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Abstract: Epilepsy is the most common neurological disorder characterised by 
a sudden and recurrent neuronal firing in the brain. As EEG records the 
electrical activity of the brain so it helps to detect epilepsy of the subject. Early 
detection of epileptic seizure using EEG signal is most useful in several 
diagnoses. So aim of the work is to study and compare the different techniques 
used for feature extraction and classification algorithm. Epilepsy detection 
research is oriented to develop non-invasive and precise methods to allow 
accurate and quick diagnose. In this paper, we present a review of significant 
researches where we can find most suitable method among existing members to 
improve computing efficiency and detect epilepsy of the subject efficiently and 
accurately with lesser computational time. The database which is publicly 
available at Bonn University is taken. 
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1 Introduction 

Human brain is an organic electrochemical computer where neurons generate electricity 
through chemical reactions. This nature of neurons leads to action, behaviour and modes 
of human. The recording of electrical activity of brain over a small duration of time is 
called Electroencephalography and the waveform recorded is called EEG signal. EEG 
signal contains valuable information about brain activity. We can see the waveform 
recorded and find any abnormalities or disorder or diseases relating to brain. Some 
common diseases related to brain are epilepsy, Parkinson’s disease, Alzemeir, etc. 
Epilepsy is one of the most common neurological disorder that 60 million people suffer 
worldwide reported by WHO (Acharya et al., 2013; Gajic et al., 2014). Seizures come 
without a symptom and are the temporary anomalies, causes abnormal electrical 
behaviour of brain cells. Epilepsy seizure may lead to situations like fractures, burns, 
submersion, motor vehicle accidents and even death. Hence a lot of research is being 
done for the early detection of seizure. 

EEG is a non-invasive method to diagnose brain diseases. Epilepsy detection study 
focuses on classifying only the normal and ictal stages (two-class problem), or the 
methods for classifying all three stages, namely, normal, interictal and ictal (three-class 
problem). The two primary considerations for detection of epilepsy are the type of 
features to be extracted from the EEG input signal (feature extraction techniques) and the 
type of analysis techniques to be applied on these extracted features to detect the stage 



   

 

   

   
 

   

   

 

   

    A systematic review on detection and estimation algorithms of EEG signal 145    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

(classification techniques). There are a number of seizure detection techniques available 
to classify seizure and non-seizure EEG signals. Epileptic seizure detection can be done 
using pre-processing, feature extraction, feature selection and classification. 

1.1 Motivation 

Epilepsy can be detected by experienced neurologist by visual inspection of EEG 
recordings for ictal, interictal activity. But it is a very time consuming process for long 
term recording. Early days, epileptic seizure automatic analysis is done using Fourier 
transform and parametric methods. The epilepsy gives rise to frequency changes in  
sub bands [δ (0.4–4 Hz), θ (4–8 Hz), α (8–12 Hz), β (12–30 Hz)]. The EEG analysis 
methods can broadly be classified in to time domain analysis, frequency domain analysis, 
time–frequency domain analysis, higher order spectral analysis, nonlinear dynamic 
analysis and artificial neural network analysis. Spectral parameters and features extracted 
from the Fourier transform are commonly used for detection and classification of 
epileptic seizure EEG signals, but assumption is that Fourier transform-based analysis, 
the signal being analysed is stationary. To overcome the problems associated with 
conventional frequency-based detection techniques, time-frequency analysis-based 
detection techniques have been employed (Tzallas et al., 2009). Various time-frequency 
domain methods are Short time Fourier transform (Parvez et al., 2015), wavelet transform 
(Ocak, 2009; Kumar et al., 2017), multi wavelet transform (Bajaj and Pachori, 2012). The 
behaviour of neuron is dynamic. It is decided by threshold and saturation phenomena. So, 
the functioning of the brain at the microscopic level, i.e., the interplay of neurons, is 
extremely nonlinear in nature. Hence, Nonlinear dynamics analysis methods may be 
preferred more for the analysis of the complex and nonlinear EEG waveform recorded 
from the brain than time and frequency domain methods. Finally, these nonlinear 
methods are used to extract parameters for analysis and classification of EEG signal. 

The paper is organised as follows: Section 2 describes the detection methods 
available in literature. Section 3 outlines data collection method and Section 4 discusses 
the findings of different methods of the present work. Conclusion and future scope is 
discussed in Section 5. 

2 Research methodology 

The detection methods available in literature consisting of following major steps: 

1 pre-processing 

2 feature extraction technique 

3 feature selection 

4 classification technique (Acharya et al., 2013). 

Pre-processing is done on EEG signal to remove noise and artefacts from the signal. 
These artefacts can be removed using filtering methods (Orosco et al., 2013). Band pass 
Filter removes artefacts and allows the frequency range of 0.5 ~100 Hz of intracranial  
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EEG. Notch filter removes 50 Hz powerline interference. Independent component 
analysis (ICA) (Tong and Thakor, 2009; Sanei and Chambers, 2007), adaptive filtering 
methodologies are used for noise cancellation (He et al., 2005). Pre processing also helps 
to normalise the signal, putting all the data in a particular amplitude range so that 
comparison among the signals coming from different patient (Varsavsky et al., 2011) is 
possible. Similarly various feature extraction method used are some common spectral 
features are average band frequency, maximum power (Aarabi et al., 2006), central, 
mean, and peak frequencies (Orosco et al., 2011), and dominant frequency (Aarabi et al., 
2009), power spectrum, spectral flux, spectral roll-off, spectral centroid, spectral entropy 
and spectral flatness (Greene et al., 2008; Mitra et al., 2006). Choosing best feature to 
best describe data reducing irrelevant variables and noise and provide good prediction 
results is called feature selection (Guyon and Elisseeff, 2003). The methods used for 
feature selection are: 

1 filter 

2 wrapper 

3 embedded method. 

The feature selection method used for epilepsy EEG classification are two stage feature 
selection algorithm, i.e., individual feature evaluation (IFE)) and sequential backward 
selection (SBS). This is a wrapper selection method (Mechmeche et al., 2016), sequential 
feature selection (SFS) for dimensionality reduction (Ghayab et al., 2016). After a 
successful feature selection process classification of data is done. This is the decision 
making stage of the EEG data in feature space. There are several classifiers used for 
epileptic EEG signal classification. Various machine learning algorithm like neural 
network (Husain and Rao, 2014), fuzzy inference system (Subasi, 2007), statistical 
analysis methods, wavelets (Adeli et al., 2003; Ocak, 2009), etc. used to give 
classification with high accuracy. Radial basis function neural network helps in 
discriminating the normal and seizure signal (Aslan et al., 2008). Multi-layer perceptron 
neural network is one of the widely used NN for classification (Ghosh-Dastidar et al., 
2007; Yildiz et al., 2017). 

3 Data collection (Andrzejak et al., 2001) 

For classification of epilepsy, one of the publicly available dataset is used, i.e., Bonn 
University Epilepsy Dataset. It has five subsets. Each subset contains 100 EEG signals. 
Duration of each signal is 23.6 sec. Two subsets are collected from healthy persons, two 
from seizure free interval or interictal period and one during seizure period or ictal period 
of epileptic patients. Scalp EEG are used for two subsets and intracranial EEG are 
considered for three subsets. Epileptic EEG signals are captured by 32 electrodes and 
collected from five patients. Each segment has 4,097 data points and sampled at  
173.61 kHz as presented in Table 1. The signals from each subset (Z, S, F, N and O) are 
shown in Figure 1. 
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Table 1 EEG dataset 

 Normal class (Z, O) SF class(N, F) S class (S) 
Number of subjects Five healthy Five epileptic Five epileptic 
Electrode type Extracranial Intracranial Intracranial 
Electrode placement Standard electrode 

placement scheme 
Epileptic zone Epileptic zone 

Subject’s state Normal Seizure-free (interictal) Seizure (ictal) 
Number of EEG signals 200 200 100 
Signal duration 23.6 second 23.6 second 23.6 second 

Source: Bajaj and Pachori (2011) 

Figure 1 Example of EEG signal for Z, S, F, N and O (see online version for colours) 

 

Source: Bajaj and Pachori (2011) 

4 Performance evaluation of seizure detection methods 

The nonlinear characteristic of the epileptic EEG and its detection methods needs a  
wide-ranging collection of criteria for their assessment. Reliability of seizure detection 
methods is generally measured by various traditional performance indices, such as 
classification accuracy, sensitivity, specificity, etc. These indices can be calculated as 
follows (Jaiswal and Banka, 2017): 

(%) 100TPSEN
TP FN

= ×
+

 (1) 

(%) 100TNSPE
TN FP

= ×
+

 (2) 
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(%) 100TP TNACC
TP TN FP FN

+= ×
+ + +

 (3) 

TPPrecision
TP FP

=
+

 (4) 

where 

• TP (true positive): correctly detected positive signals 

• TN (true negative): correctly detected negative signals 

• FP (false positive): erroneously detected positive signals 

• FN (false negative): erroneously detected negative signals. 

A combined value of the precision and recall can give a single numeric evaluation for an 
algorithm called F-measure (John et al., 1999). A constant β controls the trade-off 
between precision and recall (Satapathy et al., 2017). One additional parameter named 
Matthew’s correlation coefficient (MCC) can also be used to evaluate performance (Azar 
and El-Said, 2014; Fawcett, 2006). MCC parameter provides more balanced measure of 
classification performance as compared to sensitivity, specificity and accuracy. 
Generally, the advantage of using MCC becomes apparent when number of observations 
in two classes differs very much. 

(%) 100
( )( )( )( )

TP TN FP FNMCC
TP FN TP FP TN FN TN FP

∗ − ∗= ×
+ + + +

 (5) 

Ghosh-Dastidar et al. (2007) discuss the problem of improving classification accuracy 
from two different angles. 

1 appropriate feature space needs to design by identifying combinations of parameters 
that increase the interclass separation 

2 a classifier needs to design that accurately model the classification problem based on 
selected feature space. 

Nine-parameter mixed band feature space is input to LMBPNN classifier with 
classification accuracy 96.7%. Similar comparative study of different Seizure detection 
techniques have been done based on the indices discussed above, and also using some 
other criteria, such as the type of feature extraction method, classifier etc. This analysis is 
illustrated in Table 2. However, the analysis doesn’t include all the criteria for each 
method, because literature did not provide the information needed to obtain all of the 
criteria. 
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Table 2 Comparative study of different seizure detection techniques 
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Table 2 Comparative study of different seizure detection techniques (continued) 

 Re
fe

re
nc

es
 

Fe
at

ur
e 

ex
tr

ac
tio

n 
m

et
ho

d 
Fe

at
ur

es
 e

xt
ra

ct
ed

 
C

la
ss

ifi
er

 
Ac

cu
ra

cy
 (A

C
C

) 
Se

ns
iti

vi
ty

 
Sp

ec
ifi

ci
ty

 

G
uo

 e
t a

l. 
(2

01
0a

) 
M

ul
ti 

w
av

el
et

 tr
an

sf
or

m
 

m
et

ho
d 

A
pE

n 
M

LP
N

N
 

99
.8

5%
 

 
 

Li
 e

t a
l. 

(2
01

7)
 

D
ua

l t
re

e-
co

m
pl

ex
 W

T 
m

et
ho

d 
H

ur
st 

co
m

po
ne

nt
, f

ra
ct

al
 d

im
en

sio
n 

an
d 

pe
rm

ut
at

io
n 

en
tro

py
 

SV
M

 
98

.8
7 

 
 

Pa
ch

or
i a

nd
 B

aj
aj

 (2
01

1)
 

EM
D

 
Su

rfa
ce

 a
re

a 
of

 th
e 

ci
rc

ul
ar

 c
om

pl
ex

 
pl

an
e 

LS
-S

V
M

 
98

.3
3%

 
 

 

Pa
ch

or
i (

20
08

) 
EM

D
 

M
ea

n 
fre

qu
en

cy
 

K
ru

sk
al

-W
al

is 
te

st 
P 

< 
0.

01
 

 
 

A
la

m
 a

nd
 B

hu
iy

an
 (2

01
3)

 
EM

D
 

Co
ef

fic
ie

nt
 v

ar
ia

tio
ns

, f
lu

ct
ua

tio
n 

in
de

x 
SV

M
 

 
98

%
 

99
.4

%
 

Pa
tid

ar
 a

nd
 P

an
ig

ra
hi

 (2
01

7)
 

EM
D

 
ob

ta
in

 h
ig

he
r o

rd
er

 st
at

ist
ic

al
 m

om
en

ts 
su

ch
 a

s v
ar

ia
nc

e 
ku

rto
sis

, s
ke

w
ne

ss
 

A
N

N
 

Be
tte

r p
er

fo
rm

an
ce

 
th

an
 o

th
er

 ti
m

e 
fre

qu
en

cy
 te

ch
ni

qu
e 

 
 

Pa
tid

ar
 a

nd
 P

an
ig

ra
hi

 (2
01

7)
 

Tu
ne

d 
Q

 W
T 

K
ra

sk
ov

 e
nt

ro
py

 
SV

M
 

97
.7

5%
 

97
%

 
99

%
 

Sa
ta

pa
th

y 
et

 a
l. 

(2
01

7)
 

D
W

T 
En

tro
py

, m
in

, m
ax

, m
ea

n,
 e

ne
rg

y 
RF

 
98

%
 

 
 

G
uo

 e
t a

l. 
(2

01
0b

) 
W

T 
Li

ne
 le

ng
th

 fe
at

ur
es

 
A

N
N

 
99

.8
5%

 
 

 
A

ch
ar

ya
 e

t a
l. 

(2
01

2)
 

D
W

T-
IC

A
 

D
W

T,
 IC

A
 c

oe
ffi

ci
en

ts 
SV

M
 

96
 

 
 

Za
hr

a 
et

 a
l. 

(2
01

7)
 

M
EM

D
 

W
ei

gh
te

d 
m

ea
n 

fre
qu

en
cy

 
A

N
N

 
87

.2
 

 
 

A
bd

ul
ha

y 
et

 a
l. 

(2
01

7)
 

D
Q

 
Sh

an
on

 e
nt

ro
py

 o
f i

ns
ta

nt
an

eo
us

 
am

pl
itu

de
 a

nd
 fr

eq
ue

nc
y 

Ra
nd

om
 fo

re
st 

98
.3

~9
9.

7%
 

 
 

Fe
rg

us
 e

t a
l. 

(2
01

6)
 

LD
A

b 
Pe

ak
 fr

eq
ue

nc
y,

 m
ed

ia
n 

fre
qu

en
cy

, 
va

ria
nc

e,
 e

tc
 

K
N

N
C 

91
%

 
84

%
 

85
%

 

N
ot

es
: B

PN
N

 –
 b

ac
k-

pr
op

ag
at

io
n 

ne
ur

al
 n

et
w

or
k;

 S
V

M
 –

 su
pp

or
t v

ec
to

r m
ac

hi
ne

; D
T 

– 
de

ci
sio

n 
tre

e;
 R

F 
– 

ra
nd

om
 fo

re
st;

 E
M

D
 –

 e
m

pi
ric

al
 m

od
e 

de
co

m
po

sit
io

n;
  

Ls
-S

V
M

 –
 le

as
t s

qu
ar

e 
su

pp
or

t v
ec

to
r m

ac
hi

ne
; W

T 
– 

w
av

el
et

 tr
an

sf
or

m
; A

pE
n 

– 
ap

pr
ox

im
at

e 
en

tro
py

; S
am

pE
n 

– 
sa

m
pl

e 
en

tro
py

; S
TD

 –
 st

an
da

rd
 d

ev
ia

tio
n;

 
M

LP
N

N
 –

 m
ul

ti 
la

ye
r p

er
ce

pt
ro

n 
ne

ur
al

 n
et

w
or

k;
 E

EM
D

 –
 e

ns
em

bl
e 

em
pi

ric
al

 m
od

e 
de

co
m

po
sit

io
n;

 C
EE

M
D

 –
 c

om
pl

et
e 

 e
ns

em
bl

e 
em

pi
ric

al
 m

od
e 

de
co

m
po

sit
io

n;
 D

Q
 –

 d
ire

ct
 q

ua
dr

at
ur

e;
 K

N
N

C
 –

 K
-n

ea
re

st 
ne

ig
hb

ou
r c

la
ss

ifi
er

. 



   

 

   

   
 

   

   

 

   

    A systematic review on detection and estimation algorithms of EEG signal 151    
 

 

    
 
 

   

   
 

   

   

 

   

       
 

From the above study it is found that the features that alpha, beta, gamma, theta and delta 
waves provide gives higher classification accuracy and best average classification. Many 
authors have used EMD and its variants to obtain finite set of band-limited signals called 
IMFs. IMFs provide a set of proper rotations. This behaves as a feature to detect the 
epileptic seizure. To illustrate IMFs are produced as shown in Figures 2–4. The first IMF 
imf1 produced is the highest frequency by its construction. Residue signal less oscillated 
than the original signal. Remaining signal still may be compound of several frequencies. 
The same procedure is applied on the residue signal to obtain the next IMF. By the 
construction, the number of extrema will eventually decrease as the procedure continues 
so that a signal is sequentially decomposed into the highest frequency component imf(1) 
to the lowest frequency component imf(n), for some finite n. Though there are  
five subsets of epileptic EEG signal set (Z S N F O) are present but they are basically 
Normal (Z, O), ictal (S) and interictal (N, S). Figures 2, 3 and 4 show the band limited 
IMFs of 23.6 second normal, ictal and interictal EEG signals. Though EMD is widely 
used now-a-days, it has some drawbacks as: 

1 presence of oscillations of very disparate amplitude in a mode 

2 presence of very similar oscillations in similar modes called ‘mode mixing’. 

But EEMD performs EMD over an ensemble of signal plus white Gaussian noise 
(WGN). WGN solves mode mixing by populating the whole time frequency space. 

Figure 2 EMD of 23.6 sec duration normal EEG signal (see online version for colours) 
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Figure 3 EMD of 23.6 sec duration seizure (ictal) EEG signal (see online version for colours) 

 

Figure 4 EMD of 23.6 sec duration non-seizure (interictal) EEG signal (see online version for 
colours) 
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5 Conclusions and future scope 

EEG signal is highly nonlinear. Visual inspection is a tedious job and variations while 
observation is an issue for analysis of the signal. Abrupt and uncertain nature of epilepsy 
causes a serious discomfort to the patients. The difficulties motivated for developing 
automated seizure detection technique to assist neurologist to diagnose more accurately 
and faster. In this paper a detailed review of seizure detection methods that best classify 
the normal, ictal (seizure) and interictal (seizure free) signal has been done. Various 
signal analysis techniques such as linear, time-domain, frequency domain,  
time-frequency methods are presented in this review. In addition to this, a comprehensive 
literature survey on issues related to the techniques is highlighted in Table 2. 
Furthermore, various criteria to evaluate the performance of different detection 
techniques are also presented in details in Section 4. A wide range of research has been 
performed to diagnose the risk of epilepsy. Although certain development has been made, 
but an accomplish solution has not been obtain. Advancements in various aspects of 
utility operations may reduce risks from epilepsy. From the comparative studies of 
various techniques it has been observed that accuracy is higher in some methods but the 
challenges require further advancement of methods. More research is going on and need 
to be done to achieve 100% result with faster response in every aspect of the treatment of 
epilepsy. 
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