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Abstract: A simple and robust non-linear filter algorithm has been proposed in this study for estimating the
frequency of a time-varying sinusoidal signal under high noise conditions. The real signal is first converted to
an analytical signal and its complex state-space model is derived. An unscented complex Kalman filter (CUKF)
is then obtained using the complex signal model and the error covariances along with the Kalman gain are
updated iteratively. Also, the stability and the convergence characteristics of the proposed filter are presented
for a single sinusoid embedded in noise. It has been shown that the proposed algorithm works efficiently for
the estimation of abrupt changes in signal frequency under high noise conditions. To evaluate the
performance of the proposed algorithm several computer simulation results of real-time and synthetic signals
are presented. Further to improve the performance of the proposed filter in the presence of significant noise
and distortions, the covariance matrices are tuned iteratively.
1 Introduction
The problem of estimating frequency and other parameters
directly from measured discrete sinusoids in the presence
of noise plays an important role in communication, control,
instrument and power systems. Once the frequency of
the signal is estimated, other parameters of the signal can
accurately be estimated. Several methods are available in the
literature on frequency estimation among which, the widely
used once are: discrete Fourier transforms [1], least square
technique [2], adaptive notch filter [3], multiple frequency
tracker [4], high-order adaptive notch filters [5, 6], Newton
type algorithms [7–9] and new variants of Kalman filter
[10–13]. The notch filters in [2–4] track accurately the
slow time-varying frequency of a sinusoid using linear filter
approximation but fail to track sudden changes in system
frequency during transient conditions. Further the filter in
[5] uses different formulae and different tuning factors for
tracking frequency for different non-stationary situations like
linear frequency change, random walk frequency drift and
step changes and thus is difficult to implement in practical
situations where the signal frequencies change abruptly. The
Newton type algorithms are computationally intensive and
are likely to diverge for a wrong choice of the initial estimate.
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Among the several numerical techniques described above,
Kalman filters have attracted widespread attention, as they
accurately estimate the amplitude, frequency and phase of a
signal corrupted with high noise and harmonics. However,
extended Kalman filter (EKF) has two well-known
drawbacks; the first-order linearisation can introduce large
errors in mean and covariance of the state vector, and costly
Jacobean matrix calculation. The extended Kalman filters
presented in the above references are able to track small linear
changes in system frequency in high noise environment but
fail to track sudden large step changes during transient
conditions as in the case of several variants of adaptive notch
filters. Recently, a relatively new non-linear derivative free
filtering algorithm named unscented Kalman filter (UKF)
is proposed [14–16] to decrease the linearisation errors by
taking into consideration the second-order terms of Taylor
series expansion. The UKF approximates the probability
density resulting from the non-linear transformation of a
random variable. It is implemented using a deterministic
sampling approach to capture the mean and covariance
estimates more accurately with a minimal set of sampling points.

Although the real versions of both EKF and UKF are used
in many applications for tracking signal frequencies, the
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complex version of EKF is much simpler and direct as far
as the frequency measurement is concerned and outperforms
the real extended Kalman filter in terms of speed of
convergence, accuracy and stability [17, 18]. Moreover,
complex representations can make the measurement
function the likelihood of linear formulation to reduce the
influence of high-order terms. But the complex extended
Kalman filter is still unable to track accurately the
frequency in presence of harmonics and abrupt large
transient disturbances. Hence to overcome the above-
mentioned problems, a new complex UKF (CUKF)
algorithm proposed in this paper. The CUKF uses an
unscented transformation (UT) to a complex state-space
model of the sinusoid and computes the covariances and
the Kalman gain from the measurements corrupted with
white noise. Further to improve its performance during
large frequency changes, a self-tuning technique is used to
update the model and measurement error covariances and
this filter is named as adaptive unscented complex Kalman
filter (ACUKF).

This paper is organised as follows; Section 2 presents a
problem treated in this paper. Section 3 derives an algorithm
of the proposed non-linear filter based on UKF. Section 4
gives the stability analysis of the proposed algorithm.
Section 5 describes the ability of proposed algorithm
through simulation results. Comparison with some of the
existing algorithms is presented in this section to show the
effectiveness of the proposed estimation technique. Section
6 concludes about the robustness of the algorithm.

2 Signal model
Consider a time-varying sinusoidal signal represented in
discrete form as

zk ¼ Ak cos(kvkTs þ fk)þ vk (1)

where Ak, vk, fk and Ts are the amplitude, angular frequency,
phase and sampling interval of the sinusoid, respectively; Ts is
expressed as Ts ¼ 1=fs , vk ¼ 2pfk, fs and fk are the sampling
and fundamental frequency of the signal.

Since the observed signal is real, the development of a
complex model requires a complex signal, and thus we use
Hilbert transform [19] to convert the real signal zk to an
analytic signal of Gabor yk as

yk ¼ Aej(kvTsþf)
þ nk (2)

The analytical signal y(k) is modelled in the state space using
the state variables x1k and x2k as

x1k ¼ ej(vTs) (3)

x2k ¼ Ake
j(kvTsþf) (4)
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Note that the model can easily be extended to represent
signals containing harmonics. Model equations (8) and (9)
can be put in the general form as

xkþ1 ¼ f (xk)þ hk (5)

and

yk ¼ h(xk)þ vk (6)

where

f (xk) ¼ [x1k x1k x2k]
T (7)

and

h(xk) ¼ [ 0 1 ]
x1k

x2k

� �
(8)

The complex signal model used in equations (3)–(8) will be
used in estimating the frequency of a time-varying sinusoid
embedded in noise with low signal-to-noise ratio (SNR).
The next section describes the UT and filtering algorithm.

3 Complex CUKF
As mentioned in the introduction the UKF is a powerful non-
linear estimation technique and operates on the premise that it
is easier to approximate a Gaussian distribution than it is
to approximate an arbitrary non-linear function. Instead of
linearising using Jacobean matrices the UKF evaluates the
non-linear function with a minimal set of carefully chosen
sampling points of 2Lþ 1, sigma points (L is the state
dimension) based on a square-root decomposition of the
prior covariance [17]. These sigma points are propagated
through the non-linearity, without approximation and a
weighted mean and covariance is found. Like the EKF, the
UKF uses a recursive algorithm that uses the system model,
measurements and known statistics of the noise mixed with
the signal. The posterior mean and covariances estimated
from these sample points are accurate to the second order
for any non-linearity.

Consider the non-linear system modelled by the discrete
time state as in (7) and (8), where xk [ RL and yk [ RP

are the signal state and measurement, respectively. The
non-linear mapping f ( ) is assumed to be continuously
differentiable with respect to xk. Moreover hk and vk are
uncorrelated zero mean Gaussian noise sequences with

E[hkh
�T
k ] ¼ Qk ¼

q1 0

0 q2

� �
, E[vkv�Tk ] ¼ Rk,

E[hkv�Tk ] ¼ 0

(9)

and the � sign indicates the complex conjugate of the
quantity. The procedure for implementation of CUKF is as
follows:
IET Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
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Step-1: Selection of sigma points: Given an L � 1 state vector
x̂k�1 at time step k 2 1 and state error covariance matrix P̂k�1,
compute a set of 2Lþ 1 sigma points as

xk�1 ¼ x̂k�1 x̂k�1 þ z

ffiffiffiffiffiffiffiffiffi
P̂k�1

q
x̂k�1 � z

ffiffiffiffiffiffiffiffiffi
P̂k�1

q� �
(10)

where z ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Lþ l
p

and l ¼ a2(Lþ k)� L, the parameter
l decides the spread of ith sigma point around x̂k�1.
Forl . 0, the points are scaled further from x̂k�1 and
when l , 0, the points are scaled towards x̂k�1. Further
l can be defined as a function of two parameters a and
k, where the constant a is a small constant lying between
0.0001 and 1 and can be used to control the amount of
the higher-order non-linearities around x̂k�1 which can be
taken into account. The parameter k is a secondary
scaling parameter which is usually set to 0 or 3 2 L to
ensure that the kurtosis of the sigma point distribution
agrees with the kurtosis of a Gaussian distribution. The
matrix zP̂k�1 is assumed positive definite and its square
root can therefore be computed by using the Cholesky
decomposition.

Step-2: Transformation of sigma points through system function
(time update): Each column of the sigma point matrix
is propagated one step ahead through the dynamic
function f ( ) of (5) to obtain the ‘transformed sigma points’
at time k

xi,k ¼ f (xi,k�1), i ¼ 1, 2, . . . 2Lþ 1 (11)

Step-3: Computation of prior state estimates: The prior state
estimate x̂�k and its corresponding covariance matrix P̂k=k�1

are approximated by the weighted mean and covariance of
the transformed sigma points as follows

x̂�k ¼
X2L

i¼0

W (m)
i xi,k (12)

P̂k=k�1 ¼
X2L

i¼0

W (c)
i [xi,k � x̂�k ][xi,k � x̂�k ]�T þQk�1 (13)

where Qk�1 is the process noise covariance matrix.
The weights W (m)

i and W (c)
i are defined as

W (m)
0 ¼

l

Lþ l
, W (m)

i ¼
l

2(Lþ l)
, W (m)

iþL ¼
1

2(Lþ l)

(14)

W (c)
0 ¼

l

(Lþ l)
þ (1� a2

þ r),

W (c)
i ¼

1

2(Lþ l)
þ (1� a2

þ r),

W (c)
iþL ¼

1

2(Lþ l)
, and i ¼ 1, . . . , L

(15)

and r is another parameter used to incorporate prior
T Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
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knowledge of the higher-order moments of the state
distribution. The optimal choice of this parameter for
Gaussian distribution is 2.

Step-4: Computation of predicted observation: The
predicted values for the manifest observations at time
step k can be obtained as the weighted sum of the projection
of transformed sigma points through measurement function h:

Yi,k ¼ h(xi,k) (16)

ŷ�k ¼
X2L

i¼0

W (m)
i Yi,k (17)

The posterior state estimate is computed as

x̂k ¼ x̂�k þ Kk(yk � ŷ�k ) (18)

where Kk is the Kalman gain given by

Kk ¼ GkS�1
k (19)

where

Gk ¼
X2L

i¼0

W (c)
i [xi,k � x̂�k ][Yi,k � ŷ�k ]�T (20)

Sk ¼
X2L

i¼0

W (c)
i [yi,k � ŷ�k ][Yi,k � ŷ�k ]�T þ Rk�1 (21)

Rk�1 is the measurement noise covariance. Then a posterior
estimate of the error covariance matrix is given by

P̂k ¼ P̂k=k�1 � K kSkK �Tk (22)

Like the UKF algorithm, the CUKF parameters Qk, Rk, a,
r, k are to be chosen by trial and error basis. The above
implementation of CUKF has considered the model error
covariance Qk and measurement error covariance Rk are
constants determined a priori. This paper also presents a
self-tuning update procedure for model error covariance Qk

and the measurement error covariance Rk, in order to
improve the filter adaptive capability and speed of the
response.

The model error can be estimated at any instant k from
(18) as

Zk ¼ x̂k � x̂�k ¼ K k(yk � ŷ�k ) ¼ [c1kc2k]
T (23)

As the model error is contributed by the white Gaussian
noise, the calculated model error covariance matrix can be
estimated from the above (23). Note that according to the
number of states, which is two in the above CUKF, model
Zk takes different values, leading to different variance
95
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estimates given as

q̂1k ¼ jc1kj
2 (24)

and

q̂2k ¼ jc2kj
2 (25)

The model error covariance estimate can be taken as the
average of both the terms and is given as

Q̂k ¼
1

2
(q̂1k þ q̂2k)� I (26)

By taking the average any large value of either q̂1k or q̂2k, which
may be interpreted as a lack of accuracy of the whole model can
be made adaptable. Similarly the measurement error covariance
is estimated using innovation error ek ¼ (yk � ŷ�k ), as

Rk ¼ lRk�1 þ (1� l)jekjjek�1j (27)

where l is forgetting factor and 0 � l � 1. In this way at
every instant of time the model and the measurement error
covariances are updated. The new values of model and
measurement error covariances Q̂k and Rk are used to
improve estimate of the state through iterative procedure. The
initial setting of Q̂0 ¼ 0� I and R0 ¼ 0, and (26) and (27)
are incorporated to the normal CUKF algorithm to make
it adaptive ACUKF. Thus to verify the performance of the
proposed filter, the internal behaviour of the filter like,
Kalman gain, model and measurement error covariances of
the filter is studied for tuned and untuned CUKF for a signal
having abrupt change in frequency. The gain of the untuned
filter settles to a fixed value even for change in signal
parameter, where as the gain of the tuned filter adapts to the
change in signal parameter, increasing the adaptive capability
of the filter as shown in Fig. 1. Similarly Figs. 2 and 3 show
the variation of the model and measurement error covariances
of the filter. From the figures it is clear that the error
covariances change with change in signal parameter changes
to reduce the estimation error.

Figure 1 Comparison of Kalman gain of the filter
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4 Stability of the proposed
non-linear filter
In this section, the stability of the proposed non-linear filter
is derived using the unscented filter equations. It will be
sufficient to show that the covariance matrix of estimation
error converges to zero as time index k tends to infinity.
Consider the non-linear discrete time system given in (5)
and (6) representing the state and measurement vectors at
time k, with hk and vk as the uncorrelated zero mean white
noise having covariances Qk and Rk, respectively. The
estimation and prediction errors are defined by

~xk ¼ xk � x̂k (28)

~xk=k�1 ¼ xk � x̂�k (29)

Expanding xk by a Taylor series about x̂k�1 gives

xk ¼ f (x̂k�1)þ rf (x̂k�1)~xk�1 þ
1

2
r

2f (x̂k�1)~x2
k�1 þ � � � þ hk

(30)

Figure 2 Comparison of model error covariance the filter

Figure 3 Comparison of measurement error covariance of
the filter
IET Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
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Similarly expanding x̂�k by Taylor series about x̂k�1 gives

x̂�k ¼
l

Lþ l

� �
f (x̂k�1)þ

l

2(Lþ l)

�
XL

i¼1

f [x̂k�1 þ (g
ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
)i]þ

l

2(Lþ l)

�
X2L

i¼Lþ1

f [x̂k�1 � (g
ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
)i�L]

¼ f (x̂k�1)þ
1

2
r

2f (x̂k�1)Pk�1 þ � � �

(31)

Substituting (30) and (31) into (29) gives an approximate
equation

~xk=k�1 ’ Fk ~xk�1 þ hk (32)

where

Fk ¼
@f (x)

@x

����
x¼x̂k�1

 !
¼

1 0
x̂2 k�1 x̂1 k�1

� �
(33)

In the above equation only the first term is taken, hence
we use an unknown instrumental matrix bk ¼

diag(b1k, b2k, . . . , bMk) to describe the prediction error
without approximation, similar formulation has been used
in [16] and is given by

~xk=k�1 ¼ bkF k ~xk�1 þ hk (34)

But in the proposed adaptive algorithm, the predicted
covariance matrix is calculated as

P̂k=k�1 ¼
X2L

i¼0

W (c)
i [xi,k � x̂�k ][xi,k � x̂�k ]�T þ Q̂k�1 (35)

where Q̂k�1 is a positive definite matrix introduced in the
calculation so that the stability of the filter will be
improved, and let the real prediction error covariance
matrix is given by

P̂k=k�1 ¼
ŝ2

k=k�1(1) gk=k�1

g�k=k�1 ŝ2
k=k�1(2)

" #
(36)

where ŝ2
k=k�1ðÞ and gk=k�1 represents the diagonal and off

diagonal elements of P̂k=k�1, respectively, and the real
T Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
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covariance matrix calculated taking the expectation yields

P̂k=k�1 ¼ E[~xk=k�1 ~x�Tk=k�1]

¼ E[(bkFk ~xk�1 þ hk)(bkF k ~xk�1 þ hk)
�T]

¼ bkFkP̂k�1b
�T
k F�Tk þ Q̂k�1

(37)

see (38)

Hence comparing (36) and (38) we obtain

ŝ2
k=k�1(1) ¼ b2

1ŝ
2
k�1(1)þ q̂1 k�1 (39)

gk=k�1 ¼ b1b2(ŝ2
k=k�1(1)x̂�2 k�1 þ gk�1x̂�1 k�1) (40)

ŝ2
k=k�1(2) ¼ b�1b2(ŝ2

k�1(1)jx̂2 k�1j
2
þ g�k�1x̂1 k�1x̂�2 k�1)

þ b2
2(gk�1x̂�1 k�1x̂2 k�1 þ ŝ2

k�1(2)jx̂1 k�1j
2)þ q̂2 k�1

(41)

As we know from the algorithm of CUKF

P̂k=k ¼ P̂k=k�1 � KkH kP̂k=k�1 (42)

and the Kalman gain is given by

Kk ¼ (P̂k=k�1H�Tk )(H kP̂k=k�1H�Tk þ Rk�1)�1 (43)

Kk ¼
gk=k�1

ŝ2
k=k�1(2)

" #

� [ 0 1 ]
ŝ2

k=k�1(1) gk=k�1

g�k=k�1 ŝ2
k=k�1(2)

" #
0

1

� �
þ Rk�1

" #�1

¼
gk=k�1

ŝ2
k=k�1(2)

" #
[ŝ2

k=k�1(2)þ Rk�1]�1

¼ 12
k

gk=k�1

ŝ2
k=k�1(2)

" #
(44)

where

12
k ¼

1

ŝ2
k=k�1(2)þ Rk�1

(45)
¼
b1 0

0 b2

� �
1 0

x̂2k�1 x̂1k�1

� �
ŝ2

k�1(1) gk�1

g�k�1 ŝ2
k�1(2)

" #
b�1 0

0 b�2

� �
1 x̂�2k�1

0 x̂�1k�1

� �
þ Q̂k�1

¼

b2
1ŝ

2
k�1(1) b2

1ŝ
2
k�1(1)x̂�2k�1 þ b1b

�
2gk�1x̂�1k�1

b�1b2ŝ
2
k�1(1)x̂2k�1 þ b�1b2g

�
k�1x̂1k�1 b�1b2(ŝ2

k�1(1)x̂2k�1x̂�2k�1 þ g�k�1x̂1k�1x̂�2k�1)

þb2
2(gk�1x̂2k�1x̂�1k�1 þ ŝ2

k�1(2)x̂1k�1x̂�1k�1)

2
64

3
75þ Q̂k�1

(38)
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Using above equations, the error covariance matrix becomes
(see (46))

Hence

ŝ2
k=k(1) ¼ ŝ2

k=k�1(1)� 12
k jgk=k�1j

2 (47)

gk=k ¼ gk=k�1 � 12
kgk=k�1s

2
k=k�1(2) (48)

ŝ2
k=k(2) ¼ ŝ2

k=k�1(2)� 12
k ŝ

4
k=k�1(2) (49)

Now replacing ŝ2
k=k�1(1), ŝ2

k=k�1(2), gk=k�1 with its relation to
time k 2 1 we obtain

ŝ2
k=k(1) ¼ b2

1ŝ
2
k�1(1)þ q̂1k�1 � 12

k jgk=k�1j
2
¼ ŝ2

k=k(1)

� b2
1ŝ

2
k�1(1) ¼ q̂1k�1 � 12

k jgk=k�1j
2

(50)

Further 12
k is approximately proportional to 1=Rk�1 as given

in (45) and both q̂1k�1 and Rk�1 decrease as k increases
resulting in the condition jq̂1k�1j , 12

k jgk=k�1j
2. Thus it can

be observed that the variance in (50) continues to decrease
as k increases, and at the equilibrium point gk=k�1 ¼ 0 and
q̂1k�1 converges to a very small value, which is almost equal
to 0. Thus from (48) it is clear that gk=k also will tend to
zero. Following the similar process as for ŝ2

k=k(1) we can
verify that ŝ2

k=k(2) also converges to zero. Hence the
estimation error covariance converges to zero as k becomes
very large or tends to infinity.

Further bk in (34) is an unknown instrumental diagonal
matrix chosen for evaluating the error introduced by the
UT and stability of the ACUKF algorithm does not
depend on the magnitude of bk, whose value is set to
bk ¼ I (b1 ¼ 1, b2 ¼ 1). To ensure the stability of
ACUKF, the matrix Q̂k�1 needs to be positive definite. It
can be seen from (26) that Q̂k�1 is a small positive
quantity. If Q̂k�1 is sufficiently large, then ACUKF can
tolerate high-order error introduced during the UT
by enlarging the noise covariance matrix. On the other
hand, when the matrix Q̂k�1 is enlarged, stability of the
ACUKF will be improved, but the precision may be
decreased.
The Institution of Engineering and Technology 2010
5 Simulation results and
discussion
Different cases of time varying frequency change are tested
using the proposed approach and different filters. Test-1
analyses different types of major power signal variation
problems, such as sudden frequency change and harmonic
distortion, using simulated waveforms and MATLAB
software package; Test-2 analyses distorted signals
generated using an experimental setup. The chosen
sampling rate is 1 kHz, for Test-1 and 2.3 kHz for Test-2,
and the frequency is normalised with respect to a base
frequency.

5.1 TEST- 1

In this test several case studies have been undertaken which
are given below.

Case 1: The effectiveness of the proposed algorithm
adaptive CUKF with complex-EKF and UKF has
been demonstrated considering the non-stationary
signal under different levels of noise, the SNR is varied
from 60 to 10 dB. The non-linear signal considered is
given by

yk ¼ Ak cos(kvkTs þ fk)þ vk (51)

where Ak, vk and fk are the amplitude, frequency and
phase of the signal, respectively, and vk is Gaussian
noise with zero mean. For tracking a time varying
power signal of 50 Hz frequency, the sampling
frequency is chosen as 1.0 kHz and the CUKF
parameters Qk, Rk, a, b and k need to be initialised.
Here b and k are chosen as b ¼ 2 and k ¼ 0 and
a ¼ 0.5, Qk ¼ qkI 2�2, where I is a unit matrix and qk ¼

0.5, and Rk ¼ 0.05. Since the non-linear model used in
the proposed algorithm uses two states for
modelling, the value of L is set equal to 2, and
thus the number of sigma points for this estimation is
2Lþ 1, that is, 5 and the augmented state vector xk�1

is a 2 � 5 matrix. The frequency of the time varying
signal is given by

fk ¼ 50 Hz, for 0 � k � 500, and fk ¼ 70 Hz, for k � 500

(52)
P̂k=k ¼
ŝ2

k=k�1(1) gk=k�1

g�k=k�1 ŝ2
k=k�1(2)

" #
� 12

k

gk=k�1

ŝ2
k=k�1(2)

" #
0 1
� 	 ŝ2

k=k�1(1) gk=k�1

g�k=k�1 ŝ2
k=k�1(2)

" #

¼
ŝ2

k=k�1(1) gk=k�1

g�k=k�1 ŝ2
k=k�1(2)

" #
� 12

k

gk=k�1g
�
k=k�1 gk=k�1ŝ

2
k=k�1(2)

ŝ2
k=k�1(2)g�k=k�1 ŝ2

k=k�1(2)ŝ2
k=k�1(2)

" #

¼
ŝ2

k=k�1(1)� 12
k jgk=k�1j

2 gk=k�1 � 12
kgk=k�1ŝ

2
k=k�1(2)

g�k=k�1 � 1
2
k ŝ

2
k=k�1(2)g�k=k�1 ŝ2

k=k�1(2)� 1
2
k ŝ

4
k=k�1(2)

" #
(46)
IET Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
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The SNR of the signal is varied from 60, 30, 20 and
10 dB, respectively. The experiment was repeated 100
times. The frequency tracking ability of different
algorithms is summarised in Table 1, which shows a
comparison between the UKF, CEKF, CUKF and
adaptive CUKF for the signal model shown in (51).
Fig. 4 shows the frequency tracking performance of
different algorithms. It is clear from the figure that
UKF is unable to track large step change in frequency
even at 30 dB white Gaussian noise as compared to
ACUKF. The performance of ACUKF is even better
than the CEKF.

Case 2: The non-linear signal considered in this case is the
same one given in (51), and the time varying frequency
considered is given by

fk¼50Hz, for 0� k�500, and fk¼52Hz, for k�500 (53)

The SNR of the signal is then varied in a similar way from 60
to 10 dB as in case 1. The experiment was repeated 100
times, and the frequency tracking performance of the filters
is summarised in Table 2. Fig. 5 shows that for small-step
frequency variation both UKF and adaptive IIR systems
(AIS) (adaptive infinite impulse response (IIR) structure)
can track frequency more or less accurately as in the case
of=ACUKF. It is clear from the figure that although

Table 1 MSE over 100 independent runs

Algorithm 60 dB 30 dB 20 dB 10 dB

UKF 0.0986 0.213 0.32 0.511

CEKF 0.0073 0.051 0.089 0.257

CUKF 0.0052 0.028 0.076 0.208

ACUKF 0.0011 0.0163 0.051 0.121

Figure 4 Frequency tracked with different algorithms at
SNR 30 dB
T Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
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UKF and AIS can track small variations in frequency, the
performance of proposed ACUKF filter is better.

Case 3: A similar analysis as in case 2 is repeated for a
frequency variation of

fk¼ 45Hz, for 0� k� 500, and

fk¼ 55Hz, for k� 500 (54)

In this case the performance of AIS and ACUKF is
compared for different SNR. Fig. 6 shows that for a

Figure 6 Frequency tracked with different algorithms at
SNR 10 dB

Table 2 Mean of MSE over 100 independent runs

Algorithm 60 dB 30 dB 20 dB 10 dB

AIS 0.0583 0.0971 0.212 0.473

UKF 0.0173 0.0192 0.187 0.401

CUKF 0.00093 0.0083 0.066 0.157

ACUKF 0.00075 0.0016 0.028 0.143

Figure 5 Frequency tracked with different algorithms at
SNR 30 dB
99
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step frequency variation AIS algorithm can track
frequency, but it takes large setting time compared to
ACUKF.

Case 4: The signal considered in this case is same as given
in (51). The frequency of the signal is varied linearly with a
constant increment and is given as follows.

For

k � ks, fk ¼ f0, ks , k � kF , fk ¼ f0 þ Df , and

k . kF fk ¼ f1 (55)

where f0 ¼ 45 Hz, f1 ¼ 55, and Df ¼ (k� ks)(f1 � f0)=
Ts(kF � ks) The performance of different algorithms for
high noise condition is presented in Fig. 7. It is clear
from the figure that AIS does not perform well at high
noise condition even for linear frequency variation. On
the other hand although CEKF is able to track the
frequency under high noise condition, it takes more time
to converge to the true value as compared to the proposed
ACUKF.

Case 5: The non-linear signal considered in this case is
the same one as in (51). The fundamental frequency of the
signal is modulated by a small frequency component. Fig. 8
shows the modulated frequency tracking performance of
ACUKF, CUKF and UKF under high noise condition of
SNR ¼ 10 dB. From the figure it is clear that the ACUKF
and CUKF can easily track the modulated frequency
compared to UKF.

Case 6: In this case 10% third harmonic, 1% fifth harmonic
and 0.5% seventh harmonic are added to the signal
considered in case 1. Since harmonics are not considered
in the signal model, the performance of the proposed filter
is expected to deteriorate. Fig. 9 shows the frequency
tracking performance of ACUKF in the presence of
unmodelled harmonics. It is observed from Fig. 9 that the

Figure 7 Ramp Frequency tracked with different algorithms
at SNR 10 dB
0
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presence of harmonic hardly affects the fundamental
frequency estimation. However, if the magnitudes of
harmonic components are significant, the performance of
ACUKF will deteriorate, if the signal model does not
include them.

5.2 TEST-2

Case 7: Experimental test data are generated using practical
setup, as shown in Figs. 10a and b, and then the proposed
method is applied to the acquired signals. The sampling
rate is chosen as 2.3 kHz. The load is fed from a 3 kVA,
230:230 single-phase transformer, and signals are obtained
by switching on and switching off the load, respectively.
The data samples are collected by stepping down the load
voltage to 12 V and then converted to digital signal by data
acquisition card (DAC) and collected in the PC using the
program written in ‘C’. The signal generated is a time-
varying signal where frequency of the signal changes from
10 to 18 Hz then comes back to 10 Hz. The frequency
tracking performance is summarised in Table 3 for

Figure 8 Modulated Frequency tracked with different
algorithms at SNR 10 dB

Figure 9 Performance of the algorithm in presence of
harmonics as noise: actual (dotted), estimated (solid)
IET Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
doi: 10.1049/iet-smt.2009.0003
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Figure 10 Real-time signal tracking during frequency step-up

a Experimental setup
b Waveform simulator subsystem
c Real-time signal
d Real-time signal tracked using CUKF algorithm: actual (dotted), estimated (solid)
e Real-time signal tracked using UKF algorithm; actual (dotted), estimated (solid)
f Real-time signal frequency tracked with different algorithms
T Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103 101
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different algorithms. Fig. 10c shows the real-time signal
obtained from the experimental setup. Figs. 10d and e

Table 3 Mean of MSE over 100 independent runs

Algorithm 60 dB 30 dB 20 dB 10 dB

UKF 0.068 0.081 0.121 0.231

CUKF 0.0066 0.033 0.092 0.211

ACUKF 0.0023 0.0263 0.085 0.205

Table 4 Mean of MSE over 100 independent runs

Algorithm 60 dB 30 dB 20 dB 10 dB

UKF 0.082 0.093 0.127 0.242

CUKF 0.0054 0.045 0.108 0.21

ACUKF 0.0026 0.031 0.095 0.201
02
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show the signal tracking performance of the CUKF and
EKF algorithms, respectively. Fig. 10f shows the
comparative frequency tracking performance of
ACUKF, CUKF and UKF algorithms. Out of these
algorithms, superior tracking performance is exhibited by
ACUKF.

Case 8: Here another real-time signal data is taken from the
experiment, where frequency of the signal changes from 10
to 6 Hz and then back to 10 Hz as shown in Fig. 11a. The
frequency tracking performance of the filters is summarised
in Table 4.

Figs. 11b and c show that ACUKF performs much better
than the UKF in tracking the signal waveform accurately.
Fig. 11d shows comparison of frequency estimation
performance of all the three algorithms.

The results obtained for different algorithms for different
case studies are summarised in Tables 1 and 2.
Figure 11 Real-time signal tracking during frequency step-down

a Real-time signal
b Real-time signal tracked using ACUKF: actual (dotted), estimated (solid)
c Real-time signal tracked using UKF algorithm: actual (dotted), estimated (solid)
d Real-time signal frequency tracked with different algorithms
IET Sci. Meas. Technol., 2010, Vol. 4, Iss. 2, pp. 93–103
doi: 10.1049/iet-smt.2009.0003
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6 Conclusion
A non-linear filter based on UT and a complex state-space
signal model (CUKF) has been proposed for the estimation
of frequency of a time-varying sinusoid in the presence
of high noise condition. The error performance of the
proposed algorithm is analysed and the algorithm is
modified for sequentially calculating the error covariance as a
function of the sum of the absolute error values (ACUKF).
Further, the stability analysis of the proposed non-linear
filter has also been presented to prove its convergence
property. It is observed that, the proper selection of Q̂k is a
tradeoff between stability and accuracy requirement of the
filter. The proposed method is applied and compared with
other algorithms for several simulation examples and real-
time signals showing its superior performance.
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