf̂ kdtÞ kdt cosð2pf̂ kdtÞ

sinð2pf̂ kdtÞ kdt sinð2pf̂ kdtÞ sin2ð2pf̂ kdtÞ sinð2pf̂ kdtÞ cosð2pf̂ kdtÞ
cosð2pf̂ kdtÞ kdt cosð2pf̂ kdtÞ sinð2pf̂ kdtÞ cosð2pf̂ kdtÞ cos2ð2pf̂ kdtÞ

2666664

3777775 ð37Þ
eðkÞ ¼
Xk

i¼0

gk�ie2j ðiÞ; with 0 < g 6 1 ð32Þ
where the a priori estimation error is given as

ejðkÞ ¼ yðkÞ �WðkÞ � XTðkÞ ð33Þ
where g is a forgetting factor in general taking up values
within 0 < g 6 1 (practically 0.5) which is responsible for
deciding the rate of convergence and accuracy of the algo-
rithm. This formulation of the exponential weighted error
cost function assigns higher weightage to the immediate
past errors and lesser weight to past errors, as the forget-
ting factor is assigned with higher powers for the past
errors. The modified Gauss–Newton method is used to
minimize the exponential weighted error cost function
given in (32). The coefficients are updated as follows:fW ðkÞ ¼ fW ðk� 1Þ � H�1ðkÞwðkÞejðkÞ ð34Þ

where HðkÞ ¼
Xk

i¼0

gk�iwðiÞwTðiÞ ð35Þ

and the gradient vector w is obtained as:

wðkÞ ¼ @ejðkÞ
@fW ¼

�1
�kdt

sinð2pf̂ kdtÞ
cosð2pf̂ kdtÞ

26664
37775 ð36Þ

The Hessian matrix H(k) can be written as:
To compute H�1(k) one can directly use the matrix inverse
lemma as in RLS [46], which is computationally expensive.
Thus to reduce the computational complexity and increase
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the speed, the Hessian matrix is approximated by using an

assumption that 2pf̂ is not near to 0 or p as

HðkÞ ¼
Xk

i¼0

gk�i

1 0 0 0

0
Xk�1

i¼1

ðidtÞ2gk�i 0 0

0 0 1=2 0
0 0 0 1=2

26666664

37777775 ð38Þ

where we can approximate the following function asXk

i¼0

i2gk�i � 1
k
ðkþ 1Þð2kþ 1Þ

6
k
Xk

0

gk�i

and H(k) can be written as

HðkÞ ¼ 1� gkþ1

2ð1� gÞ

2 0 0 0

0 ðdtÞ2ðkþ1Þð2kþ1Þ
6

Xk

0

gk�i 0 0

0 0 1 0
0 0 0 1

26666664

37777775 ð39Þ

and the inverse H�1ðkÞ is computed as:

H�1ðkÞ ¼

2
CðkÞ 0 0 0

0 12ðkþ1Þ
CðkÞGuðkÞðdtÞ2

0 0

0 0 1
CðkÞ 0

0 0 0 1
CðkÞ

2666664

3777775 ð40Þ

where cðkÞ ¼ 1� gkþ1

2ð1� gÞ ¼ and GuðkÞ

¼ k2 þ 12 k� 1 ð41Þ
It can also be observed that c(k) and GuðkÞ can be

updated iteratively as

cðkÞ ¼ gcðk� 1Þ þ 1=2; and
GuðkÞ ¼ Guðk� 1Þ þ 2kþ 11 ð42Þ

Further by putting (40) and (41) into (34) the following
update equations are obtained:ew1ðkþ 1Þ ¼ ew1ðkÞ þ 2ejðkÞ=cðkÞ ð43Þ

ew2ðkþ 1Þ ¼ ew2ðkÞ þ 12k ðkþ 1ÞejðkÞ=dt cðkÞG/ ð44Þ

ew3ðkþ 1Þ ¼ ew3ðkÞ þ sinð2pf̂ kdtÞejðkÞ=cðkÞ ð45Þ

ew4ðkþ 1Þ ¼ ew4ðkÞ þ cosð2pf̂ kdtÞejðkÞ=cðkÞ ð46Þ
and the dynamic amplitude, phase, decaying dc compo-
nent and the time constant of the dc component of the sig-
nal are estimated using Eqs. (43)–(46) as follows:

ÂdcðkÞ ¼ Âdcðk� 1Þ þ 2ejðkÞ
JðkÞ ð47Þ

âðkÞ ¼ �w1ðkÞ=w2ðkÞ ð48Þ

ÂðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiew3 kþ 1ð Þ2 þ ew4ðkþ 1Þ2

q
ð49Þ
/̂ðkþ 1Þ ¼ arctanð ew4ðkþ 1Þ= ew3ðkþ 1ÞÞ ð50Þ
Hence, the above equations provide a simplified expression
for estimating the fundamental and the dc component of a
signal. It can easily be expanded for harmonic/interhar-
monic estimation too. From the above equations it is clear
that the estimation accuracy of the parameters depend on
the learning rate g which can be updated using a Fuzzy
rule base tuning approach in a manner similar to k as in
the previous section.

3. Performance analysis

To study the performance analysis of the proposed
Fuzzy variable step size algorithm, we will first analyze
the sensitivity of the proposed algorithm to noise under
stationary condition. The error signal is described as

eðkÞ ¼ yðkÞ � XTðkÞzðkÞ ð51Þ

or yðkÞ ¼ eðkÞ þ XTðkÞzðkÞ ð52Þ
where the desired signal can be considered as

yðkÞ ¼ 1ðkÞ þ XTðkÞz� ð53Þ
where 1ðkÞ is a zero mean white Gaussian independent dis-
tribution, and z� is the optimal weight vector. Hence sub-
stituting (52) and (53) we get

eðkÞ ¼ 1ðkÞ � XTðkÞ½zðkÞ � z�� ¼ 1ðkÞ � XTðkÞDðkÞ ð54Þ
where DðkÞ ¼ zðkÞ � z�.

The proposed algorithm uses change in standard devia-
tion to formulate the Fuzzy rule base, hence the expecta-
tion of the autocorrelation between e(k) and e(k � 1) is
studied. Thus

E½eðkÞeðk� 1Þ� ¼ E½1ðkÞ1Tðk� 1Þ � 1ðkÞXTðk� 1ÞDðk� 1Þ
� DðkÞXTðkÞ1ðk� 1Þ
þ DðkÞXðkÞXTðk� 1ÞDðk� 1Þ� ð55Þ

as 1ðkÞ is a zero mean white Gaussian distribution and is
independent, (55) can be rewritten as

E½eðkÞeðk� 1Þ� ¼ E½DðkÞXðkÞXTðk� 1ÞDðk� 1Þ� ð56Þ
Hence it can be observed that the correlation of the error
signal is independent of the noise distribution eliminates
sensitivity to noise.

Now assume the Lyapunov function [31] as:

vðkÞ ¼ zTðkÞR�1ðkÞzðkÞ ð57Þ

where RðkÞ ¼ E½XðkÞXTðkÞ� ð58Þ

and by taking the diagonal elements of the matrix as:

XðkÞXTðkÞ ¼ trR ð59Þ
Eq. (57) can be written as

vðkÞz�1ðkÞXðkÞXTðkÞXðkÞ ¼ zTðkÞXðkÞ
vðkÞ trR z�1ðkÞXðkÞ ¼ zTðkÞXðkÞ

ð60Þ
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or vðkÞ ¼ 1
trR

zTðkÞzðkÞ ð61Þ

Again the weight vector of fuzzy variable step size ADA-
LINE is updated as

zðkÞ ¼ bzðk�1Þþkðk�1Þeðk�1ÞXðk�1Þ=Xðk�1ÞXTðk�1Þ
ð62Þ

Further the Lyapunov function can be written as

vðkÞ ¼ 1
trR

½bzT ðk�1Þþkðk�1Þeðk�1ÞXT ðk�1Þ=XTðk�1ÞXðk�1Þ��

½bzðk�1Þþkðk�1Þeðk�1ÞXðk�1Þ=Xðk�1ÞXT ðk�1Þ�
ð63Þ

or vðkÞ ¼ 1
trR

½bzTðk� 1Þzðk� 1Þ
þ bzT ðk� 1Þkðk� 1Þeðk� 1ÞXðk� 1Þ
=Xðk� 1ÞXTðk� 1Þ þ bzðk� 1Þkðk� 1Þeðk� 1ÞXTðk� 1Þ
=XTðk� 1ÞXðk� 1Þ þ k2ðk� 1Þe2ðk� 1ÞXT ðk� 1ÞXðk� 1Þ
=XTðk� 1ÞXðk� 1ÞXðk� 1ÞXTðk� 1Þ� ð64Þ

which can further be simplified to

vðkÞ ¼ b2 vðk� 1Þ þ k2ðk� 1Þe2ðk� 1Þ
þ ð2b=trRÞzðk� 1Þkðk� 1Þeðk� 1ÞXðk� 1Þ
=XTðk� 1ÞXðk� 1Þ ð65Þ

as DðkÞ ¼ zðkÞ � z� and eðkÞ ¼ �XTðkÞDðkÞ
hence we can further simplify (65) as

vðkÞ ¼ b2vðk� 1Þ

� 2b
trR

zðk� 1Þkðk� 1ÞXTðk� 1ÞXðk� 1ÞDTðk� 1Þ
þ k2ðk� 1ÞXTðk� 1ÞDTðk� 1ÞXðk� 1ÞDðk� 1Þ

vðkÞ ¼ b2vðk� 1Þ � 2b
trR

kðk� 1ÞDTðk� 1ÞRzðk� 1Þ
þ k2ðk� 1ÞDTðk� 1ÞRDðk� 1Þ

ð66Þ
On simplification the following result is obtained:

b2vðk� 1Þ � vðkÞ ¼ 2b
trR

kðk� 1Þ DTðk� 1ÞRzðk� 1Þ
� k2ðk� 1ÞDTðk� 1ÞRDðk� 1Þ ð67Þ

By assuming b ffi 1

vð0Þ � vðkÞ ¼
Xk�1

i¼0

2
trR

kðiÞDTðiÞ R ½zðiÞ � 2kðiÞ trRDðiÞ� ð68Þ

as limi!1DðiÞ ! 0 the value of (68) is limited. Hence

limi!1 2kðiÞDTðiÞR=trR ½zðiÞ � 2kðiÞ trRDðiÞ� ¼ 0
as
zðiÞ � 2kðiÞtr RDðiÞ – 0; kðiÞ– 0; R– 0

ð69Þ

then as

DðiÞ ¼ zðiÞ � z� and lim
i!1

zðiÞ ¼ z� ð70Þ
Using (61) we can generate

_vðkÞ ¼ 2
trR

zTðkÞDzðkÞ
Ds
or _vðkÞ ¼ 2
trR

zTðkÞ _zTðkÞ ð71Þ

or using (67) _vðkÞ can be written as

_vðkÞ¼2bkðk�1ÞDTðk�1ÞR
DstrR

½2kðk�1ÞtrRDðk�1Þ�zðk�1Þ�
ð72Þ

Now using (71) and (72)

2bk2ðk� 1ÞDTðk� 1ÞRtrRDðk� 1Þ
¼ zðkÞDzðkÞ þ bkðk� 1ÞDTðk� 1ÞRzðk� 1Þ ð73Þ

and as limk!1 DðkÞ ¼ 0; and zðkÞ – 0
hence we get

lim
k!1

DzðkÞ ¼ lim
k!1

½zðkÞ � zðk� 1Þ� ¼ 0 ð74Þ

This demonstrates the global convergence of the pro-
posed Fuzzy variable step size ADALINE.

4. Performance evaluation

A wide variety of computer simulations has been car-
ried out first to evaluate the performance of the proposed
algorithm in estimating amplitude, phase and frequency
under stationary, dynamic, transient and noisy conditions.
For ADALINE based algorithms, all the weights are initial-
ized to zero values. The test signal is sampled at a rate of
5 kHz (100 samples per cycle). Further to evaluate the per-
formance of the proposed algorithm in a laboratory setup,
voltage and current signals are generated using transient
condition in Matlab/Simulink environment, and tested for
3-phase system.

4.1. Using computer simulated signal

4.1.1. Case I: noise test
The sinusoidal test signal is first verified for the noise

rejection ability of the proposed algorithm. The signal
model of a static sinusoid is used for this case, and is rep-
resented as

yðkÞ ¼ AðkÞ sinð2pf 0kdt þuðkÞÞ þ vðkÞ ð75Þ
where A = 1.2 p.u, f0 = 60 Hz and u = 0.6 rad. The test signal
given in Eq. (75) is added with zero-mean white Gaussian
noise v(k). The signal is tested under various noise condi-
tions and the mean square estimation error in dB for differ-
ent algorithms is shown in Fig. 2. Algorithms like, RDFT [8],
Least squares [10], ADALINE [29], and the proposed
method are considered for comparison.

The superior performance of the proposed algorithm
over different algorithms can clearly be observed from
the above convergence curve. From the convergence curve
of the proposed method in Fig. 2, it can be concluded that
the mean square estimation error in dB is in a very small
range which further decreases as the SNR value of the
noise increases as compared to other standard approaches.
Further the computational complexity of the proposed
algorithm for fundamental component estimation at each
iteration is compared with algorithms like Two stage ADA-
LINE [32] and RGN [47]. As shown in Table 1 the number of
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Fig. 2a. Mean square amplitude error in dB at different noise level.
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Fig. 2b. Mean square phase error in dB at different noise level.

Table 1
Computational requirements of different algorithms.

Algorithm Multiplication/division

Two stage ADALINE 52
RGN 42
Proposed method 28
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computations required are very high in the Two stage
ADALINE method because of the matrix inversion required
at every iteration, which have been reduced in the pro-
posed algorithm by Hessian matrix approximation.

4.2. Dynamic signal test

4.2.1. Case II: estimation of modulated power signals
The amplitudes of the voltage and current signals are

modulated with a low frequency signal during power
swing. In this case the envelope of the fundamental voltage
signal going through step and modulated changes is
shown. The test signal in (75) goes through the following
changes:

yðkÞ ¼ sinð2pf 0kdtÞ; for k < 100
yðkÞ ¼ 0:9� sinð2pf 0kdtÞ; for 100 6 k < 300
yðkÞ ¼ ð1:2þ ð0:1� sinð2p15kdtÞ

þ 0:05� sinð22pkdtÞÞÞ� sinð2pf 0kdtÞ; for k P 300

ð76Þ
The performance of the proposed algorithm under
dynamic behavior of the signal is compared with the ADA-
LINE [29] based method. Fig. 3 shows better performance
of the proposed algorithm over conventional ADALINE
based signal parameter estimation approach. From Fig. 3
it is clear that the proposed algorithm converges to the
true value and dynamically changes with time to cope
the changing envelope of the signal. As observed from
Fig. 3 the proposed approach is quite capable of tracking
the fast changing signal envelope in less than a cycle unlike
the conventional ADALINE approach which consumes con-
siderably more samples to converge. For better comparison
the test is performed 100 times and the mean of the RMSE
at different noise level of different algorithms like EKF [12],
LS [10], ADALINE [29], and the proposed method are
depicted in Table 2. The superior performance of the pro-
posed algorithm can easily be observed from this Table.
The proposed method shows significantly better noise
rejection capability as compared to the other conventional
methods, even under extreme noise conditions of
SNR = 20 dB, due to the fact that the proposed approach
uses error covariance to adjust the step size which reduces
sensitivity to noise.

4.2.2. Case III: performance evaluation in the presence of
harmonics/interharmonics

In this case the inherent noise rejection ability of the
proposed filter is studied due to the presence of harmonics
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Table 2
RMSE at different noise level of different algorithms.

Property EKF LS ADALINE Proposed

20 dB 30 dB 40 dB 20 dB 30 dB 40 dB 20 dB 30 dB 40 dB 20 dB 30 dB 40 dB

Fundamental amplitude 0.1232 0.101 0.0511 0.1011 0.0914 0.0269 0.0763 0.0614 0.0588 0.0052 0.0032 0.0021
Frequency 0.0124 0.0095 0.0072 – – – 0.1536 0.1479 0.1325 0.0096 0.0084 0.0066
Dc offset – – – 0.0076 0.0069 0.006 0.1037 0.0974 0.0935 0.0077 0.0056 0.0038
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and interharmonics considered as noise. The test signal for
this purpose is shown in Eq. (77):

yðkÞ ¼ 1:2� sinðx0kdt þuðkÞÞ þ 0:2� sinð3�x0kdt þuðkÞÞ
þ 0:1� sinð5�x0kdt þuðkÞÞ
þ 0:05 sinð7�x0kdt þuðkÞÞ þ 0:1 sinðxihkdt þuðkÞÞ

ð77Þ

where the signal is corrupted with 16% third harmonic, 8%
fifth harmonic, 4% seventh harmonic, fundamental fre-
quency is 50 Hz and interharmonic frequency is 170 Hz.
Fig. 4 shows the absolute estimation error of the proposed
algorithm for different parameters. Table 3 summarizes
the estimation error results for each harmonic and inter-
harmonic contamination which are obtained by taking
the mean over the 500 samples of the input signals. It
can also be observed clearly from Fig. 4 that the proposed
algorithm performs significantly well and a yields accurate
result even under high percentage of harmonic contamina-
tion and thereby exhibits robust performance even in the
presence of harmonic and interharmonic components as
noise.
4.2.3. Case IV: magnitude, phase and frequency step test
In practical power system scenario switching, fault and

tripping conditions introduce abrupt changes in magni-
tude, phase angle and frequency of the current or voltage
signals. So in this case a similar situation is analyzed where
all the signal parameters like amplitude, phase and fre-
quency of the signal are suddenly changed and the step
signal is contaminated with white Gaussian noise of
SNR = 20 dB. The convergence of the proposed algorithm
to the true value is tested. The signal in (75) is varied as
mentioned in Table 4.
As a result of sudden change in all the parameters, it can
be observed from Fig. 5 that not only the frequency con-
verges to the true value in less than half a cycle but also
shows smooth response during both the transitions of pos-
itive and negative steps (+�1 Hz), the amplitude and phase
still take a little more settling time to converge i.e. half a
cycle with some more samples. From the results it is
observed that the proposed algorithm performs much bet-
ter in tracking the signal parameters accurately during
sudden changes of frequency, amplitude and phase angle
in comparison to the conventional estimation techniques.

4.2.4. Case V: short circuit current test
To test the robustness and efficiency of the proposed fil-

ter for signals comprising both damped sinusoids and
decaying dc components a practical situation involving
distributed generation systems like doubly-fed wind tur-
bine generators (DFIG) in a microgrid is considered in this
paper. It is well known that the short-circuit current of a
wind generating system is found to be a combination of
an exponentially decaying dc component and time varying
fundamental frequency component along with harmonics.
The test signal, therefore, is represented as

yðkÞ ¼ Adc e�t=a1 þ ðAac þ Ae�t=a2 Þ� sinðx0kdt þuðkÞÞ

þ
X5
i¼3

Ai sinðix0kdt þuiðkÞÞAe�t=a2 ð78Þ

where Adc and a1 are amplitude and time constant of
decaying dc component and A, Aac and a2 are the constant
amplitude, decaying amplitude and time constant of the
fundamental component. In this case the decaying dc and
decaying ac amplitude of the fundamental component
are kept equal to 1.0 pu, with decaying 3rd and 5th har-
monic components. Fig. 6 shows that even in the presence
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Table 3
Estimation error results for each harmonic and interharmonic.

Parameters Estimation error: without harmonic Estimation error: with harmonic and interharmonic as noise

3rd harmonic 5th harmonic 7th harmonic Interharmonic

Amplitude (p.u) 2.12e�007 3.12e�007 2.32e�005 5.82e�004 3.42e�002
Phase (rad) 3.01e�004 6.12e�003 5.56e�003 9.22e�002 5.44e�001
Frequency (Hz) 1.56e�005 4.46e�005 4.88e�003 2.64e�003 3.12e�002

Table 4
Variation of nonstationary signal parameters.

Time interval in samples

Sample value 0–300 300–400 400–500 500–700 700–1000

Amplitude 1.2 1.5 1.5 1.5 1.2
Frequency 60 60 61 61 60
Phase p/6 p/6 p/6 p/5 p/6
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of large decaying dc and decaying ac components, the algo-
rithm is able to estimate the envelope accurately within
one cycle of the 50 Hz waveform. The proposed algorithm
exhibits fast tracking due to the fact that unlike the con-
ventional Gauss–Newton approach, here there is no need
to invert a Jacobian.
4.2.5. Case VI: modulated phasor with harmonics
In this case study a test signal with modulated ampli-

tude and phase is considered. The 3rd and 5th harmonic
components are injected into the signal after 15 cycles.
The test signal used in this case is a critical case which
exhibits dynamic variations due to amplitude modulation
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by high frequency components as well as phase modula-
tion in the fundamental and harmonic components. The
test signal is depicted in Eq. (79) as:

yðkÞ ¼ aðkÞ sinð2pf1kþ /ðkÞÞ þ uðkÞ aðkÞ
10

sinð2p3f1kÞ
�

þ /3ðkÞÞ þ
aðkÞ
20

sinð2p5f1kÞ þ /5ðkÞÞ
�

ð79Þ

where

ukÞ ¼ 0; for k < 15=f1
1; for k P 15=f1

	
aðkÞ ¼ a1þ a11 sinð2pf akÞ
/ðkÞ ¼ /0 þ /11 sinð2pf /kÞ
/3ðkÞ ¼ 0:9/ðkÞ
/5ðkÞ ¼ 0:8/ðkÞ

with a1 ¼ 1, a11 ¼ 0:2, /0 ¼ 1, /11 ¼ 0:1, f a ¼ f / ¼ 5 Hz.
Fig. 7 shows the ability of the proposed algorithm to

track the phasor estimates present in the signal. It can be
observed from the figure that the error is high at the time
of harmonic injection and the estimation closely follows
the ideal value and even converges to the true value within
a cycle. The estimation results can be further improved by
improving the frequency estimation results which is fed to
the second stage for phasor estimation by considering a
Taylor series model of higher orders in the FVSS approach.

4.2.6. Case VII: off nominal frequency with decaying dc
components test

It is well known that the presence of unbalanced loads
in a power network may cause the fundamental frequency
to deviate from its nominal value. Further the fault current
or voltage signal may also be contaminated by decaying dc
components as well as may be confronted with off nominal
frequency situation which makes the power signal more
critical to be estimated. To test the estimation accuracy
of the proposed algorithm during such a fault condition,
the test signal is represented in the following way:

yðkÞ ¼
ffiffiffi
2

p
sin½2p � ð50þ Df Þk � dt� ðk 6 500Þ

3
ffiffiffi
2

p
sin½2p � ð50þ Df Þk � dt� þ e�n=0:05 ðk > 500Þ

(
ð80Þ

whereDf is the frequency deviation, which is considered as
1.0 Hz and 2.0 Hz in two independent cases.

Fig. 8 shows the superior performance of the proposed
algorithm under frequency deviation as well as decaying
dc component. From the figure it is observed that the pro-
posed approach exhibits less oscillation in case of ampli-
tude estimation and also the convergence rate to the
ideal value is quite fast (within half a cycle) in comparison
to other standard approaches. It is due to the fact that the
proposed approach considers both decaying D.C and
dynamic characteristics. The magnitude estimation error
of the proposed approach is also in a very small range
which emphasizes the accuracy of the proposed approach
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even in complicated situations. Fig. 8(b) plots the
magnitude and phaseangle error in case when the fre-
quency deviation increases from 1 Hz to 2 Hz. EKF [12] fails
to estimate the magnitude of the signal under this type of
variation, though LMS [44] shows some improvement in
tracking however consumes more than two cycles to con-
verge to its true value.
4.2.7. Case VIII: random frequency changes
To test the robustness of the proposed ADALINE filter

two cases of random frequency change are initiated by
the following expressions:

case a: f ðtÞ ¼ f 0 þ 2 � ð0:5� randð0;1ÞÞ
case b: f ðtÞ ¼ f 0 þ 2 � ð2� randð0;1ÞÞ; and f 0 ¼ 49:0 Hz

ð81Þ
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Fig. 9. Random frequency change (case a: f ðtÞ ¼ f 0 þ 2 � ð0:5� randð0;1ÞÞ case b: f ðtÞ ¼ f 0 þ 2 � ð2� randð0;1ÞÞ) where f 0 ¼ 49.
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Fig. 10. Power system under study.

Fig. 11. Three-phase ADALINE schematic diagram.
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Fig. 12. Three-phase current signals during single-line-to-ground fault, Desired (solid line), Estimated (dotted).
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Fig. 13. Fault current peak amplitude of individual phase during single line-to-ground fault.
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Fig. 14. Estimated frequency of the individual phases during single line-to-ground fault.

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
-0.01

0

0.01

0.02

0.03

0.04

TH
D

 fo
r C

ur
re

nt
 s

ig
na

l (
p.

u)

Time in seconds

Fig. 15. Total harmonic distortion (THD) during fault.
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Fig. 16. Phase voltage waveforms during tripple line-to-ground fault, Desired (solid line), Estimated (dotted).
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It is well known that small changes in fundamental fre-
quency are difficult to track and it is also difficult to ascer-
tain their impact on the power network performance. The
signal considered for the test is given by

yðtÞ ¼ 1:2 sin xt � p
8

� �
þ 0:4 sin 3xt � p

6

� �
þ 0:2 sinð5xtÞ þ 0:15 sin 7xt � 2p

3

� �
þ 0:1 sin 11xt � p

10

� �
þ tðtÞ ð82Þ

where tðtÞ is a white Gaussian noise of zero mean and
SNR = 30 dB, and the angular frequency of the signal
x ¼ 2pf ðtÞ. The random frequency changes are initiated
from 200 sample points till 850 sample points after the
normal frequency of 50 Hz is established. Fig. 9 exhibits
the distorted signal, fundamental amplitude and phase
angle, and the actual and tracked frequencies. From the fig-
ure it is quite obvious that the estimated parameters are
almost equal to the actual ones and convergence time is
extremely small in both the extreme cases of random fre-
quency change which shows the robustness and sensitive-
ness of the proposed FVSS algorithm toward random and
very small frequency variations which are common in
power signal applications.

4.3. Using fault signal generated in MATLAB/Simulink

4.3.1. Case IX: transient test
To evaluate the performance of the proposed algorithm

on a typical transmission system under transient condi-
tion, voltage and current signals are generated using
MATLAB/Simulink software.

Fig. 10 shows the schematic diagram of the power sys-
tem under study. A 11 kV substation is connected to a
440 V distribution network which has been modeled in
Simulink to generate the waveform for testing. The algo-
rithm can easily be modified to Multiple Output ADALINE
shown in Fig. 11 for the analysis of three-phase voltage
and current signals. A single line-to-ground fault is
initiated at time t = 1 s and is cleared at t = 1.2 s. The
three-phase voltage and current samples near the P.C.C
(point of common coupling) are used as input to the
algorithm for the estimation of various signal parameters.

Fig. 12 shows three phase current and the estimated
signal, and Figs. 13 and 14 show the estimated amplitude
and frequency of all the three-phase fault current signals.
The total harmonic distortion (THD), is considered for eval-
uating the performance of the proposed algorithm. The
equivalent total harmonic distortion factor for voltages is
computed as [48]

Vub;THD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼2 V2

abm;rms þ V2
bcm;rms þ V2

cam;rms

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

ab1;rms þ V2
bc1;rms þ V2

ca1;rms

� �r ð81Þ

where Vabm;rms, Vbcm;rms, and V2
cam;rms represents the root

mean square (rms) line-to-line voltages, in an unbalanced
3-phase system. Similarly the equivalent total harmonic
distortion factor for current is computed as

Iub;THD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
m¼2 I2am;rms þ I2bm;rms þ I2cm;rms

� �r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2a1;rms þ I2b1;rms þ I2c1;rms

� �r ð82Þ

where Iam;rms, Ibm;rms and Icm;rms represent the phase-a,
phase-b and phase-c RMS (root mean squares) current
values.

From Fig. 15, it can be observed that, the total harmonic
distortion for current signal remains within 2.5% using the
proposed algorithm. In a similar way, the three-phase volt-
age signal with triple line-to-ground fault is taken as input
to the proposed algorithm. Fig. 16 shows three-phase volt-
age signal and its estimated value, and Figs. 17–19 depict
the estimated amplitude and frequency of the fault voltage
signals, and the THD. It is clear from these figures that
the proposed FVSS ADALINE filter is highly sensitive to
sudden changes in frequency and amplitude during fault
conditions and hence can be used as an efficient signal
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Fig. 17. Estimated peak voltage amplitudes of individual phases during triple line-to-ground fault.
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Fig. 18. Estimated peak frequencies of individual phases during triple line-to-ground fault.
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Fig. 19. Estimation of THD (voltage) during triple line-to-ground fault.
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estimator. From Figs. 15 and 19 it can be seen that the
THD is about 2.5% for current and 1.8% for voltage signals
using the proposed method that is much below the 5.0%
limit as provided by the IEEE Standard and thus meets
the %THD requirements set by IEEE519 standard [49].
5. Conclusion

In this paper a new robust Fuzzy adaptive filter has
been proposed for the accurate measurement of frequency,
amplitude, and phase angle of voltage or current signals in
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a power network. The proposed method is tested under
different noise condition under power swing, transient,
step change, modulated change and short-circuit condi-
tions and compared with some of the widely used algo-
rithms using MATLAB/Simulink software. The new filter
is based on estimating the frequency using the Taylor ser-
ies expansion of the dynamic signal and the parameters are
computed using a robust Fuzzy adaptive learning para-
digm. The phasor of the dynamic signal are estimated
using the modified Gauss–Newton algorithm for reduced
computational overhead. The performance analysis clearly
reveals that the proposed method eliminates sensitivity to
noise and shows global convergence. A number of case
studies is presented to support the efficacy of the proposed
method that includes static signals, step changes, ampli-
tude modulations and faults, etc. Mean of RMSE and THD
are presented for obtaining a meaningful comparison with
the existing methods. The new FVSS ADALINE filter exhi-
bits accurate frequency, phasor estimation results under
dynamic conditions and achieves good noise and harmonic
rejection capabilities even under critical situations when
the frequency of the utility voltage fluctuates from its
nominal value. Also as shown the sampling frequency
requirement of the proposed algorithm is within an
acceptable range. Moreover the proposed approach con-
sumes considerably less computations and uses a simple
ADALINE structure which not only reduces the processing
time but also system complexity that makes the proposed
approach efficient to be implementable on an hardware
platform. These advantages of the proposed approach are
suitable to be used in smart integration modules which
can be used in DG systems, control and monitoring of
power quality issues, etc. In essence, the new approach
can meet the critical demand of real-time applications like
wide area monitoring, and protection of power system net-
works in a smart grid environment.
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