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SUMMARY

This paper presents the design and analysis of an adaptive algorithm for tracking the amplitude, phase
and frequency of the fundamental, harmonics and interharmonics present in time-varying power sinusoid
in white noise. If frequency, amplitude and phase of the multiple sinusoids become nonstationary, they
are estimated as an unconstrained optimization problem using robust and low complexity multi-objective
Gauss–Newton algorithm. The presented algorithm deals with frequency drift and can accurately estimate
frequency variation, amplitude and phase variation, as well as harmonic amplitude and phase variations.
Further, the learning parameters in the proposed algorithm are tuned iteratively to provide faster convergence
and better accuracy. The excellent tracking capability of proposed multi-objective Gauss–Newton algorithm
is shown through simulation and experimental results in a nonstationary environment. Copyright © 2012
John Wiley & Sons, Ltd.
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1. INTRODUCTION

The problem of estimating the frequencies and other parameters of sinusoids in white noise is a
classic one in radar, sonar, nuclear magnetic resonance (NMR), power networks, digital communi-
cation, analysis of earth waves, and so on, and has been extensively studied. Nonstationary sinusoids
occur in electrical power networks owing to the proliferation of power electronic equipments, com-
puters and microcontrollers, and result in the generation of harmonics, and interharmonics. These
harmonic and interharmonic signals circulate in the electrical network and disturb the correct opera-
tion of electronic equipments and accelerate their degradation. To correctly assess the harmonic and
interharmonic components in a distorted power signal, fast Fourier transform (FFT) [1], short time
Fourier transform (STFT) are most often used. These transforms perform satisfactorily for station-
ary signals where properties of the signals do not change with time. For nonstationary signals, the
STFT does not track the signal dynamics properly. Also, some of the FFT based windowed inter-
polation techniques have been presented [2–4] for harmonic and interharmonic estimation, and the
accuracy of each of these algorithms is influenced by the choice of windowing function. Also, in
estimating the fundamental and harmonic components of the voltage or current signal, the electrical
system frequency f is assumed to remain constant at 50 or 60 Hz. However, in a power network,
the fundamental system frequency seldom remains constant because of sudden load changes, and
therefore, even a small frequency drift can influence the estimation accuracy of the various signal
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components.Thus, the initial frequency of the signal needs to be estimated for accurate estimation of
harmonic, interharmonic amplitude and phase angles. The estimated frequency of the noisy signal
shall not be equal to the actual one when, the signal-to-noise ratio (SNR) of the signal is low and
the frequency change from the original 50 or 60 Hz is substantial.

For accurate estimation of frequency and harmonics or interharmonics in the presence of noise,
most of the algorithms are based on conventional signal processing techniques, such as recursive
least squares [5,6], notch filters [7], Kalman filters [8,9], Neural networks [10,11], linear prediction
[12], Newton methods [13–16], and other variants [17–19], and others. Although these techniques
show very good results in fundamental and harmonic estimation, they suffer from large computa-
tional overhead and take more than two cycles (based on fundamental frequency of the signal) in
converging to the desired estimation.

The Gauss–Newton methods depicted earlier [14, 15] do not estimate all the parameters of har-
monically related sinusoids, the first, only frequency and the second, one amplitude and phase of a
signal without harmonics or interharmonics. Thus, in this paper, a multi-objective Gauss–Newton
(MGN) algorithm is presented to simultaneously estimate the fundamental frequency, harmonics,
interharmonics and amplitude and phase of the power sinusoids. This algorithm estimates frequency
using the linear predictor error properties, and the amplitude and phase are computed using the
recursive Gauss–Newton procedure. Further, to improve the performance of proposed algorithm for
nonstationary signals, an adaptive variable-forgetting factor is used. Section 2 of this paper presents
the signal model and the multi-objective Gauss–Newton algorithm. In Section 3, the performance
analysis of the proposed algorithm is presented. Simulation results are included to evaluate the per-
formance of the proposed algorithm in Section 4. Finally, the conclusion is drawn in Section 5.
Although power sinusoids have been used for signal parameter estimation, the proposed approach
is a general one and can be used for any type of nonstationary signal comprising single or not
harmonically related multiple frequency components.

2. PROBLEM FORMULATION

The problem of multiple sinusoidal parameter estimation is formulated for discrete-time noisy
measurements as follows:

y.k/D s.k/C n.k/, k D 0, 1, 2, . : : : . ,N � 1 (1)

and s.k/D

RX
rD1

Ar.k/ sin.wr.k/C �r.k// (2)

where, Ar ,wr and �r are unknown values that denote the amplitude, frequency and phase of the r th
real-valued sinusoid, respectively, whereas n.k/ is an additive white Gaussian noise with unknown
variance �2. The proposed algorithm for the estimation of frequency, amplitude, and phase of the
sinusoids is presented as follows except forR (number of sinusoids), which can be obtained directly
using discrete Fourier transform.

2.1. Multi-objective Gauss–Newton algorithm

In this section, a multi-objective algorithm has been outlined to estimate the time-varying frequency,
amplitude and phase of the power signal buried in noise. Here, the different frequencies present in
the power signal are identified using a recursive Newton-type algorithm, and then they are used to
estimate the amplitude and phase of the signal using Gauss–Newton approach.

The R sinusoids in s.k/ can uniquely be expressed as a linear combination of its previous 2R
samples as follows:

s.k/D�

2RX
iD1

ais.k � i/ (3)
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where ai are referred to as linear prediction coefficients. The relationship between wr and ai is
given [12] as

2RX
iD0

ai´
i D 0 (4)

where a0 D 1 and ai D a2R�i , i D 0, 1, 2, : : : R, and ´ D exp.˙jwr/. The linear predictor coeffi-
cients ai are first estimated, and then the frequency is estimated using Equation (4). With the use of
linear predictor properties, the estimation error function is formulated as follows:

ew.k/D

R�1X
iD0

Qai .y.k � i/C y.k � 2RC i//C QaRy.k �R/ (5)

with Qai denoting the optimized value of ai , and here Qa0 may not be fixed to unity. The parame-
ter of interest can accurately be estimated by minimizing an exponentially weighted recursive cost
function given as follows:

"1.k/D

kX
iD0

�k�i1 e2w.i/ (6)

where 0 < �1 6 1 is the forgetting factor. Taking the example of a signal comprising of just two
sinusoids with different amplitude, phase and frequencies, where R D 2, the signal can be written
as follows:

s.k/D A1.k/ sin.w1.k/C �1.k//CA2.k/ sin.w2.k/C �2.k// (7)

For the estimation of frequencies of this signal using Equation (3), the linear predictor coefficients
required are a0 D a4, a1 D a3 and a2, and the estimation error for this signal from Equation (5)
can be rewritten as

ew.k/D Qa0.y.k/C y.k � 4//C Qa1.y.k � 1/C y.k � 3//C Qa2y.k � 2/ (8)

Hence, the parameter vector to be estimated is given by Q�.k/ D Œ Qa0 Qa1 Qa2�
T . As ew is not linear

in Qa0, Qa1 and Qa2, owing to time-varying nature of the signal, hence, conventional recursive least
squares algorithm cannot be applied to minimize (6). This paper uses recursive Gauss–Newton
algorithm to minimize (6), and the equation for updating sinusoidal parameter using recursive
Gauss–Newton algorithm is obtained as follows:

Q�.k/D Q�.k � 1/�H�1.k/ .k/ew.k/ (9)

and H.k/D

kX
iD0

�k�i1  .i/ T .i/ (10)

where gradient vector  is given as

 .k/D
@ew.k/

@ Q�
D

2
4 y.k/C y.k � 4/
y.k � 1/C y.k � 3/
y.k � 2/

3
5 , (11)

and the Hessian matrix H.k/ can be written as follows:

H.k/D

kX
iD0

�k�i1

2
4 .y.k/Cy.k � 4//2 .y.k/C y.k � 4//.y.k � 1/C y.k � 3// .y.k/C y.k � 4//.y.k � 2//

y.k/C y.k � 4//.y.k � 1/C y.k � 3// .y.k � 1/C y.k � 3//2 .y.k � 1/C y.k � 3//.y.k � 2//

.y.k/C y.k � 4//.y.k � 2// .y.k � 1/C y.k � 3//.y.k � 2// .y.k � 2//2

3
5

(12)
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To compute H�1.k/, one can directly use the matrix inverse lemma. But, it is computationally
expensive. The proposed algorithm reduces the computational complexity of the recursive Gauss–
Newton method by modifying the conventional method. Assuming w not near to 0 or � , H.k/ can
be approximated as follows:

H.k/D

kX
iD0

�k�i1

2
4 .y.k/C y.k � 4//2 0 0

0 .y.k � 1/C y.k � 3//2 0

0 0 .y.k � 2//2

3
5 (13)

Where

y.k/C y.k � 4/D 2A1.k � 2/ cos.2w1/ sin.w1.k � 2/

C �1.k � 2//C 2A2.k � 2/ cos.2w2/ sin.w2.k � 2/C �2.k � 2// (14)

y.k � 1/C y.k � 3/D 2A1.k � 2/ cos.w1/ sin.w1.k � 2/

C �1.k � 2//C 2A2.k � 2/ cos.w2/ sin.w2.k � 2/C �2.k � 2// (15)

y.k � 2/D A1.k � 2/ sin.w1.k � 2/C �1.k � 2//CA2.k � 2/ sin.w2.k � 2/C �2.k � 2// (16)

Using these samples into Equation (13) and solving them, we get the Hessian matrix in the following
form:

H.k/D
1��kC11

2.1��1/

2
4 8A21 cos2.2w1/ sin2.w1.k � 2/C �1.k � 2//C 8A22 cos2.2w2/ sin2.w2.k � 2/C �2.k � 2// 0 0

0 8A21 cos2.w1/ sin2.w1.k � 2/C �1.k � 2//C 8A22 cos2.w2/ sin2.w2.k � 2/C �2.k � 2// 0

0 0 2A21 sin2.w1.k � 2/C �1.k � 2//CA22 sin2.w2.k � 2/C �2.k � 2//

3
5

(17)
The terms (1,1), (2,2) and (3,3) of Equation (17) are denoted as X, Y, Z, respectively. The inverse of
the Hessian matrix H�1 can easily be calculated as

H�1.k/D

2
4 1=c.k/X 0 0

0 1=c.k/Y 0

0 0 1=c.k/Z

3
5 (18)

where

c.k/D
1� �kC11

2.1� �1/
(19)

Also, it can be observed that c.k/can be computed recursively as

c.k/D �1c.k � 1/C 1=2 (20)

Further, by putting (18) and (19) into (9), the following equations are obtained:

Qa0.k/DQa0.k � 1/� ew.k/.A1.k � 2/ cos .2w1/ sin .w1.k � 2/C �1.k � 2//

CA2.k � 2/ cos .2w2/ sin .w2.k � 2/C �2.k � 2///=4c.k/X
(21)

Qa1.k/DQa1.k � 1/� ew.k/.A1.k � 2/ cos .w1/ sin .w1.k � 2/C �1.k � 2//

CA2.k � 2/ cos .w2/ sin .w2.k � 2/C �2.k � 2///=4c.k/Y
(22)

Qa2.k/D Qa2.k � 1/� ew.k/.A1.k � 2/ sin .w1.k � 2/

C �1.k � 2//CA2.k � 2/ sin .w2.k � 2/C �2.k � 2///=2c.k/Z (23)

Then, using Equation (4), the frequencies of two sinusoids can be computed as cos�1

 
Qa1˙

q
Qa2
1
C2. Qa2C2/

4

!

[17].
After estimating frequency, the amplitude and phase of the signal are calculated using recursive

Gauss–Newton method based on another objective function in the same iteration. For calculating
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amplitude and phase of the sinusoid, let the parameter vector be �r.k/ D ŒAr.k/ �r.k/�
T and its

estimate be O�r.k/D Œ OAr.k/ O�r.k/�T . Using O�r.k � 1/, the estimate of y.k/ at time k is computed
as follows:

Oy.k/D

RX
rD1

OAr.k � 1/ sin.wrkC O�r.k � 1// (24)

The a priori estimation error at time k is given as

e� .k/D y.k/�

RX
rD1

OAr.k � 1/ sin.wrkC O�r.k � 1// (25)

and a similar exponentially weighted cost function is taken for updating the parameters as follows:

"2.k/D

kX
iD0

�k�i2 e2� .i/, 0 < �2 6 1 (26)

In (26), �2 is also another forgetting factor. In this case, also the recursive Gauss–Newton method
is used to minimize (26) in a similar manner as mentioned earlier.

The gradient vector and the Hessian matrix are given by Equations (27), and (28) respectively.

 r.k/D
@e� .k/

@ O�
D

�
� sin.wrkC O�r.k � 1//
� OAr .k � 1/ cos.wrkC O�r.k � 1//

�
(27)

Hr.k/D

kX
iD0

�k�i2

�
sin2.wr C O�r.k � 1// OAr.k � 1/ sin.2.wr C O�r.k � 1///=2
OAr.k � 1/ sin.2.wr C O�r.k � 1///=2 OA2r .k � 1/ cos2.wr C O�r.k � 1//

�
(28)

Applying similar approximation outlined earlier, the Hessian matrix in (28) can be written as
follows:

Hr.k/D

kX
iD0

�k�i2

�
1=2 0

0 OA2r .k � 1/=2

�
D
1� �kC12

2.1� �2/

�
1 0

0 OA2r .k � 1/

�
(29)

And the inverse H�1r .k/ is computed as

H�1r .k/D

�
1 =c.k/ 0

0 1= OA2r .k � 1/c.k/

�
(30)

where c.k/ is calculated as in Equation (20) with forgetting factor �2. Further, by putting (30) and
(20) into (9), the amplitude and phase are calculated as follows:

OAr.k/D OAr.k � 1/C sin. Owr.k � 1/kC O�r.k � 1//e� .k/=c.k/ (31)

O�r.k/D O�r.k � 1/ C cos. Owr.k � 1/kC O�r.k � 1//e� .k/=. OAr.k � 1/c.k// (32)

Thus, using Equations (21)–(23) and (31) and (32), frequency, amplitude, and phase of the funda-
mental, harmonic, and interharmonic components are estimated. The computation involves a few
multiplication and divisions for each frequency in the signal, and the complexity is of the same
order as adalines. The decoupled nature of the algorithm for the estimation of various amplitude and
phase components is quite apparent from these equations.

From the previously mentioned equations, it is observed that the forgetting factors �1 and �2
influence the estimation process. When the signal is contaminated with high random noise, forget-
ting factor close to 0.5 results in faster convergence, but increased sensitivity to noise. However,
using forgetting factor close to 1 (e.g., � D 0.99) results in slow convergence, but better noise
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rejection property [18]. The forgetting factor is tuned according to the dynamics of the input signal
[19, 20], and is given by the following:

�k D �0C .1� �0/e
.�´k=´0/ (33)

and another variation is

�k D �0C .�1 � �0/e
.�´k=´0/ (34)

where

´k D

kX
iD0

e� .i/ (35)

In the previously mentioned equations, �k and ´k are forgetting factor and sum of the residual
error absolute values, respectively, and �0,�1, with �0 6 �1 and ´0 are the tuning parameters. This
paper proposes an adaptive tuning method using the covariance of the error signal as follows:

�1.k/ D �1.k�1/C .1� �1.k�1// exp.�ew.k/ew.k � 1//

�2.k/ D �2.k�1/C .1� �2.k�1// exp.�e� .k/e� .k � 1// (36)

where ew.k/, e� .k/, ew.k � 1/ and e� .k � 1/ are the a priori estimation errors at time k and k � 1,
respectively. Since this tuning method uses the present and past errors combining them as a covari-
ance function, it is expected to provide better accuracy in tracking during sudden step changes
of parameters, and changes of the network topology, and others. Thus, if the covariance is large,
the forgetting factor according to Equation (36) is close to the initial small value, providing fast
convergence. However, when the convergence is achieved, the covariance is small, thus making
the forgetting factor close to 1, providing better sensitivity to noise. The major steps for comput-
ing the proposed algorithm is summarized in Figure 1 where th1 and th2 are taken to be a small
positive quantity.

3. PERFORMANCE ANALYSIS OF THE PROPOSED ALGORITHM

In this section, the mean-square estimation error of the parameters under stationary condition is ana-
lyzed. Considering the signal parameters represented as � D Œa0, a1, a2,Ar ,�r �T , the covariance
matrix in MGN method denoted as cov. O�.k//, is calculated for two different objective functions as
follows:

cov. O�.k//DE

(�
@"2
1
.k/

@ O�2

��1 h
@"1.k/

@ O�

i h
@"1.k/

@ O�

iT � @"2
1
.k/

@ O�2

��1)
O�.k/D�

D �2

"
kP
iD0

�k�i1  .i/ T .i/

#�1
�

kP
iD0

�
2.k�i/
1  .i/ T .i/ �

"
kP
iD0

�k�i1  .i/ T .i/

#�1 (37)

where E denotes the expectation operation. When k is sufficiently large, we obtain the following:

cov. O�.k//� �2

2
64

1
c.k/X

0 0

0 1
c.k/Y

0

0 0 1
c.k/Z

3
75 (38)

hence, the variance of the linear predictor coefficients are given as follows:

var.Qa0.k//D
�2.1��1/

4.1��kC11 /.A21 cos2.2w1/ sin2.w1.k � 2/C �1.k � 2//CA22 cos2.2w2/ sin2.w2.k � 2/C �2.k � 2// /
(39)

var.Qa1.k//D
�2.1��1/

4.1��kC11 /.A21 cos2.w1/ sin2.w1.k � 2/C �1.k � 2//CA22 cos2.w2/ sin2.w2.k � 2/C �2.k � 2// /
(40)
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Input samples

NO 

YES

NO 
YES

NO

YES 

Update the coefficients  using (21), (22), (23), and frequency using(4)

Compute H−1 and c(k) using (11) H(k) (17) , iter=iter+1

Loop 

Start 

Calculate signal(24), error (25) cost function (26) 

Update the coefficients using (31), (32), and learning parameter using(36)

Figure 1. Summary of the major steps for computing the proposed algorithm.

and

var. Qa2.k//D
�2.1� �1/

2.1� �kC11 /.A21 sin2.w1.k � 2/C �1.k � 2//CA22 sin2.w2.k � 2/C �2.k � 2///
(41)

Similarly, analyzing cov. O�.k// for the second cost function, the variance of the amplitude and
phase are found to be

var. OAr .k//D
2�2.1� �2/

.1� �kC12 /
(42)

and

var. O�r.k//D
2�2.1� �2/

A2.1� �kC12 /
(43)

If all the forgetting factors are made equal to unity, then the variances will attain their Cramer–Rao
lower bound for sufficiently large values of k and with �.k/ considered as a Gaussian distributed
noise. Hence, it is proved that the MGN algorithm attains optimal performance for stationary
amplitude, phase and frequency in an asymptotic sense.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:166–181
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4. SIMULATION RESULTS

Computer simulations have been carried out to evaluate the performance of the proposed algorithm.

A. Case 1.
The first experiment is done for the estimation of power signal with abrupt frequency change. The
signal frequency changes from 50 to 45 Hz. The signal is tested for comparing the accuracy of the
proposed tuning method. The power signal is represented as

y.k/D A.k/ sin.w.k/kC �.k//C nk (44)

In this case, the sampling frequency is taken to be 1 kHz, as the interest lies in computing the funda-
mental frequency changes. Figure 2(a) shows clearly the accurate tracking capability of the proposed
adaptive tuning method (given in Equation (36)) in comparison with the other two methods (given
in Equations (33) and (34)). Hence, for the rest of the analysis, the proposed tuning method is used.
Now, for comparing the effect of different sampling rates, the test signal given in Equation (44)
with constant frequency of 50 Hz and amplitude 1.0 pu. is considered. First, the signal parameters
are estimated using 1 kHz sampling rate, and then the test signal is applied to a sampling rate of
6.4 kHz to the proposed MGN algorithm with the adaptive tuning method. Figure 2(b) clearly shows
that both the estimation converges almost in the same time. For real time estimation of fundamen-
tal components the sampling rate should be kept small whereas for harmonic estimation, a higher
sampling rate can be used.

Case 2
The second experiment is performed for the estimation of power signal, which includes step
change in frequency, amplitude and phase for obtaining the percentage estimation error for dif-
ferent algorithms that include extended Kalman filter (EKF) [9], two-stage adaline [11], supervised
Gauss–Newton algorithm [13], multi-objective Gauss–Newton with constant forgetting factor, and
adaptively tuned MGN for different noise levels. The power signal considered for the test is the
same as that given in Equation (44). The initial forgetting factor is �1 D �2 D 0.55. For the
first 70 samples, freq D 60 Hz, A D 1 pu,˚ D �=4; for 70 to 150 sample parameter change to
freq D 59.5 Hz, A D 1.2pu,˚ D �=6, after which they take their initial values of amplitude and
phase with freq D 59.7 Hz. To test the noise sensitivity of the proposed adaptive filter additive
white Gaussian noise (AWGN) [20, 21] of SNR varying from 10 to 40 dB is considered. The SNR
is defined as follows:

SNR .dB/D 10 log.Ps=Pn/D 20 log.A=
p
2�/ (45)

where Ps is the power of the signal and Pn is the noise power, A is amplitude of the signal and
� standard deviation of noise signal. A 30-dB noise indicates a peak noise magnitude of 3.1%
.variance�2 D 0.0005/ of the signal, whereas a noise of 10 dB is equivalent to nearly 31%
.variance�2 D 0.05/ of the signal peak amplitude. The performance of the algorithm is tested
with high-noise condition of 10 dB as shown in Figure 3.

From the simulation results, it is clear that the proposed MGN with adaptive forgetting factor
shows better noise rejection capability in comparison with the MGN algorithm with constant for-
getting factor set to �1 D �2 D 0.55. The comparison of the percentage estimation error of different
algorithms for different noise levels for this test signal is presented in Table I. The program is run
on a computer with CPU: Intel Pentium 2.00 GHz and Memory: 760 MB (Sta. Clara, CA, USA).
Table II gives the one-step iterative calculation time of different algorithms for this test signal, and
from this table, it is clear that the proposed MGN method with adaptively tuned forgetting fac-
tor provides significant accuracy in the estimation of amplitude, phase and frequency of a 60-Hz
power signal.

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:166–181
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Figure 2. (a) Comparison of different tuning methods Case 1: method 1 (dash-dot), method 2 (dashed), pro-
posed adaptive tuning (solid line); and (b) comparison of different sampling rate Case 1: 1 kHz (solid line),

6.4 kHz (dashed).

Case 3. Harmonic tracking of static signal
A harmonically related signal in noise is used for the estimation of the third, seventh, ninth and 13th
harmonic components, which is typical in industrial load comprising power electronic converters
and arc furnaces [10–12].

y.k/D 5 sin.!kTs C 45
0/C 1.5 sin.3�!kTs C 36

0/ C 0.85 sin.7�!kTs C 30
0/

C 0.75 sin.9�!kTs C 25
0/ C 0.5 sin.13�!kTs C 22

0/C nk (46)

This test signal has fundamental frequency equal to 60 Hz and a zero mean white Gaussian noise
with SNR D 30 dB .variance �2 D 0.0005/ is added to this test signal. A sampling frequency of
7.68 kHz is chosen with a view that the algorithm can estimate up to the 64th harmonic component
present in the signal. Figure 4(a) and (b) shows the estimated frequency, amplitude and phase of
the seventh and 13th harmonic components, respectively, and it is obvious from the figure that fast
convergence to their true values (less than a cycle) and accuracy in estimation are achieved using

Copyright © 2012 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2013; 27:166–181
DOI: 10.1002/acs



SIGNAL PROCESSING ADAPTIVE ALGORITHM 175

20 40 60 80 100 120 140 160 180 200
59

60

61

fr
eq

ue
nc

y

0 20 40 60 80 100 120 140 160 180 200

1

1.2

A
m

pl
itu

de

0 20 40 60 80 100 120 140 160 180 200
0.4

0.6

0.8

Samples

P
ha

se

Figure 3. Estimation of all the parameters of case 2, multi-objective Gauss–Newton (dotted line), adaptive
multi-objective Gauss–Newton (solid line).

Table I. Comparison of the percentage estimation error of different algorithms
for different noise levels for the test signal.

Algorithm Noise in (%) Frequency error Amplitude Phase
(%) error (%)

EKF 3.16 0.3026 1.080 0.547
10.00 0.4040 3.900 4.070
31.60 2.1160 6.090 6.520

Two-stage adaline 3.16 0.0030 0.991 0.032
10.00 0.0970 1.730 0.179
31.60 0.5360 2.010 0.972

Supervised 3.16 0.0046 0.781 0.050
Gauss–Newton algorithm 10.00 0.1024 1.020 0.120

31.60 0.6210 1.400 0.990
MGN with constant 31.6 0.0042 0.700 0.025
forgetting factor 10.00 0.0768 1.120 0.089

31.60 0.4060 1.360 0.820
MGN with adaptively 3.16 0.0024 0.500 0.021
tuned forgetting factor 10.00 0.0642 0.870 0.089

31.60 0.2030 1.090 0.793

EKF, extended Kalman filter; MGN, multi-objective Gauss–Newton.

Table II. One-step iterative calculation time of
different algorithms for the test signal.

Algorithm (ms) Time (ms)

EKF 1.49
Two-stage adaline 0.81
Supervised Gauss–Newton algorithm 0.78
MGN with constant forgetting factor 0.7
MGN with adaptive tuning 0.75

EKF, extended Kalman filter; MGN, multi-objective
Gauss–Newton.

the proposed adaptively tuned MGN algorithm. The algorithm is very fast as it does not invert a
Jacobean similar to the normal Gauss–Newton method [14].
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(a) 7th harmonic  parameter estimation
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(b) 13th harmonic parameter estimation.

Figure 4. (a) Seventh and (b) 13th harmonic parameter estimations.

Case 4. Harmonic and interharmonic estimation
The test power signal is assumed to comprise a fundamental, several harmonics and two interhar-
monics and is expressed as follows:

y.k/D 5 sin.!kTs C �=4/C 1.5 sin.3�!kTs C �=4/ C 0.75 sin.7�!kTs C �=4/
C0.5 sin.285�kTs C �=7/C 0.85 sin.510�kTs C �=4/C nk

(47)

The frequency of the fundamental component of the previously mentioned signal is 50 Hz, and
two interharmonic frequencies are 285 and 510 Hz, respectively. The estimated parameters of the
interharmonic components are shown in Figure 5(a) and (b), respectively. From the figures, it is
clear that the proposed algorithm with the variable forgetting factor takes less than two cycles for the
estimation of interharmonics. The accuracy in estimation of all the parameters is given in Table III.

B. Experimental results
To evaluate the performance of the proposed algorithm in a real-time environment, a laboratory setup
has been used to capture real-time nonstationary signal data. The estimation algorithm originally
developed using MATLAB (MathWorks, Natick, MA, USA), is now reformulated with the
LAB VIEW (National Instruments, Austin, Texas) software. The static as well as the dynamic
performance of the proposed algorithm is tested using this software.
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(a) 1st Inter harmonic parameter estimation.
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(b) 2nd Inter harmonic parameter estimation

Figure 5. (a) First and (b) second interharmonic parameter estimations.

Case 5
The fifth experiment is performed to test static performance of the proposed algorithm in real-
time environment. The recorded signal contains up to the 30th odd harmonic components, with
fundamental frequency of 30 Hz, and is modeled as follows:

y.k/D

29X
nD1

An sin.n!0kTs C �n/ (48)

The fundamental and the harmonic amplitude and phase of the signal is estimated using the
proposed algorithm using LAB VIEW software. Figure 6(a) shows the recorded real-time signal.
Figure 6(b) shows the estimated fundamental components of the signal, and Figure 6(c) shows the
25th harmonic component of the signal. From the figure, it is clear that the proposed algorithm can
efficiently estimate the real-time signal in a laboratory setup.

Case 6
The sixth experiment is performed to test the dynamic performance of the proposed algorithm in
real-time environment using a highly distorted damped sinusoid with harmonics and corrupted with
30 dB (variance �2 D 0.0005/ noise.
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Figure 6. (a) Recorded real-time signal, (b) fundamental component estimation, and (c) 25th harmonic
parameter estimation.
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Figure 7. (a) Fundamental amplitude, (b) fifth, and (c) seventh harmonic amplitudes.
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Table III. Accuracy in estimation of all the parameters.

Order of Estimated Frequency Estimated Amplitude Estimated Phase
harmonic and frequency error amplitude error phase error
interharmonic (%) (%) (%)

Fundamental 60.0061 0.0101 5.0001 0.0020 0.8002 0.025
frequency
Third harmonic 179.9694 0.0170 1.4993 0.046 0.5999 0.0166
Interharmonic 284.9571 0.0150 0.5001 0.020 0.4001 0.025
Seventh harmonic 419.9991 0.0230 0.7493 0.0930 0.5003 0.060
Interharmonic 509.9932 0.0019 0.8501 0.011 0.7004 0.0517

The damped sine wave with harmonic is modeled as follows:

y.k/D
�
A1 �A2e

�˛1kTs
�

sin.!0kTs C �1.k//

C
9P
nD3

Ane
�˛nkTs sin.n!0kTs C �n.k//

(49)

and the parameters are set as initial forgetting factor, �1 D �2 D 0.85. The fundamental fre-
quency is 50 Hz, and the amplitude and phase angle of the various components are chosen as
A1 D 1.5 pu, A2 D 1 pu, A3 D 0.5 pu, A5 D 0.2 pu, A7 D 0.1 pu, A9 D 0.05 pu,
˛1 D 5, ˛3D ˛5D ˛7D ˛9D 2, �1 D 0.8, �3 D 0.4, �5 D 0.7 �7 D 0.6, �9 D 0.5.
Figure 7(a)–(c) shows fundamental fifth and seventh harmonic amplitude components of the esti-
mated signal, respectively. From the figure, it is clear that the proposed algorithm outperforms even
the estimation of such a complex signal in a laboratory setup.

5. CONCLUSION

This paper presents a robust adaptive multi-objective Gauss–Newton algorithm for the estimation
of amplitude, phase and frequency of multiple time-varying power sinusoids buried in noise. For
power sinusoids, where all the above parameters vary, a multi-objective algorithm produces the best
convergence and least tracking error even in the presence of strong Gaussian white noise with low
SNR. To highlight the robust tracking property of the proposed approach, several computational
experiments have been presented that includes power frequencies of single and multiple sinusoids
with step changes in amplitude, frequency and phase. Also the tracking of damped sinusoids with
relatively much less computational burden has been presented with high accuracy. The time required
for convergence of the signal parameters to their true values with different SNR is less than a cycle.
The proposed algorithm has also been tested for real-time signals producing accurate tracking results
within a time period of less than two cycles based on the fundamental frequency component.
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